Relational coloring of varieties containing a cube term

Matthew Moore
Vanderbilt University

May 21, 2016

Coloring varieties containing a cube term

(1) Coloring
(2) Clone \mathcal{L}-homomorphisms
(3) Linear interpretability
(4) Further directions

Coloring varieties containing a cube term

(1) Coloring
(2) Clone \mathcal{L}-homomorphisms
(3) Linear interpretability
4) Further directions

Cube terms

An n-dimensional cube term for an algebra \mathbb{A} is a term $t(\cdots)$ such that $\mathbb{A} \vDash t\left(u_{1}, \ldots, u_{m}\right) \approx \bar{x}$ for some $u_{i} \in\{x, y\}^{n} \backslash\{x\}^{n}$.

Example

$$
\mathbb{A} \models t\left(\begin{array}{lllllll}
y & x & x & y & y & x & y \\
x & y & x & y & x & y & y \\
x & x & y & x & y & y & y
\end{array}\right) \approx\left(\begin{array}{l}
x \\
x \\
x
\end{array}\right)
$$

Finite idempotent \mathbb{A} has a cube term...
$\Leftrightarrow \mathbb{A}$ has few subpowers: $\log _{2}\left|\mathbf{S}\left(\mathbb{A}^{n}\right)\right| \in \mathcal{O}\left(n^{k}\right)$.
$\Leftrightarrow \mathbb{A}$ is congruence modular and finitely related.
$\Leftrightarrow \mathbb{A}$ has no cube term blockers: $\mathbb{D}<\mathbb{C} \leq \mathbb{A}$ with $C^{n} \backslash(C \backslash D)^{n} \leq \mathbb{A}^{n}$.
$\Rightarrow \operatorname{CSP}(\mathbb{A})$ is tractable.

Coloring

Let \mathcal{A} be a clone and $\mathbb{B}=\left(B ;\left(R_{j}\right)_{j \in J}\right)$ be a relational structure.
Let $F^{\mathcal{A}}(B)$ be be the free algebra in $\mathcal{V}(\langle A ; \mathcal{A}\rangle)$ with generators B.
For $R_{i} \in\left(R_{j}\right)_{j \in J}$ let

$$
R_{i}^{\mathcal{A}}=\text { closure of }\left\{\left(b_{1}, \ldots, b_{n}\right) \in F^{\mathcal{A}}(B)^{n} \mid\left(b_{1}, \ldots, b_{n}\right) \in R_{i}\right\} \text { under } \mathcal{A}
$$

Let $\mathbb{F}^{\mathcal{A}}(\mathbb{B})=\left(F^{\mathcal{A}}(B) ;\left(R_{j}^{\mathcal{A}}\right)_{j \in J}\right)$.
A coloring of \mathcal{A} by \mathbb{B} is a relational homomorphism

$$
c: \mathbb{F}^{\mathcal{A}}(\mathbb{B}) \rightarrow \mathbb{B} \quad \text { such that } \quad c(b)=b
$$

We say that \mathcal{A} is \mathbb{B}-colorable. We say that \mathcal{V} is \mathbb{B}-colorable if $\mathrm{Clo}(\mathcal{V})$ is.

What is it good for?

Theorem (Sequeira)

\mathcal{V} is congruence k-permutable for some k iff \mathcal{V} is not $(\{0,1\} ; \leq)$-colorable.

Theorem (Sequeira)

Let $D=\{1,2,3,4\}, \alpha=12|34, \beta=13| 24, \gamma=12|3| 4$, and $\mathbb{D}=(D ; \alpha, \beta, \gamma) . \mathcal{V}$ is congruence modular iff \mathcal{V} is not \mathbb{D}-colorable.

NB: Sequeira calls this "compatibility with projections".

Colorability results

Theorem

Let $\emptyset \neq C \subsetneq B \subseteq A$ be sets, $R_{n}=B^{n} \backslash(B \backslash C)^{n}$, and $\mathbb{A}=\left(A ;\left(R_{n}\right)_{n \in \omega}\right)$.
Idempotent \mathcal{V} has a cube term iff \mathcal{V} is not \mathbb{A}-colorable.

Theorem

Let $R_{n}=\left(\omega^{2}\right)^{n} \backslash\left(\Delta_{2}\right)^{n}$ and $\mathbb{W}=\left(\omega ;\left(R_{n}\right)_{n \in \omega}\right)$.
\mathcal{V} has a weak Taylor term iff \mathcal{V} is not \mathbb{W}-colorable.

Theorem

Let $\emptyset \neq C \subsetneq B \subseteq A$ be sets, $R_{n}=B^{n} \backslash(B \backslash C)^{n}$, and $\mathbb{A}=\left(A ;\left(R_{n}\right)_{n \in \omega}\right)$.
Idempotent \mathcal{V} has a cube term iff \mathcal{V} is not \mathbb{A}-colorable.

Proof.

(\Rightarrow) : Suppose \mathcal{V} has an n-dimensional cube term and is \mathbb{A}-colorable.
There is some identity $\mathcal{V} \models t\left(u_{1}, \ldots, u_{n}\right) \approx \bar{x}$ for some $u_{i} \in\{x, y\}^{n} \backslash\{x\}^{n}$.
Let $c \in C$ and $b \in B \backslash C$.
Substitute b for x and c for y to get $t\left(u_{1}, \ldots, u_{n}\right)=\bar{b}$ and $u_{i} \in R_{n}^{\mathcal{V}}$.
Thus $\bar{b} \in R_{n}^{\mathcal{V}}$. Then $c(\bar{b})=\bar{b} \in R_{n} \subseteq A^{n}$, a contradiction.

Proof (cont.).

(\Leftarrow) : Suppose \mathcal{V} does not have a cube term.
Write $g \prec_{t} h$ if we have $u_{i} \in\{g, h\}^{n} \backslash\{g\}^{n}$ such that $t\left(u_{1}, \ldots, u_{n}\right)=\bar{g}$.
Fix some $c_{0} \in C$ and define $c: \mathbb{F}^{\mathrm{Clo}(\mathcal{V})}(A) \rightarrow \mathbb{A}$ by

$$
c(f)= \begin{cases}a & \text { if } f=a \in A \subseteq F^{\mathrm{Clo}(\mathcal{V})}(A) \\ b & \text { else if } \exists b \in B, t(\cdots) \text { such that } b \prec_{t} f, \\ c_{0} & \text { else. }\end{cases}
$$

Clearly $c(a)=a$ for $a \in A$. Does c preserve relations?

Proof (cont.).

$$
c(f)= \begin{cases}a & \text { if } f=a \in A \subseteq F^{\mathrm{Clo}(\mathcal{V})}(A) \\ b & \text { else if } \exists b \in B, t(\cdots) \text { such that } b \prec_{t} f \\ c_{0} & \text { else. }\end{cases}
$$

Suppose that c fails to preserve $R_{n}^{\mathrm{Clo}(\mathcal{V})}$. Then there exists

- $\left(f_{1}, \ldots, f_{n}\right) \in R_{n}^{\mathrm{Clo}(\mathcal{V})}$,
- a term $s(\cdots)$,
- and $u_{1}, \ldots, u_{k} \in B^{n} \backslash(B \backslash C)^{n} \subseteq F^{\mathrm{Clo}(\mathcal{V})}(A)$, such that
- $s\left(u_{1}, \ldots, u_{k}\right)=\left(f_{1}, \ldots, f_{n}\right)$
- and $c\left(f_{i}\right)=b_{i} \in(B \backslash C)$.

Thus $b_{i} \prec_{t_{i}} f_{i}$. Let $t=t_{1} * t_{2} * \cdots * t_{n} * s$.
Then $\exists v_{1}, \ldots, v_{m} \in B^{n} \backslash(B \backslash C)^{n}$ such that $t\left(v_{1}, \ldots, v_{m}\right)=\left(b_{1}, \ldots, b_{n}\right)$.
This is a free algebra, so substitute x for $B \backslash C$ and y for C to obtain a cube identity for $t(\cdots)$, a contradiction.

A corollary

Theorem

Let $\emptyset \neq C \subsetneq B \subseteq A$ be sets, $R_{n}=B^{n} \backslash(B \backslash C)^{n}$, and $\mathbb{A}=\left(A ;\left(R_{n}\right)_{n \in \omega}\right)$.
Idempotent \mathcal{V} has a cube term iff \mathcal{V} is not \mathbb{A}-colorable.

Let $A=B=\{0,1\}$ and $C=\{0\}$.
Then the polymorphism clone of \mathbb{A} is generated by $\hat{\mathbb{L}}=\langle\{0,1\} ; \nrightarrow\rangle$: $\operatorname{Pol}(\mathbb{A})=\operatorname{Clo}(\hat{\mathbb{L}})$.

Corollary

Idempotent \mathcal{V} has a cube term iff \mathcal{V} is not $\operatorname{Rel}(\hat{\mathbb{Z}})$-colorable.

Coloring varieties containing a cube term

(1) Coloring

(2) Clone \mathcal{L}-homomorphisms
(3) Linear interpretability

4 Further directions

Clone homomorphisms

Definition

A homomorphism between clones \mathcal{A} and \mathcal{B} is an arity-preserving mapping $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\varphi\left(\pi_{k}\right)=\pi_{k} \quad \text { and } \quad \varphi\left(f\left(g_{1}, \ldots, g_{n}\right)\right)=\varphi(f)\left(\varphi\left(g_{1}\right), \ldots, \varphi\left(g_{n}\right)\right)
$$

An \mathcal{L}-homomorphism between clones \mathcal{A} and \mathcal{B} is an arity preserving mapping $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\varphi\left(\pi_{k}\right)=\pi_{k} \quad \text { and } \quad \varphi\left(f\left(\pi_{i_{1}}, \ldots, \pi_{i_{n}}\right)\right)=\varphi(f)\left(\pi_{i_{1}}, \ldots, \pi_{i_{n}}\right) .
$$

Let \mathcal{A} and \mathcal{B} be clones, and let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be an arity preserving map.
Let $\mathbb{A}=(A ; \mathcal{A})$, and $\mathbb{B}=(B ; \mathcal{B})$.
φ is a clone homomorphism iff $f \approx g$ in \mathbb{A} implies $\varphi(f) \approx \varphi(g)$ in \mathbb{B}.
φ is a clone \mathcal{L}-homomorphism iff every identity $f \approx g$ in \mathbb{A} not involving composition implies $\varphi(f) \approx \varphi(g)$ in \mathbb{B}.

Example

Consider $\mathbb{Z}=\langle\{0,1\} ; \rightarrow\rangle$ and $\hat{\mathscr{L}}=\langle\{0,1\} ; \nrightarrow\rangle$.
No clone homomorphisms between $\mathrm{Clo}(\hat{\mathbb{2}})$ and $\mathrm{Clo}(\mathbb{2})$ since \rightarrow cannot be defined as a term in \nrightarrow and \nrightarrow cannot be defined as a term in \rightarrow.

This is also witnessed by the identities

$$
\mathcal{L} \models y \rightarrow(x \rightarrow x) \approx(x \rightarrow x), \quad \hat{2} \models(x \nrightarrow x) \nrightarrow y \approx(x \nrightarrow x) .
$$

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ define $\delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\neg f\left(\neg x_{1}, \ldots, \neg x_{n}\right)$, where \neg is boolean negation.
$\delta: \mathrm{Clo}(\mathcal{2}) \rightarrow \mathrm{Clo}(\hat{\mathbb{L}})$ is a clone \mathcal{L}-homomorphism, but not a clone homomorphism.

Let $s(x, y, z)=x \rightarrow(y \rightarrow z)$ and $s^{\prime}(x, y, z)=(x \nrightarrow y) \nrightarrow z$.
$\delta(s)=s^{\prime}$ and $\delta\left(s^{\prime}\right)=s$.
δ translates the identities witnessing the non-existence of a clone homomorphism.

Connection to coloring

Theorem (Barto, Oprsal, Pinsker)

Let \mathcal{A} be a clone and \mathbb{B} a relational structure with polymorphism clone \mathcal{B}. \mathcal{A} is $\operatorname{Rel}(\mathcal{B})$-colorable iff there is a clone \mathcal{L}-homomorphism $\mathcal{A} \rightarrow \mathcal{B}$.

Corollary

Let \mathcal{V} be an idempotent variety. The following are equivalent.

- \mathcal{V} does not have a cube term,
- there is a clone \mathcal{L}-homomorphism $\operatorname{Clo}(\mathcal{V}) \rightarrow \mathrm{Clo}(\hat{\mathscr{L}})$.

Coloring varieties containing a cube term

(1) Coloring

(2) Clone \mathcal{L}-homomorphisms
(3) Linear interpretability

4) Further directions

Interpretability

Let \mathcal{V} and \mathcal{W} be varieties and write $\mathcal{V} \leq \mathcal{W}$ if there is a clone homomorphism $\operatorname{Clo}(\mathcal{V}) \rightarrow \operatorname{Clo}(\mathcal{W})$. Say that \mathcal{V} is interpretable into \mathcal{W}.

Define an equivalence relation by $\mathcal{V} \equiv \mathcal{W}$ if $\mathcal{V} \leq \mathcal{W} \leq \mathcal{V}$.
Modulo this equivalence relation, under the \leq order the class of all varieties is a lattice. This is the lattice of interpretability types.

Write $\mathcal{V} \leq_{\mathcal{L}} \mathcal{W}$ if there is a clone \mathcal{L}-homomorphism $\operatorname{Clo}(\mathcal{V}) \rightarrow \operatorname{Clo}(\mathcal{W})$. Say that \mathcal{V} is \mathcal{L}-interpretable into \mathcal{W}.

Define an equivalence relation by $\mathcal{V} \equiv_{\mathcal{L}} \mathcal{W}$ if $\mathcal{V} \leq_{\mathcal{L}} \mathcal{W} \leq_{\mathcal{L}} \mathcal{V}$.

$$
\begin{aligned}
& \text { Example } \\
& \mathcal{V}(\mathbb{2}) \equiv_{\mathcal{L}} \mathcal{V}(\hat{\mathbb{L}})
\end{aligned}
$$

$\mathcal{V}_{\mathcal{L}}$

Let \mathcal{V} be a variety with signature σ.
Replace σ by $\operatorname{Clo}(\mathcal{V})$, call the resulting variety \mathcal{V}_{c} so that $\mathcal{V}_{c} \equiv \mathcal{V}$.
Let $\Sigma \subseteq \operatorname{Th}\left(\mathcal{V}_{c}\right)$ be the subset of all identities not involving composition.
Let $\mathcal{V}_{\mathcal{L}}=\operatorname{Mod}(\Sigma)$.

Example

If \mathcal{V} has an identity $t(s(x, y), x, y) \approx s(x, y)$, then \mathcal{V}_{c} will have a new operation symbol $f(x, y, z, w)$ and $\operatorname{Th}\left(\mathcal{V}_{c}\right)$ will have identities

- $t(s(x, y), x, y) \approx s(x, y)$,
- $f(x, y, z, w) \approx t(s(x, y), z, w)$,
- $f(x, y, x, y) \approx s(x, y)$.

Out of these, Σ will contain only the last one.

Example

$(x \nrightarrow x) \nrightarrow y \approx(x \nrightarrow x)$ in $\hat{2}$ becomes $s(x, x, y) \approx x \nrightarrow x$ in $\mathcal{V}(\hat{2})_{\mathcal{L}}$.

Properties of $\mathcal{V}_{\mathcal{L}}$

Usual interpretability lattice:

Theorem

Let \mathcal{V} and \mathcal{W} be varieties. Then

- $\mathcal{V} \equiv \mathcal{L} \mathcal{V}_{\mathcal{L}}$,
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{W}_{\mathcal{L}}$ iff $\mathcal{V} \leq_{\mathcal{L}} \mathcal{W}$,
- if $\mathcal{V} \leq \mathcal{W}$ then $\mathcal{V}_{\mathcal{L}} \leq \mathcal{W}_{\mathcal{L}}$.
- \mathcal{V} is defined by linear identities iff $\mathcal{V} \equiv \mathcal{V}_{\mathcal{L}}$.

Properties of $\mathcal{V}_{\mathcal{L}}$

\mathcal{L}-interpretability lattice:

- \mathcal{V} is defined by linear identities iff $\mathcal{V} \equiv \mathcal{V}_{\mathcal{L}}$.

Corollary

Let \mathcal{V} be an idempotent variety. The following are equivalent.

- \mathcal{V} does not have a cube term,
- $\mathcal{V} \leq_{\mathcal{L}} \mathcal{V}(\hat{\mathbb{2}})$ in the \mathcal{L}-interpretability lattice.
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{V}(\hat{\mathbb{L}})_{\mathcal{L}}$ in the interpretability lattice.

Theorem (Sequeira; Barto, Oprsal, Pinsker)

If \mathcal{V} and \mathcal{W} are defined by linear identities and are \mathbb{A}-colorable, then $\mathcal{V} \vee \mathcal{W}$ is \mathbb{A}-colorable as well.

Corollary

If idempotent \mathcal{V} and \mathcal{W} are defined by linear identities and $\mathcal{V} \vee \mathcal{W}$ has a cube term, then one of \mathcal{V} or \mathcal{W} does.

Coloring varieties containing a cube term

(1) Coloring

(2) Clone \mathcal{L}-homomorphisms
(3) Linear interpretability
4) Further directions

Question

Is having a cube term join-prime in the idempotent interpretability lattice?

Answer is tentatively "yes".

Question

Is there a characterization of when $(\mathcal{V} \vee \mathcal{W})_{\mathcal{L}} \equiv \mathcal{V}_{\mathcal{L}} \vee \mathcal{W}_{\mathcal{L}}$?

In the class of idempotent varieties satisfying $(\mathcal{V} \vee \mathcal{W})_{\mathcal{L}} \equiv \mathcal{V}_{\mathcal{L}} \vee \mathcal{W}_{\mathcal{L}}$, both being congruence modular and having a cube term are join prime.

Question

Does every \vee-prime filter in the \mathcal{L}-interpretability lattice come from a coloring characterization?

Question

Is there a coloring characterization for k-permutability for fixed k ?

We know that \mathcal{V} is not k-permutable for any k iff \mathcal{V} is ($\{0,1\}$; \leq)-colorable.

Let $\mathbb{P}_{k}=(\{1, \ldots, k\} ; \rightarrow)$ where $\alpha \rightarrow \beta$ iff $\alpha \leq \beta+1$.

Then \mathcal{V} is congruence $(k-1)$-permutable iff it is not \mathbb{P}_{k}-colorable.

$$
\text { Let } \hat{\mathbf{2}}=\left(\{0,1\} ;\left(\{0,1\}^{n} \backslash\{1\}^{n}\right)_{n \in \omega}\right) \text { and } \hat{\mathscr{L}}=\langle\{0,1\} ; \nrightarrow\rangle \text {. }
$$

Theorem

For idempotent \mathcal{V} the following are equivalent.

- \mathcal{V} has no cube term,
- \mathcal{V} is $\hat{\mathbf{2}}$-colorable,
- $\mathcal{V} \leq_{\mathcal{L}} \mathcal{V}(\hat{\mathbb{L}})$,
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{V}(\hat{\mathbb{L}})_{\mathcal{L}}$.

If $\mathcal{V}=\mathcal{V}(\mathbb{A})$ for finite \mathbb{A}, then these are equivalent to

- there exists $\mathbb{C}<\mathbb{D} \leq \mathbb{A}$ such that $D^{n} \backslash(D \backslash C)^{n} \leq \mathbb{A}^{n}$ for all n (Markovic, Maroti, McKenzie).

Question

Without repeating the proof of MMM, can we obtain the finite algebra result from the other results?

Conclusion

$$
\text { Let } \hat{\mathbf{2}}=\left(\{0,1\} ;\left(\{0,1\}^{n} \backslash\{1\}^{n}\right)_{n \in \omega}\right) \text { and } \hat{\mathbb{L}}=\langle\{0,1\} ; \nrightarrow\rangle \text {. }
$$

Theorem

For idempotent \mathcal{V} the following are equivalent.

- \mathcal{V} has no cube term,
- \mathcal{V} is $\hat{2}$-colorable,
- $\mathcal{V} \leq_{\mathcal{L}} \mathcal{V}(\hat{\mathbb{L}})$,
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{V}(\hat{\mathbb{L}})_{\mathcal{L}}$.

Thank you.

