Relational coloring of varieties containing a cube term

Matthew Moore

Vanderbilt University

May 21, 2016

- **2** Clone \mathcal{L} -homomorphisms
- 3 Linear interpretability
- 4 Further directions

2) Clone \mathcal{L} -homomorphisms

- 3 Linear interpretability
- Further directions

Cube terms

An *n*-dimensional cube term for an algebra \mathbb{A} is a term $t(\cdots)$ such that $\mathbb{A} \models t(u_1, \ldots, u_m) \approx \overline{x}$ for some $u_i \in \{x, y\}^n \setminus \{x\}^n$.

Example

$$\mathbb{A} \models t \begin{pmatrix} y & x & x & y & y & x & y \\ x & y & x & y & x & y & y \\ x & x & y & x & y & y & y \end{pmatrix} \approx \begin{pmatrix} x \\ x \\ x \end{pmatrix}$$

Finite idempotent \mathbb{A} has a cube term...

 $\Leftrightarrow \mathbb{A}$ has few subpowers: $\log_2 |\mathbf{S}(\mathbb{A}^n)| \in \mathcal{O}(n^k)$.

 $\Leftrightarrow \mathbb{A}$ is congruence modular and finitely related.

 $\Leftrightarrow \mathbb{A}$ has no cube term blockers: $\mathbb{D} < \mathbb{C} \leq \mathbb{A}$ with $C^n \setminus (C \setminus D)^n \leq \mathbb{A}^n$.

 \Rightarrow CSP(A) is tractable.

Coloring

Let \mathcal{A} be a clone and $\mathbb{B} = (B; (R_j)_{j \in J})$ be a relational structure.

Let $F^{\mathcal{A}}(B)$ be be the free algebra in $\mathcal{V}(\langle A; \mathcal{A} \rangle)$ with generators B.

For
$$R_i \in (R_j)_{j \in J}$$
 let
 $R_i^{\mathcal{A}} = \text{closure of } \{(b_1, \dots, b_n) \in F^{\mathcal{A}}(B)^n \mid (b_1, \dots, b_n) \in R_i\}$ under \mathcal{A}
Let $\mathbb{F}^{\mathcal{A}}(\mathbb{B}) = (F^{\mathcal{A}}(B); (R_j^{\mathcal{A}})_{j \in J}).$

A coloring of ${\mathcal A}$ by ${\mathbb B}$ is a relational homomorphism

$$c:\mathbb{F}^{\mathcal{A}}(\mathbb{B})
ightarrow\mathbb{B}$$
 such that $c(b)=b.$

We say that \mathcal{A} is \mathbb{B} -colorable. We say that \mathcal{V} is \mathbb{B} -colorable if $Clo(\mathcal{V})$ is.

Theorem (Sequeira)

 \mathcal{V} is congruence k-permutable for some k iff \mathcal{V} is not $(\{0,1\};\leq)$ -colorable.

Theorem (Sequeira)

Let $D = \{1, 2, 3, 4\}$, $\alpha = 12|34$, $\beta = 13|24$, $\gamma = 12|3|4$, and $\mathbb{D} = (D; \alpha, \beta, \gamma)$. \mathcal{V} is congruence modular iff \mathcal{V} is not \mathbb{D} -colorable.

NB: Sequeira calls this "compatibility with projections".

Let $\emptyset \neq C \subsetneq B \subseteq A$ be sets, $R_n = B^n \setminus (B \setminus C)^n$, and $\mathbb{A} = (A; (R_n)_{n \in \omega})$.

Idempotent \mathcal{V} has a cube term iff \mathcal{V} is not \mathbb{A} -colorable.

Theorem

Let
$$R_n = (\omega^2)^n \setminus (\Delta_2)^n$$
 and $\mathbb{W} = (\omega; (R_n)_{n \in \omega})$.

 $\mathcal V$ has a weak Taylor term iff $\mathcal V$ is not $\mathbb W$ -colorable.

Let
$$\emptyset \neq C \subsetneq B \subseteq A$$
 be sets, $R_n = B^n \setminus (B \setminus C)^n$, and $\mathbb{A} = (A; (R_n)_{n \in \omega})$.

Idempotent \mathcal{V} has a cube term iff \mathcal{V} is not \mathbb{A} -colorable.

Proof.

 (\Rightarrow) : Suppose $\mathcal V$ has an *n*-dimensional cube term and is $\mathbb A$ -colorable.

There is some identity $\mathcal{V} \models t(u_1, \ldots, u_n) \approx \overline{x}$ for some $u_i \in \{x, y\}^n \setminus \{x\}^n$.

Let $c \in C$ and $b \in B \setminus C$.

Substitute *b* for *x* and *c* for *y* to get $t(u_1, \ldots, u_n) = \overline{b}$ and $u_i \in R_n^{\mathcal{V}}$.

Thus $\overline{b} \in R_n^{\mathcal{V}}$. Then $c(\overline{b}) = \overline{b} \in R_n \subseteq A^n$, a contradiction.

Proof (cont.).

(\Leftarrow): Suppose \mathcal{V} does not have a cube term.

Write $g \prec_t h$ if we have $u_i \in \{g, h\}^n \setminus \{g\}^n$ such that $t(u_1, \ldots, u_n) = \overline{g}$.

Fix some $c_0 \in C$ and define $c : \mathbb{F}^{\mathsf{Clo}(\mathcal{V})}(A) \to \mathbb{A}$ by

$$c(f) = \begin{cases} a & \text{if } f = a \in A \subseteq F^{\operatorname{Clo}(\mathcal{V})}(A), \\ b & \text{else if } \exists b \in B, t(\cdots) \text{ such that } b \prec_t f, \\ c_0 & \text{else.} \end{cases}$$

Clearly c(a) = a for $a \in A$. Does c preserve relations?

Proof (cont.).

$$c(f) = \begin{cases} a & \text{if } f = a \in A \subseteq F^{\operatorname{Clo}(\mathcal{V})}(A), \\ b & \text{else if } \exists b \in B, t(\cdots) \text{ such that } b \prec_t f, \\ c_0 & \text{else.} \end{cases}$$

Suppose that *c* fails to preserve $R_n^{\text{Clo}(V)}$. Then there exists

- $(f_1,\ldots,f_n)\in R_n^{\operatorname{Clo}(\mathcal{V})},$
- a term $s(\cdots)$,
- and $u_1, \ldots, u_k \in B^n \setminus (B \setminus C)^n \subseteq F^{\mathsf{Clo}(\mathcal{V})}(A)$,

such that

•
$$s(u_1,\ldots,u_k)=(f_1,\ldots,f_n)$$

• and $c(f_i) = b_i \in (B \setminus C)$.

Thus $b_i \prec_{t_i} f_i$. Let $t = t_1 * t_2 * \cdots * t_n * s$.

Then $\exists v_1, \ldots, v_m \in B^n \setminus (B \setminus C)^n$ such that $t(v_1, \ldots, v_m) = (b_1, \ldots, b_n)$. This is a free algebra, so substitute x for $B \setminus C$ and y for C to obtain a cube identity for $t(\cdots)$, a contradiction.

Matthew Moore (VU)

Let $\emptyset \neq C \subsetneq B \subseteq A$ be sets, $R_n = B^n \setminus (B \setminus C)^n$, and $\mathbb{A} = (A; (R_n)_{n \in \omega})$.

Idempotent \mathcal{V} has a cube term iff \mathcal{V} is not \mathbb{A} -colorable.

Let $A = B = \{0, 1\}$ and $C = \{0\}$.

Then the polymorphism clone of \mathbb{A} is generated by $\hat{\mathbb{2}} = \langle \{0, 1\}; \not\rightarrow \rangle$: Pol(\mathbb{A}) = Clo($\hat{\mathbb{2}}$).

Corollary

Idempotent \mathcal{V} has a cube term iff \mathcal{V} is not $\text{Rel}(\hat{2})$ -colorable.

2 Clone \mathcal{L} -homomorphisms

- 3 Linear interpretability
- Further directions

Definition

A homomorphism between clones A and B is an arity-preserving mapping $\varphi: A \to B$ such that

 $\varphi(\pi_k) = \pi_k$ and $\varphi(f(g_1, \ldots, g_n)) = \varphi(f)(\varphi(g_1), \ldots, \varphi(g_n)).$

An \mathcal{L} -homomorphism between clones \mathcal{A} and \mathcal{B} is an arity preserving mapping $\varphi: \mathcal{A} \to \mathcal{B}$ such that

 $\varphi(\pi_k) = \pi_k$ and $\varphi(f(\pi_{i_1}, \ldots, \pi_{i_n})) = \varphi(f)(\pi_{i_1}, \ldots, \pi_{i_n}).$

Let \mathcal{A} and \mathcal{B} be clones, and let $\varphi : \mathcal{A} \to \mathcal{B}$ be an arity preserving map. Let $\mathbb{A} = (\mathcal{A}; \mathcal{A})$, and $\mathbb{B} = (\mathcal{B}; \mathcal{B})$.

 φ is a clone homomorphism iff $f \approx g$ in \mathbb{A} implies $\varphi(f) \approx \varphi(g)$ in \mathbb{B} .

 φ is a clone \mathcal{L} -homomorphism iff every identity $f \approx g$ in \mathbb{A} not involving composition implies $\varphi(f) \approx \varphi(g)$ in \mathbb{B} .

Example

Gi δ(δ

Consider
$$\mathcal{D} = \langle \{0, 1\}; \rightarrow \rangle$$
 and $\hat{\mathcal{D}} = \langle \{0, 1\}; \not\rightarrow \rangle$.

No clone homomorphisms between $Clo(\hat{2})$ and Clo(2) since \rightarrow cannot be defined as a term in $\not\rightarrow$ and $\not\rightarrow$ cannot be defined as a term in \rightarrow .

This is also witnessed by the identities

$$2 \models y \rightarrow (x \rightarrow x) \approx (x \rightarrow x),$$
 $2 \models (x \not\rightarrow x) \not\rightarrow y \approx (x \not\rightarrow x).$
Given a function $f : \{0,1\}^n \rightarrow \{0,1\}$ define
 $\delta(f(x_1,\ldots,x_n)) = \neg f(\neg x_1,\ldots,\neg x_n)$, where \neg is boolean negation.
 $\delta : \operatorname{Clo}(2) \rightarrow \operatorname{Clo}(\hat{2})$ is a clone \mathcal{L} -homomorphism, but not a clone homomorphism.

Let
$$s(x, y, z) = x \rightarrow (y \rightarrow z)$$
 and $s'(x, y, z) = (x \not\rightarrow y) \not\rightarrow z$.
 $\delta(s) = s'$ and $\delta(s') = s$.

 δ translates the identities witnessing the non-existence of a clone homomorphism.

Theorem (Barto, Oprsal, Pinsker)

Let \mathcal{A} be a clone and \mathbb{B} a relational structure with polymorphism clone \mathcal{B} .

 \mathcal{A} is $\mathsf{Rel}(\mathcal{B})$ -colorable iff there is a clone \mathcal{L} -homomorphism $\mathcal{A} \to \mathcal{B}$.

Corollary

Let \mathcal{V} be an idempotent variety. The following are equivalent.

- \mathcal{V} does not have a cube term,
- there is a clone \mathcal{L} -homomorphism $\mathsf{Clo}(\mathcal{V}) \to \mathsf{Clo}(\hat{\mathbb{2}})$.

2 Clone \mathcal{L} -homomorphisms

- 3 Linear interpretability
 - 4 Further directions

Interpretability

Let \mathcal{V} and \mathcal{W} be varieties and write $\mathcal{V} \leq \mathcal{W}$ if there is a clone homomorphism $Clo(\mathcal{V}) \rightarrow Clo(\mathcal{W})$. Say that \mathcal{V} is interpretable into \mathcal{W} .

Define an equivalence relation by $\mathcal{V} \equiv \mathcal{W}$ if $\mathcal{V} \leq \mathcal{W} \leq \mathcal{V}$.

Modulo this equivalence relation, under the \leq order the class of all varieties is a lattice. This is the **lattice of interpretability types**.

Write $\mathcal{V} \leq_{\mathcal{L}} \mathcal{W}$ if there is a clone \mathcal{L} -homomorphism $Clo(\mathcal{V}) \rightarrow Clo(\mathcal{W})$. Say that \mathcal{V} is \mathcal{L} -interpretable into \mathcal{W} .

Define an equivalence relation by $\mathcal{V} \equiv_{\mathcal{L}} \mathcal{W}$ if $\mathcal{V} \leq_{\mathcal{L}} \mathcal{W} \leq_{\mathcal{L}} \mathcal{V}$.

Example

 $\mathcal{V}(2) \equiv_{\mathcal{L}} \mathcal{V}(\hat{2})$

Let \mathcal{V} be a variety with signature σ .

Replace σ by $Clo(\mathcal{V})$, call the resulting variety \mathcal{V}_c so that $\mathcal{V}_c \equiv \mathcal{V}$.

Let $\Sigma \subseteq Th(\mathcal{V}_c)$ be the subset of all identities not involving composition. Let $\mathcal{V}_{\mathcal{L}} = Mod(\Sigma)$.

Example

If \mathcal{V} has an identity $t(s(x, y), x, y) \approx s(x, y)$, then \mathcal{V}_c will have a new operation symbol f(x, y, z, w) and $\operatorname{Th}(\mathcal{V}_c)$ will have identities

•
$$t(s(x,y),x,y) \approx s(x,y)$$
,

•
$$f(x, y, z, w) \approx t(s(x, y), z, w)$$
,

•
$$f(x, y, x, y) \approx s(x, y)$$
.

Out of these, $\boldsymbol{\Sigma}$ will contain **only** the last one.

Example

$$(x
eq x)
eq y pprox (x
eq x) ext{ in } \hat{2} ext{ becomes } s(x, x, y) pprox x
eq x ext{ in } \mathcal{V}(\hat{2})_{\mathcal{L}}.$$

Matthew Moore (VU)

2016-05-21

18 / 25

Usual interpretability lattice:

Theorem

Let \mathcal{V} and \mathcal{W} be varieties. Then

- $\mathcal{V} \equiv_{\mathcal{L}} \mathcal{V}_{\mathcal{L}}$,
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{W}_{\mathcal{L}}$ iff $\mathcal{V} \leq_{\mathcal{L}} \mathcal{W}$,
- if $\mathcal{V} \leq \mathcal{W}$ then $\mathcal{V}_{\mathcal{L}} \leq \mathcal{W}_{\mathcal{L}}$.
- \mathcal{V} is defined by linear identities iff $\mathcal{V} \equiv \mathcal{V}_{\mathcal{L}}$.

Let \mathcal{V} and \mathcal{W} be varieties. Then

- $\mathcal{V} \equiv_{\mathcal{L}} \mathcal{V}_{\mathcal{L}}$,
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{W}_{\mathcal{L}}$ iff $\mathcal{V} \leq_{\mathcal{L}} \mathcal{W}$,
- if $\mathcal{V} \leq \mathcal{W}$ then $\mathcal{V}_{\mathcal{L}} \leq \mathcal{W}_{\mathcal{L}}$.
- \mathcal{V} is defined by linear identities iff $\mathcal{V} \equiv \mathcal{V}_{\mathcal{L}}$.

Corollary

Let \mathcal{V} be an idempotent variety. The following are equivalent.

- \mathcal{V} does not have a cube term,
- $\mathcal{V} \leq_{\mathcal{L}} \mathcal{V}(\hat{2})$ in the \mathcal{L} -interpretability lattice.
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{V}(\hat{2})_{\mathcal{L}}$ in the interpretability lattice.

Theorem (Sequeira; Barto, Oprsal, Pinsker)

If \mathcal{V} and \mathcal{W} are defined by linear identities and are \mathbb{A} -colorable, then $\mathcal{V} \lor \mathcal{W}$ is \mathbb{A} -colorable as well.

Corollary

If idempotent \mathcal{V} and \mathcal{W} are defined by linear identities and $\mathcal{V} \lor \mathcal{W}$ has a cube term, then one of \mathcal{V} or \mathcal{W} does.

- 2 Clone *L*-homomorphisms
- 3 Linear interpretability

Question

Is having a cube term join-prime in the idempotent interpretability lattice?

Answer is tentatively "yes".

Question

Is there a characterization of when $(\mathcal{V} \lor \mathcal{W})_{\mathcal{L}} \equiv \mathcal{V}_{\mathcal{L}} \lor \mathcal{W}_{\mathcal{L}}$?

In the class of idempotent varieties satisfying $(\mathcal{V} \lor \mathcal{W})_{\mathcal{L}} \equiv \mathcal{V}_{\mathcal{L}} \lor \mathcal{W}_{\mathcal{L}}$, both being congruence modular and having a cube term are join prime.

Question

Does every \lor -prime filter in the \mathcal{L} -interpretability lattice come from a coloring characterization?

Question

Is there a coloring characterization for k-permutability for fixed k?

We know that \mathcal{V} is not *k*-permutable for any *k* iff \mathcal{V} is $(\{0,1\};\leq)$ -colorable.

Let
$$\mathbb{P}_k = (\{1, \dots, k\}; \rightarrow)$$
 where $\alpha \rightarrow \beta$ iff $\alpha \leq \beta + 1$.

Then \mathcal{V} is congruence (k-1)-permutable iff it is not \mathbb{P}_k -colorable.

Let
$$\hat{\mathbf{2}} = (\{0,1\}; (\{0,1\}^n \setminus \{1\}^n)_{n \in \omega})$$
 and $\hat{\mathbb{2}} = \langle \{0,1\}; \not \rightarrow \rangle$.

For idempotent \mathcal{V} the following are equivalent.

- V has no cube term,
- \mathcal{V} is $\hat{\mathbf{2}}$ -colorable,
- $\mathcal{V} \leq_{\mathcal{L}} \mathcal{V}(\hat{2})$,
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{V}(\hat{2})_{\mathcal{L}}.$

If $\mathcal{V} = \mathcal{V}(\mathbb{A})$ for finite \mathbb{A} , then these are equivalent to

 there exists C < D ≤ A such that Dⁿ \ (D \ C)ⁿ ≤ Aⁿ for all n (Markovic, Maroti, McKenzie).

Question

Without repeating the proof of MMM, can we obtain the finite algebra result from the other results?

Let
$$\hat{\mathbf{2}} = (\{0,1\}; (\{0,1\}^n \setminus \{1\}^n)_{n \in \omega})$$
 and $\hat{\mathbb{2}} = \langle \{0,1\}; \not\rightarrow \rangle$.

For idempotent \mathcal{V} the following are equivalent.

- \mathcal{V} has no cube term,
- \mathcal{V} is $\hat{\mathbf{2}}$ -colorable,
- $\mathcal{V} \leq_{\mathcal{L}} \mathcal{V}(\hat{2})$,
- $\mathcal{V}_{\mathcal{L}} \leq \mathcal{V}(\hat{2})_{\mathcal{L}}.$

Thank you.