Decidability in Universal Algebra

Matthew Moore

McMaster University

September 27, 2016

2 Minsky machines

3 Results

5 Conclusion

The following are known to be undecidable:

- **1** Whether A has a finite residual bound [McKenzie].
- **2** Whether \mathbb{A} has a finite equational base [McKenzie; Willard].
- **3** Whether \mathbb{A} has definable principal subcongruences [M].
- **4** Whether A has an NU term on $A \{p, q\}$ [Maroti].
- **5** Whether typ($\mathcal{V}(\mathbb{A})$) contains *i* for $i \in \{2, 3, 4, 5\}$ [Wood, McKenzie]

The following are **conjectured** to be undecidable for finite \mathbb{A} :

- **1** Whether \mathbb{A} is finitely related.
- **2** Whether \mathbb{A} is naturally dualizable.
- $\mathbf{3}$ + **many** more problems from clone theory.

If $\mathcal{V}(\mathbb{A})$...

- is congruence distributive, then we can decide 1 and 2.
- is congruence modular, then we can decide 1 and (sort of) 2.
- is congruence SD(meet), we have no strong results.
- has a compatible semilattice term, then we can decide both ('yes').

2 Minsky machines

3 Results

5 Conclusion

The Minsky machine is a simple model of computation that is equivalent to Turing machine computation.

A Minsky machines has

- states 0, 1, ..., N (state 1 is starting state, 0 is halting),
- registers A and B that have integer values \geq 0,
- instructions of the form (i, R, j), meaning
 "in state i, increase register R by 1 and enter j".
- instructions of the form (i, R, j, k), meaning
 "in state i, if R is 0 enter j, otherwise decrease R by 1 and enter k".

Let $\ensuremath{\mathcal{M}}$ have instructions

(1,B,3,2), (2,A,1), (3,A,4), (4,A,0).

Start the machine with register contents A = 4, B = 3.

(do example at the board)

 \mathcal{M} computes A + B + 2 and stores the result in A.

Minsky machines are simpler than Turing machines:

- no tape,
- no machine head,
- instructions are more condensed.

2 Minsky machines

Definition

Let \mathbb{A} be an algebra, $a \in A$, and $\mathbb{R} \leq \mathbb{A}^n$. Define

$$R_{a} = \big\{ r \in R \mid \forall i \ r(i) \neq a \big\}.$$

This is said " \mathbb{R} sans *a*".

For $\mathbb{S} \leq \mathbb{A}^n$, if

$$R_a = S_a$$
.

then we write $\mathbb{R} =_a \mathbb{S}$ and say " \mathbb{R} and \mathbb{S} are equal sans a".

${\mathbb R}$ sans a

Definition

Let \mathbb{A} be an algebra and $\mathcal{C} \subseteq \operatorname{Rel}(\mathbb{A})$ and $\mathbb{R} \in \operatorname{Rel}_n(A)$.

• $f: A^n \to A$ sans *a* preserves \mathbb{R} if

$$\forall (r_1,\ldots,r_n\in R) \exists (\mathbb{S}=_{a}\mathbb{R}) f(r_1,\ldots,r_n)\in S.$$

- $\mathcal{C} \vdash^{a} \mathbb{R}$ if any function which sans *a* preserves \mathcal{C} also sans *a* preserves \mathbb{R} .
- $\mathcal{C} \vdash^a_d \mathbb{R}$ if for all $X \subseteq A^m$ and all $f : X \to A$, if f preserves \mathcal{C} sans a then f preserves \mathbb{R} sans a.

Definition

- A is finitely related sans a if $\exists n$ such that $\operatorname{Rel}_n(\mathbb{A}) \vdash^a \operatorname{Rel}(\mathbb{A})$.
- A is naturally dualizable sans a if $\exists n$ such that $\operatorname{Rel}_n(\mathbb{A}) \vdash^a_d \operatorname{Rel}(\mathbb{A})$.

Theorem

The following are equivalent for a Minksy machine \mathcal{M} .

- 1 *M* halts.
- **2** $\mathbb{A}(\mathcal{M})$ is finitely related sans (\times, \times, \times) .
- **3** $\mathbb{A}(\mathcal{M})$ is naturally dualizable sans (\times, \times, \times) .

Theorem

Let \mathbb{A} be an algebra and Γ, φ computable functions such that $\Gamma(n) \subseteq A^{k_n}$, $\varphi(n) \in A^{k_n}$. The problem

Input: \mathbb{A} , Γ , φ Output: The truth value of $\exists n [\varphi(n) \in Sg^{\mathbb{A}^{k_n}}(\Gamma(n))]$ is undecidable.

Remark: $\mathbb{A}(\mathcal{M})$ is needlessly complicated for proving this last theorem, but we pick it up for free along the way.

Matthew Moore (Mac)

Let

- $\Sigma = \{i \mid i \text{ a state of } \mathcal{M}\} \cup \{\times\},\$
- $C = \{0, A, B, 1\},\$
- $\kappa = \Sigma \times C$.

The underlying set of $\mathbb{A}(\mathcal{M})$ is $\mathcal{A}(\mathcal{M}) = \kappa^3$.

Some operations of $\overline{A(\mathcal{M})}$

Define helper functions comp, comp', pass : $\kappa \to \kappa$ by

$$\operatorname{comp}(\langle i, c \rangle) = \begin{cases} \langle j, R \rangle & \text{if } (i, R, j) \text{ is an instruction of } \mathcal{M} \text{ and } c = 0, \\ \langle k, 1 \rangle & \text{if } (i, R, j, k) \text{ is an instruction of } \mathcal{M} \text{ and } c = R, \\ \times & \text{otherwise}, \end{cases}$$
$$\operatorname{pass}(\langle i, c \rangle) = \begin{cases} \langle j, c \rangle & \text{if } (i, R, j) \text{ is an instruction of } \mathcal{M}, \\ \langle k, c \rangle & \text{if } (i, R, j, k) \text{ is an instruction of } \mathcal{M}, \\ \times & \text{otherwise}, \end{cases}$$
$$\operatorname{comp}'(\langle i, c \rangle) = \begin{cases} \langle j, 1 \rangle & \text{if } (i, R, j, k) \text{ is an instruction of } \mathcal{M} \text{ and } c = 1, \\ \times & \text{otherwise}, \end{cases}$$
$$\operatorname{pass}'(\langle i, c \rangle) = \begin{cases} \langle j, c \rangle & \text{if } (i, R, j, k) \text{ is an instruction of } \mathcal{M} \text{ and } c \neq R, \\ \times & \text{otherwise}, \end{cases}$$

$$\mathsf{comp}(\times) = \mathsf{pass}(\times) = \mathsf{comp}'(\times) = \mathsf{pass}'(\times) = \times.$$

Some operations of $\overline{A(\mathcal{M})}$

Let

$$M(x,y) = \begin{cases} (\times, \times, \times) & \text{if } y = (\times, \times, \times), \\ (\operatorname{comp}(x_1), x_2, x_3) & \text{if } y_1 = x_3 \neq x_2 \text{ and } \operatorname{comp}(x_1) \neq \times, \\ (\operatorname{pass}(x_1), x_2, x_3) & \text{if } y_1 = x_2 \neq x_3, \\ (\times, \times, \times) & \text{otherwise}, \end{cases}$$
$$M'(x,y) = \begin{cases} (\times, \times, \times) & \text{if } y = (\times, \times, \times), \\ (\operatorname{comp}'(x_1), x_2, x_3) & \text{if } y_1 = x_3 \neq x_2 \text{ and } \operatorname{comp}'(x_1) \neq \times, \\ (\operatorname{pass}'(x_1), x_2, x_3) & \text{if } y_1 = x_2 \neq x_3, \\ (\times, \times, \times) & \text{otherwise.} \end{cases}$$

(do example at the board)

2 Minsky machines

3 Results

Theorem

The following are equivalent for a Minksy machine \mathcal{M} .

- 1 *M* halts.
- **2** $\mathbb{A}(\mathcal{M})$ is finitely related sans (\times, \times, \times) .
- **3** $\mathbb{A}(\mathcal{M})$ is naturally dualizable sans (\times, \times, \times) .

Theorem

Let \mathbb{A} be an algebra and Γ, φ computable functions such that $\Gamma(n) \subseteq A^{k_n}$, $\varphi(n) \in A^{k_n}$. The problem

Input: \mathbb{A} , Γ , φ Output: The truth value of $\exists n [\varphi(n) \in Sg^{\mathbb{A}^{k_n}}(\Gamma(n))]$

is undecidable.

Thank you.