Decidability in Universal Algebra

Matthew Moore
McMaster University

September 27, 2016

Decidability in universal algebra

(1) Introduction

(2) Minsky machines

(3) Results

Known Results

The following are known to be undecidable:
(1) Whether A has a finite residual bound [McKenzie].
(2) Whether \mathbb{A} has a finite equational base [McKenzie; Willard].
(3) Whether \mathbb{A} has definable principal subcongruences $[M]$.
(4) Whether \mathbb{A} has an NU term on $A-\{p, q\}$ [Maroti].
(5) Whether $\operatorname{typ}(\mathcal{V}(\mathbb{A}))$ contains i for $i \in\{\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}\}$ [Wood, McKenzie]

Conjectures

The following are conjectured to be undecidable for finite \mathbb{A} :
(1) Whether \mathbb{A} is finitely related.
(2) Whether \mathbb{A} is naturally dualizable.
(3) + many more problems from clone theory.

If $\mathcal{V}(\mathbb{A}) \ldots$

- is congruence distributive, then we can decide 1 and 2.
- is congruence modular, then we can decide 1 and (sort of) 2.
- is congruence SD (meet), we have no strong results.
- has a compatible semilattice term, then we can decide both ('yes').

Decidability in universal algebra

(1) Introduction
(2) Minsky machines

(3) Results

Minsky machines

The Minsky machine is a simple model of computation that is equivalent to Turing machine computation.

A Minsky machines has

- states $0,1, \ldots, N$ (state 1 is starting state, 0 is halting),
- registers A and B that have integer values ≥ 0,
- instructions of the form (i, R, j), meaning "in state i, increase register R by 1 and enter j ".
- instructions of the form (i, R, j, k), meaning "in state i, if R is 0 enter j, otherwise decrease R by 1 and enter k ".

A Minsky machine

Let \mathcal{M} have instructions

$$
(1, B, 3,2), \quad(2, A, 1), \quad(3, A, 4), \quad(4, A, 0)
$$

Start the machine with register contents $A=4, B=3$.

(do example at the board)

\mathcal{M} computes $A+B+2$ and stores the result in A.

Minsky machines are simpler than Turing machines:

- no tape,
- no machine head,
- instructions are more condensed.

Decidability in universal algebra

(1) Introduction
(2) Minsky machines
(3) Results
(4) $\mathbb{A}(\mathcal{M})$
(5) Conclusion

\mathbb{R} sans a

Definition

Let \mathbb{A} be an algebra, $a \in A$, and $\mathbb{R} \leq \mathbb{A}^{n}$. Define

$$
R_{a}=\{r \in R \mid \forall i r(i) \neq a\} .
$$

This is said " \mathbb{R} sans a".

For $\mathbb{S} \leq \mathbb{A}^{n}$, if

$$
R_{a}=S_{a} .
$$

then we write $\mathbb{R}={ }_{a} \mathbb{S}$ and say " \mathbb{R} and \mathbb{S} are equal sans a ".

\mathbb{R} sans a

Definition

Let \mathbb{A} be an algebra and $\mathcal{C} \subseteq \operatorname{Rel}(\mathbb{A})$ and $\mathbb{R} \in \operatorname{Rel}_{n}(A)$.

- $f: A^{n} \rightarrow A$ sans a preserves \mathbb{R} if

$$
\forall\left(r_{1}, \ldots, r_{n} \in R\right) \exists\left(\mathbb{S}={ }_{a} \mathbb{R}\right) f\left(r_{1}, \ldots, r_{n}\right) \in S
$$

- $\mathcal{C} \vdash^{a} \mathbb{R}$ if any function which sans a preserves \mathcal{C} also sans a preserves \mathbb{R}.
- $\mathcal{C} \vdash_{d}^{a} \mathbb{R}$ if for all $X \subseteq A^{m}$ and all $f: X \rightarrow A$, if f preserves \mathcal{C} sans a then f preserves \mathbb{R} sans a.

Definition

- \mathbb{A} is finitely related sans a if $\exists n$ such that $\operatorname{Rel}_{n}(\mathbb{A}) \vdash^{a} \operatorname{Rel}(\mathbb{A})$.
- \mathbb{A} is naturally dualizable sans a if $\exists n$ such that $\operatorname{Rel}_{n}(\mathbb{A}) \vdash_{d}^{a} \operatorname{Rel}(\mathbb{A})$.

Theorems

Theorem

The following are equivalent for a Minksy machine \mathcal{M}.
(1) \mathcal{M} halts.
(2) $\mathbb{A}(\mathcal{M})$ is finitely related sans (\times, \times, \times).
(3) $\mathbb{A}(\mathcal{M})$ is naturally dualizable sans (\times, \times, \times).

Theorem

Let \mathbb{A} be an algebra and Γ, φ computable functions such that $\Gamma(n) \subseteq A^{k_{n}}$, $\varphi(n) \in A^{k_{n}}$. The problem

$$
\begin{array}{ll}
\text { Input: } & \mathbb{A}, \Gamma, \varphi \\
\text { Output: } & \text { The truth value of } \exists n\left[\varphi(n) \in \operatorname{Sg}^{\mathbb{A}^{k_{n}}}(\Gamma(n))\right]
\end{array}
$$

is undecidable.
Remark: $\mathbb{A}(\mathcal{M})$ is needlessly complicated for proving this last theorem, but we pick it up for free along the way.

The set $A(\mathcal{M})$

Let

- $\Sigma=\{i \mid i$ a state of $\mathcal{M}\} \cup\{\times\}$,
- $C=\{0, A, B, 1\}$,
- $\kappa=\Sigma \times C$.

The underlying set of $\mathbb{A}(\mathcal{M})$ is $A(\mathcal{M})=\kappa^{3}$.

Some operations of $A(\mathcal{M})$

Define helper functions comp, comp', pass : $\kappa \rightarrow \kappa$ by

$$
\begin{aligned}
\operatorname{comp}(\langle i, c\rangle) & = \begin{cases}\langle j, R\rangle & \text { if }(i, R, j) \text { is an instruction of } \mathcal{M} \text { and } c=0, \\
\langle k, 1\rangle & \text { if }(i, R, j, k) \text { is an instruction of } \mathcal{M} \text { and } c=R, \\
\times & \text { otherwise },\end{cases} \\
\operatorname{pass}(\langle i, c\rangle) & = \begin{cases}\langle j, c\rangle & \text { if }(i, R, j) \text { is an instruction of } \mathcal{M}, \\
\langle k, c\rangle & \text { if }(i, R, j, k) \text { is an instruction of } \mathcal{M}, \\
\times & \text { otherwise },\end{cases} \\
\operatorname{comp}^{\prime}(\langle i, c\rangle) & = \begin{cases}\langle j, 1\rangle & \text { if }(i, R, j, k) \text { is an instruction of } \mathcal{M} \text { and } c=1, \\
\times & \text { otherwise },\end{cases} \\
\operatorname{pass}^{\prime}(\langle i, c\rangle) & = \begin{cases}\langle j, c\rangle & \text { if }(i, R, j, k) \text { is an instruction of } \mathcal{M} \text { and } c \neq R \\
\times & \text { otherwise },\end{cases}
\end{aligned}
$$

$$
\operatorname{comp}(\times)=\operatorname{pass}(\times)=\operatorname{comp}^{\prime}(\times)=\operatorname{pass}^{\prime}(\times)=\times
$$

Some operations of $A(\mathcal{M})$

Let

$$
\begin{aligned}
& M(x, y)= \begin{cases}(x, x, x) & \text { if } y=(x, x, x), \\
\left(\operatorname{comp}\left(x_{1}\right), x_{2}, x_{3}\right) & \text { if } y_{1}=x_{3} \neq x_{2} \text { and } \operatorname{comp}\left(x_{1}\right) \neq x, \\
\left(\operatorname{pass}\left(x_{1}\right), x_{2}, x_{3}\right) & \text { if } y_{1}=x_{2} \neq x_{3}, \\
(\times, x, \times) & \text { otherwise },\end{cases} \\
& M^{\prime}(x, y)= \begin{cases}(\times, x, \times) & \text { if } y=(x, x, x), \\
\left(\operatorname{comp}^{\prime}\left(x_{1}\right), x_{2}, x_{3}\right) & \text { if } y_{1}=x_{3} \neq x_{2} \text { and } \operatorname{comp}^{\prime}\left(x_{1}\right) \neq x, \\
\left(\operatorname{pass}^{\prime}\left(x_{1}\right), x_{2}, x_{3}\right) & \text { if } y_{1}=x_{2} \neq x_{3}, \\
(\times, \times, \times) & \text { otherwise }\end{cases}
\end{aligned}
$$

(do example at the board)

Decidability in general algebra

(1) Introduction
(2) Minsky machines
(3) Results
(4) $\mathbb{A}(\mathcal{M})$
(5) Conclusion

Theorems

Theorem

The following are equivalent for a Minksy machine \mathcal{M}.
(1) \mathcal{M} halts.
(2) $\mathbb{A}(\mathcal{M})$ is finitely related sans (\times, \times, \times).
(3) $\mathbb{A}(\mathcal{M})$ is naturally dualizable sans (\times, \times, \times).

Theorem

Let \mathbb{A} be an algebra and Γ, φ computable functions such that $\Gamma(n) \subseteq A^{k_{n}}$, $\varphi(n) \in A^{k_{n}}$. The problem

Input: $\mathbb{A}, \Gamma, \varphi$
Output: The truth value of $\exists n\left[\varphi(n) \in \mathrm{Sg}^{\mathbb{A}^{k_{n}}}(\Gamma(n))\right]$
is undecidable.

Thank you.

