Naturally dualizable algebras omitting types ${\bf 1}$ and ${\bf 5}$ have a cube term

Matthew Moore

McMaster University

December 4, 2016

Cube terms

An <u>*n*-dimensional cube term</u> for an algebra \mathbb{A} is a term $t(\cdots)$ such that $\mathbb{A} \models t(u_1, \ldots, u_m) \approx \overline{x}$ for some $u_i \in \{x, y\}^n \setminus \{x\}^n$.

Example

$$\mathbb{A} \models t \begin{pmatrix} y & x & x & y & y & x & y \\ x & y & x & y & x & y & y \\ x & x & y & x & y & y & y \end{pmatrix} \approx \begin{pmatrix} x \\ x \\ x \end{pmatrix}$$

Finite idempotent \mathbb{A} has a cube term...

 $\Leftrightarrow \mathbb{A}$ has few subpowers: $\exists k \ \forall n \ \log_2 |\mathbf{S}(\mathbb{A}^n)| \in \mathcal{O}(n^k)$.

 $\Leftrightarrow \mathbb{A}$ is congruence modular and finitely related.

 $\Leftrightarrow \mathbb{A} \text{ has no cube term blockers: } \mathbb{D} < \mathbb{C} \leq \mathbb{A} \text{ with } C^n \setminus (C \setminus D)^n \leq \mathbb{A}^n.$

 \Rightarrow CSP(\mathbb{A}) is tractable.

A little bit of TCT never hurt anybody

Let \mathbb{A} be a finite algebra.

```
Let \alpha, \beta \in Con(\mathbb{A}) and let \beta cover \alpha: \begin{vmatrix} \beta \\ \alpha \end{vmatrix}
```

At a local level, it turns out that $\mathbb A$ 'behaves' in 1 of 5 ways on the cover:

This is the <u>type</u> of the cover (α, β) .

A little bit of TCT never hurt anybody

1 *G*-set (unary):
$$\langle S; (\lambda_g)_{g \in G} \rangle$$

- 2 Affine space: $\langle V; 0, +, -, (\lambda_f)_{f \in F} \rangle$
- **3** Boolean lattice: $\langle \{0,1\}; \lor, \land, \neg \rangle$
- 4 Lattice: $\langle \{0,1\}; \lor, \land \rangle$
- **5** Semilattice: $\langle \{0, 1\}; \lor \rangle$

Many structural properties correspond to which types are forbidden in $\mathcal{V}_{\text{fin}}.$

Motivational examples to think of:

- Stone duality between Boolean algebras and Stone spaces
- Priestley duality between distributive lattices and bounded Priestley spaces
- Pontryagin duality for abelian groups

Ingredients for a duality:

- a finite algebra $\mathbb{A} = \langle A; F \rangle$
- a structured topological space $\mathbf{A} = \langle A; G, H, R, T \rangle$ (G = total ops, H = partial ops, R = relations, T = discrete topology)
- If $\mathbb{B} \in SP(\mathbb{A})$ then $\mathbb{B}^{\partial} = Hom(\mathbb{B}, \mathbb{A}) \in S_cP_+(\underline{A})$
- If $\underline{\mathsf{B}} \in \mathsf{S}_{c}\mathsf{P}_{+}(\underline{\mathsf{A}})$ then $\underline{\mathsf{B}}^{\partial} = \mathsf{Hom}(\underline{\mathsf{B}},\underline{\mathsf{A}}) \in \mathsf{SP}(\mathbb{A})$
- \mathbf{A} should be algebraic over \mathbf{A}

Natural dualities

For $\mathbb{B} \in SP(\mathbb{A})$ there are mappings $e_{\mathbb{B}} : \mathbb{B} \to \mathbb{B}^{\partial \partial}$ $a \mapsto (e_{\mathbb{B}}(a) : \mathbb{B}^{\partial} \to \mathbf{A} : y \mapsto y(a)),$ A dualizes \mathbb{A} if $e_{\mathbb{B}}$ are isomorphisms for all $\mathbb{B} \in SP(\mathbb{A}).$

Examples of naturally dualizable algebras:

- Groups whose Sylow subgroups are abelian [Quackenbush, Szabo 2002], [Nickodemus 2007]
- Commutative rings whose Jacobson radical squares to (0) [Clark, Idziak, Sabourin, Szabo, Willard 2001]
- Algebras with near unanimity term [Davey, Heindorf, McKenzie 1995]
- Algebras with a compatible semilattice operation [Davey, Jackson, Pitkethly, Taukder 2007]
- Algebras with a cube term that satisfy the split centralizer condition [Kearnes, Szendrei]

Theorem

Let \mathbb{A} be a finite algebra such that $\mathcal{V}(\mathbb{A})$ omits types 1 and 5. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

A finite algebra \mathbb{A} is inherently non-dualizable if for all finite algebras \mathbb{B} ,

 $\mathbb{A} \in \mathbf{SP}(\mathbb{B}) \qquad \implies \qquad \mathbb{B} \text{ non-dualizable.}$

Theorem (Davey, Idziak, Lampe, McNulty 1997)

Let \mathbb{A} be a finite algebra, $\mathbb{B} \leq \mathbb{A}^Z$, $B_0 \subseteq B$ be an infinite subset such that

- there is a function φ : ω → ω such that for all k ∈ ω and all θ ∈ Con(B) of index at most k, θ|_{B0} has a unique block of size greater than φ(k); and
- if the element g ∈ A^Z is defined by g(z) = π(a_z) for z ∈ Z, where a_z is an element of the unique block of ker(π_z)|_{B₀} of size greater than φ(|B|), then g ∉ B.

Then \mathbb{A} is inherently non-dualizable.

Pick A the smallest idempotent dualizable algebra omitting **1** and **5** <u>without</u> a cube term. A has a cube term blocker, so there are $a, b \in A$ such that there is no $t(\cdots)$ with

$$t\left(\begin{array}{c} \text{vectors in } a, b\\ \text{not all } a \end{array}\right) = \begin{pmatrix} a\\ \vdots\\ \vdots\\ a \end{pmatrix}$$

Define elements of A^{ω}

$$\alpha_{i_1\cdots i_n} = \begin{cases} b & \text{if } i \in \{i_1, \dots, i_n\} \\ a & \text{otherwise.} \end{cases}$$

We will apply the non-dualizability theorem to

$$C_0 = \{ \alpha_i \mid i \in \omega \} \qquad \qquad \mathbb{C} = \mathsf{Sg}^{\mathbb{A}^{\omega}}(C_0)$$

To show:

 there is a function φ : ω → ω such that for all k ∈ ω and all θ ∈ Con(ℂ) of index at most k, θ|_{C₀} has a unique block of size greater than φ(k)

Take $\varphi(k) = 1$, $\theta \in Con(\mathbb{C})$, and assume that there are two $\theta|_{C_0}$ -blocks of size > 1:

$$S = \{\alpha_1, \alpha_3, \ldots\}$$
 and $T = \{\alpha_2, \alpha_4, \ldots\}$

Claim

The set $\{\alpha_{12}, \alpha_{14}, \alpha_{23}, \alpha_{34}, \alpha_{124}, \alpha_{123}, \alpha_{134}, \alpha_{234}\}$ *lies in single* θ *-block.*

Proof of claim.

... (use the WNU and cube term blockers) ...

To show:

 there is a function φ : ω → ω such that for all k ∈ ω and all θ ∈ Con(ℂ) of index at most k, θ|_{C0} has a unique block of size greater than φ(k)

Claim

 $\alpha_1 \theta \alpha_2.$

Proof of claim.

 \mathbbm{A} omits 1 and 5, so we have terms

2 $\mathcal{V} \models f_i(x, y, y, y) \approx f_{i+1}(x, y, y, y)$ for all even *i*,

3
$$\mathcal{V} \models f_i(x, x, y, y) \approx f_{i+1}(x, x, y, y)$$
 for all odd *i*, and

If *i* is even then $f_i(\alpha_1, \alpha_{12}, \alpha_{12}, \alpha_{12}) = f_{i+1}(\alpha_1, \alpha_{12}, \alpha_{12}, \alpha_{12})$. If *i* is odd then by the previous claim,

 $f_i(\alpha_1, \alpha_{12}, \alpha_{12}, \alpha_{12}) \theta f_i(\alpha_1, \alpha_{12}, \alpha_{34}, \alpha_{234})$

$$= f_i \begin{pmatrix} b & b & a & a \\ a & b & a & b \\ a & a & b & b \\ a & a & b & b \end{pmatrix} = f_{i+1} \begin{pmatrix} b & b & a & a \\ a & b & a & b \\ a & a & b & b \end{pmatrix}$$
$$= f_{i+1}(\alpha_1, \alpha_{12}, \alpha_{34}, \alpha_{234}) \theta f_{i+1}(\alpha_1, \alpha_{12}, \alpha_{12}, \alpha_{12})$$

To show:

2 if the element g ∈ A^ω is defined by g(z) = π_z(a_z) for z ∈ ω, where a_z is an element of the unique block of ker(π_z)|_{C₀} of size greater than φ(|C|), then g ∉ C

Observe:

- ker $(\pi_z)|_{C_0}$ has two blocks: $X_z = \{\alpha_z\}$ and $Y_z = \{\alpha_i \mid i \neq z\}$.
- Therefore Y_z is the unique large block, and $\pi_z(\alpha_i) = a$ for $i \neq z$.

• Thus
$$g(z) = a$$
 for all $z \in \omega$.

Claim	
$g ot \in C$	

Proof of claim.

Suppose that $g \in C$. Then there is a term $t(\cdots)$ such that $t(\alpha_1, \ldots, \alpha_m) = g$. That is,

$$t\begin{pmatrix} b & a & \cdots & a \\ a & b & \cdots & a \\ \vdots & & \ddots & \vdots \\ a & a & \cdots & b \end{pmatrix} = \begin{pmatrix} a \\ a \\ \vdots \\ a \end{pmatrix}$$

We chose a and b so that this couldn't happen!

By the non-dualizability theorem \mathbbm{A} is inherently non-dualizable. This is a contradiction.

Beyond finite algebras

We required finiteness in 2 places:

- tame congruence theory,
- a characterization having a cube term in terms of blockers.

Kearnes and Kiss extend some of the TCT results to the infinite setting. They replace

```
"{\mathcal V} omits {\bf 1} and {\bf 5}"
```

with

" $\ensuremath{\mathcal{V}}$ satisfies a nontrivial Maltsev condition which fails in some semilattice"

Recently the blockers results has been extended to infinite algebras by Kearnes, Szendrei and (independently) McKenzie, M.

Theorem

Let \mathbb{A} be an algebra that satisfies a nontrivial Maltsev condition which does not hold for some semilattice. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

$(\mathsf{cube term}) \Longrightarrow \mathsf{CM} \Longrightarrow \mathsf{omits} \ \mathbf{1}, \mathbf{5}$

The group \mathbb{S}_3 is in a CM variety, has a cube term, and is dualizable, but the algebra obtained by adding constants is non-dualizable.

Question

Does being dualizable and congruence modular imply the split centralizer condition, or is there something weaker?

What is left?

Question

What can be said about $SD(\land)$ algebras?

- Davey, Jackson, Pitkethly, Talukder prove that algebras with a compatible semilattice operation are dualizable.
- Davey, Idziak, Lampe, McNulty prove a graph algebra is dualizable iff every connected component is complete or bipartite complete.

Question

Is it decidable given a finite \mathbb{A} whether \mathbb{A} is dualizable?

Probably 'yes' for algebras omitting 1, 5. A good place to look for this problem and the previous is in SD(\land) algebras.

If we instead ask about partial algebras, then the answer is 'no'.

Theorem

Let \mathbb{A} be a finite algebra such that $\mathcal{V}(\mathbb{A})$ omits types 1 and 5. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

Theorem

Let \mathbb{A} be an algebra that satisfies a nontrivial Maltsev identity which does not hold for some semilattice. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

Thank you.