Matthew Moore

McMaster University

March 10, 2017

- Introduction
- Computational models
- 3 The algebra $\mathbb{A}(\mathcal{M})$
- 4 Main results, elements of the proof
- Conclusion

- Introduction
- 2 Computational models
- 3 The algebra $\mathbb{A}(\mathcal{M})$
- 4 Main results, elements of the proof
- Conclusion

Decidability

Definition

The **decision problem** for property $P(\cdot)$ is the computational problem

Input: some finite object *A*.

Output: whether P(A) is true.

If there is an algorithm which solves this problem, then $P(\cdot)$ is **decidable**.

Otherwise $P(\cdot)$ is otherwise is **undecidable**.

Example

The **halting problem** is the decision problem

Input: a program *P*.

Output: whether *P* eventually halts.

The halting problem is famously undecidable.

General strategy: encode the halting problem into $P(\cdot)$.

Known results (in Universal Algebra)

The following are known to be undecidable for finite algebra \mathbb{A} :

- Whether \mathbb{A} has a finite residual bound [McKenzie].
 - strategy: encode Turing machine \mathcal{T} into special $\mathbb{A}(\mathcal{T})$.
- Whether A has a finite equational base [McKenzie; Willard].
 - McKenzie: new algebra $\mathbb{F}(\mathcal{T})$.
 - Willard: $\mathbb{A}(\mathcal{T})$ above works!
- Whether A has definable principal subcongruences [M].
 - variation on McKenzie's $\mathbb{A}(\mathcal{T})$.
- Whether $typ(\mathcal{V}(\mathbb{A}))$ contains i for $i \in \{2, 3, 4, 5\}$ [Wood, McKenzie].
 - variation on McKenzie's A(T).
- Whether \mathbb{A} has an NU term on $A \{p, q\}$ [Maroti].
 - encode Minsky machine into a special $\mathbb{B}(\mathcal{M})$.

Conjectures

The following are **conjectured** to be undecidable for finite \mathbb{A} :

- (1) Whether A is finitely related.
- (2) Whether A is naturally dualizable.
- + many more problems from clone theory.

If $\mathcal{V}(\mathbb{A})$...

- is congruence distributive, then we can decide (1) and (2).
- is congruence modular, then we can decide (1) and (sort of) (2).
- is congruence $SD(\land)$, we have no strong results.
- has a compatible semilattice term, then we can decide both ('yes').

Entailment

Let...

- A be a finite algebra,
- \mathbb{R} an *m*-ary relation of \mathbb{A} $(\mathbb{R} \leq \mathbb{A}^m)$,
- \mathcal{R} be a set of finite arity relations of $\mathbb{A}\left(\mathcal{R}\subseteq\bigcup_{n=1}^{N}\mathbf{S}(\mathbb{A}^{n})\right)$,

 \mathcal{R} entails \mathbb{R} $(\mathcal{R} \models \mathbb{R})$ if \mathbb{R} is obtained by applying the operations below to members of $\mathcal{R} \cup \{=\}$.

intersection

permutation of coordinates

product

projection onto a subset of coordinates

 \mathcal{R} duality entails \mathbb{R} $(\mathcal{R} \models_d \mathbb{R})$ if \mathbb{R} is obtained by applying the operations below to members of $\mathcal{R} \cup \{=\}$.

intersection

permutation of coordinates

product

bijective projection onto coordinates

Entailment

Definition

Let \mathbb{A} be a finite algebra, and let $\mathcal{R}_n = \bigcup_{k \leq n} \mathbf{S}(\mathbb{A}^k)$.

- A is **finitely related** if $\mathcal{R}_n \models \mathcal{R}_\omega$ for some n.
- A is **finitely duality related** if $\mathcal{R}_n \models_d \mathcal{R}_\omega$ for some n.

Problem (Relational entailment)

Input: finite algebra \mathbb{A} .

Output: whether \mathbb{A} is finitely related.

Problem (Relational duality entailment)

Input: finite algebra \mathbb{A} .

Output: whether \mathbb{A} is finitely duality related.

- Introduction
- 2 Computational models
- 4 Main results, elements of the proof
- Conclusion

Minsky machines

The Minsky machine is a simple model of computation.

A Minsky machine has...

- states $0, 1, \dots, N$ (state 1 is starting state, 0 is halting),
- registers A and B that have integer values ≥ 0 ,
- instructions of the form (i, R, j), meaning
 "in state i, increase register R by 1 and enter j".
- instructions of the form (i, R, j, k), meaning "in state i, if R is 0 enter j, otherwise decrease R by 1 and enter k".

A Minsky machine

Let $\mathcal M$ have instructions

$$(1,B,3,2),$$
 $(2,A,1),$ $(3,A,4),$ $(4,A,0).$

Start the machine with register contents A = 3, B = 2.

Step	State	Α	В	S	tep	State	Α	В
0	1	3	2		4	1	5	0
1	2	3	1		5	3	5	0
2	1	4	1		6	4	6	0
3	2	4	0		7	0	7	0

 \mathcal{M} computes A + B + 2 and stores the result in A.

Minsky machines more useful for us than Turing machines:

- no tape,
- no machine head,
- instructions are more condensed,
- "equivalent" to Turing machines,
- the Halting Problem for Minsky machines is undecidable.

- Introduction
- Computational models
- 3 The algebra $\mathbb{A}(\mathcal{M})$
- 4 Main results, elements of the proof
- Conclusion

$A(\mathcal{M})$

Let \mathcal{M} be a Minsky machine with states $0, 1, \ldots, N$. Let

- $\Sigma = \{\circ, \bullet, \times\}$,
- for each state i, $M_i = \{ \langle i, c \rangle \mid c \in \{0, A, B, \times \} \}$.

 $\mathbb{A}(\mathcal{M})$ has underlying set $A(\mathcal{M}) = \Sigma \cup \bigcup_{i=0}^{N} M_i$.

 $\mathbb{A}(\mathcal{M})$ has the following operations, plus some more:

ullet a semilattice operation \wedge :

- $\langle 1, 0 \rangle$ as a constant
- machine operations M(x, y), M'(x)

$$M(x,y) = \begin{cases} \langle j,R \rangle & \text{if } (i,R,j) \in \mathcal{M}, \\ y = \bullet, x = \langle i,0 \rangle; \\ \langle j,0 \rangle & \text{if } (i,R,k,j) \in \mathcal{M}, \\ y = \bullet, x = \langle i,R \rangle; \\ \langle j,c \rangle & \text{if } (i,R,j) \text{ or } (i,R,k,j) \in \mathcal{M}, \\ y = \circ, x = \langle i,c \rangle; \\ \vdots \end{cases} \qquad M'(x) = \begin{cases} \langle k,c \rangle & \text{if } (i,R,k,j) \in \mathcal{M}, \\ x = \langle i,c \rangle, c \neq R; \\ \vdots \\ \vdots \end{cases}$$

Let $\mathcal{M} = \{(1, B, 3, 2), (2, A, 1), (3, A, 4), (4, A, 0)\}$. (A + B + 2 from before)

1:
$$M \begin{pmatrix} \langle 1, 0 \rangle, \circ \\ \langle 1, A \rangle, \circ \\ \langle 1, B \rangle, \bullet \\ \langle 1, 0 \rangle, \circ \end{pmatrix} = \begin{pmatrix} \langle 2, 0 \rangle \\ \langle 2, A \rangle \\ \langle 2, 0 \rangle \end{pmatrix}$$
4: $M \begin{pmatrix} \langle 3, 0 \rangle, \bullet \\ \langle 3, A \rangle, \circ \\ \langle 3, 0 \rangle, \circ \\ \langle 3, A \rangle, \circ \end{pmatrix} = \begin{pmatrix} \langle 4, A \rangle \\ \langle 4, A \rangle \\ \langle 4, 0 \rangle \\ \langle 4, A \rangle \end{pmatrix}$
5: $M \begin{pmatrix} \langle 2, 0 \rangle, \circ \\ \langle 2, A \rangle, \circ \\ \langle 2, 0 \rangle, \bullet \\ \langle 2, 0 \rangle, \bullet \end{pmatrix} = \begin{pmatrix} \langle 1, 0 \rangle \\ \langle 1, A \rangle \\ \langle 1, 0 \rangle \\ \langle 1, A \rangle \end{pmatrix}$
5: $M \begin{pmatrix} \langle 4, A \rangle, \circ \\ \langle 4, A \rangle, \circ \\ \langle 4, A \rangle, \circ \\ \langle 4, A \rangle, \bullet \\ \langle 4, A \rangle, \bullet \end{pmatrix} = \begin{pmatrix} \langle 0, A \rangle \\ \langle 0, A \rangle \\ \langle 0, A \rangle \\ \langle 0, A \rangle \end{pmatrix}$
5: $M \begin{pmatrix} \langle 4, A \rangle, \circ \\ \langle 4, A \rangle, \circ \\ \langle 4, A \rangle, \bullet \\ \langle 4, A \rangle, \bullet \\ \langle 4, A \rangle, \bullet \end{pmatrix} = \begin{pmatrix} \langle 0, A \rangle \\ \langle 0, A \rangle \\ \langle 0, A \rangle \\ \langle 0, A \rangle \end{pmatrix}$
5: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \circ \\ \langle 2, A \rangle, \bullet \\ \langle 3, A \rangle, \bullet \end{pmatrix} = \begin{pmatrix} \langle 1, A \rangle \\ \langle 4, A \rangle, \circ \\ \langle 4, A \rangle, \bullet \\ \langle 4, A \rangle, \bullet \end{pmatrix}$
5: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 4, A \rangle, \circ \\ \langle 4, A \rangle, \bullet \\ \langle 4, A \rangle, \bullet \end{pmatrix} = \begin{pmatrix} \langle 0, A \rangle \\ \langle 0, A \rangle \\ \langle 0, A \rangle \\ \langle 0, A \rangle \end{pmatrix}$
5: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 2, A \rangle, \bullet \\ \langle 3, A \rangle, \bullet \end{pmatrix} = \begin{pmatrix} \langle 1, A \rangle \\ \langle 4, A \rangle, \bullet \\ \langle 4, A \rangle, \bullet \\ \langle 4, A \rangle, \bullet \end{pmatrix}$
5: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \end{pmatrix}$
5: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 2, A \rangle, \bullet \\ \langle 3, A \rangle, \bullet \end{pmatrix}$
6: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \\ \langle 2, A \rangle, \bullet \end{pmatrix}$
7: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 2, A \rangle, \bullet \\ \langle 3, A \rangle, \bullet \end{pmatrix}$
8: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 2, A \rangle, \bullet \\ \langle 3, A \rangle, \bullet \end{pmatrix}$
8: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \end{pmatrix}$
8: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \end{pmatrix}$
9: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \end{pmatrix}$
9: $M \begin{pmatrix} \langle 1, A \rangle, \circ \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \end{pmatrix}$
9: $M \begin{pmatrix} \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \end{pmatrix}$
9: $M \begin{pmatrix} \langle 1, A \rangle, \bullet \\ \langle 2, A \rangle, \bullet \end{pmatrix}$
9: $M \begin{pmatrix} \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle, \bullet \end{pmatrix}$
9: $M \begin{pmatrix} \langle 1, A \rangle, \bullet \\ \langle 1, A \rangle,$

3:
$$M'$$
 $\begin{pmatrix} \langle 1, 0 \rangle \\ \langle 1, A \rangle \\ \langle 1, 0 \rangle \\ \langle 1, A \rangle \end{pmatrix} = \begin{pmatrix} \langle 3, 0 \rangle \\ \langle 3, A \rangle \\ \langle 3, 0 \rangle \\ \langle 3, A \rangle \end{pmatrix}$

Computational relations

Let
$$\mathbb{S}_n = \operatorname{Sg}_{\mathbb{A}(\mathcal{M})^n} \left\{ \begin{pmatrix} \bullet \\ \circ \\ \vdots \\ \circ \end{pmatrix}, \begin{pmatrix} \circ \\ \bullet \\ \vdots \\ \circ \end{pmatrix}, \dots, \begin{pmatrix} \circ \\ \circ \\ \vdots \\ \bullet \end{pmatrix} \right\}.$$

- $\langle 1,0 \rangle$ is a constant, so every relation of $\mathbb{A}(\mathcal{M})$ contains $\begin{pmatrix} \langle 1,0 \rangle \\ \vdots \\ \langle 1,0 \rangle \end{pmatrix}$.
- This represents a configuration in state 1, with A and B registers 0.
- The generators allow for simulated computation inside the relation.

Theorem

 \mathcal{M} halts if and only if eventually $(M_0 \setminus \{\langle 0, \times \rangle\})^n \cap S_n \neq \emptyset$.

- Introduction
- Computational models
- Main results, elements of the proof
- Conclusion

Theorem

Let \mathcal{M} be a Minksky machine, $\mathcal{R}_n = \bigcup_{k=1}^n \mathbf{S}(\mathbb{A}(\mathcal{M})^k)$, and \mathbb{S}_m be as before.

The following are equivalent:

M halts,

- eventually $\mathcal{R}_n \models \mathbb{S}_m$ for all $m \geq n$,
- eventually $\mathcal{R}_n \models_d \mathbb{S}_m$ for all $m \geq n$.

 $\mathbb{A}(\mathcal{M})$ is not finitely (duality) related if \mathcal{M} does not halt.

Make $\mathbb{A}(\mathcal{M})$ into a partial algebra (call it $\mathbb{A}^*(\mathcal{M}))$

→ fewer relations → finitely (duality) related?

Theorem

Let
$$\mathcal{R}_n^* = \bigcup_{k=1}^n \mathbf{S}(\mathbb{A}^*(\mathcal{M})^k)$$
. The following are equivalent:

M halts.

- eventually $\mathcal{R}_n^* \models \mathcal{R}_\omega^*$,
- eventually $\mathcal{R}_n^* \models_d \mathcal{R}_{\omega}^*$.

Coding theorem

Theorem

 \mathcal{M} halts if and only if eventually $(M_0 \setminus \{\langle 0, \times \rangle\})^n \cap S_n \neq \emptyset$.

Define another operation of $\mathbb{A}(\mathcal{M})$:

$$N(u,x,y,z) = egin{cases} m & ext{if } u \in M_0 \setminus \{\langle 0, imes
angle\}, \ (x,y,z) ext{ is NU with majority} = m; \ (x \wedge y) \vee (x \wedge z) & ext{elif } u \in M_0 \setminus \{\langle 0, imes
angle\}; \ w & ext{else, where } w = \langle i, imes
angle ext{ if } x \in M_i \ & ext{and } w = imes ext{ otherwise.} \end{cases}$$

It follows that if $(M_0 \setminus \{\langle 0, \times \rangle\})^n \cap S_n \neq \emptyset$, then \mathbb{S}_n has an NU polynomial.

Theorem

Let \mathcal{M} be a Minsky machine. The following are equivalent:

M halts,

- eventually \mathbb{S}_n has an NU polynomial,
- eventually $(\circ, \circ, \ldots, \circ) \in S_n$,

If \mathcal{M} does not halt

If
$$\mathcal{R}_n \models \mathbb{R}$$
, then $\mathbb{R} = \pi \left(\bigcap_{i \in I} \mu_i \left(\prod_{j \in J} \mathbb{R}_{ij} \right) \right)$

for some $\mathbb{R}_{ij} \in \mathcal{R}_n$, finite sets I, J, permutations μ_i , and projection π .

Lemma

lf

$$m\left\{\begin{pmatrix} \bullet \\ \circ \\ \vdots \\ \circ \end{pmatrix}, \begin{pmatrix} \circ \\ \bullet \\ \vdots \\ \circ \end{pmatrix}, \dots, \begin{pmatrix} \circ \\ \circ \\ \vdots \\ \bullet \end{pmatrix} \in \pi\left(\bigcap_{i \in I} \mu_i \Big(\prod_{j \in J} \mathbb{R}_{ij}\Big)\right) = \mathbb{T}\right\}$$

where m > n and $\mathbb{R}_{ij} \in \mathcal{R}_n$, then $(\circ, \circ, \dots, \circ) \in \mathcal{T}$.

In particular, if $\mathcal{R}_n \models \mathbb{S}_m$ for some m > n, then $(\circ, \dots, \circ) \in \mathcal{S}_m$.

From the coding theorem, this holds if and only if $\ensuremath{\mathcal{M}}$ halts.

 \mathcal{M} does not halt $\Rightarrow \mathcal{R}_n \not\models \mathbb{S}_m \Rightarrow \mathbb{A}(\mathcal{M})$ is not finitely (duality) related.

If \mathcal{M} halts

The coding theorem:

if \mathcal{M} halts, then eventually \mathbb{S}_n has a 3-ary NU polynomial.

Let m(x, y, z) be the NU polynomial and define

$$\mathbb{S}_n^i = \left\{ \left(s_1, \ldots, \hat{\hat{s}_i}, \ldots, s_n\right) \mid \exists s_i(s_1, \ldots, \hat{\hat{s}_i}, \ldots, s_n) \in S_n \right\}, \qquad \hat{\mathbb{S}}_n = \bigcap_{i=1}^n \mathbb{S}_n^i.$$

Each \mathbb{S}_n^i is a permutation of $\mathbb{A}(\mathcal{M}) \times \mathbb{S}_{n-1}$. Thus, $\mathcal{R}_{n-1} \models_d \hat{\mathbb{S}}_n$.

 $S_n\subseteq S_n^i$, so $S_n\subseteq \hat{S}_n$. If $(a_1,\ldots,a_n)\in \hat{S}_n\setminus S_n$, then there are b_i such that

$$\begin{pmatrix} b_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \begin{pmatrix} a_1 \\ b_2 \\ \vdots \\ a_n \end{pmatrix}, \dots, \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ b_n \end{pmatrix} \in S_n.$$

Since m(x, y, z) is a polynomial of \mathbb{S}_n , applying m(x, y, z) to any 3 yields $(a_1, \ldots, a_n) \in S_n$.

If \mathcal{M} halts

- We have that eventually $\mathcal{R}_n \models \mathbb{S}_m$, m > n. What about other relations $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^m$?
- If \mathbb{R} contains a member of $(M_0 \setminus \{\langle 0, \times \rangle\})^m$ then it has an NU polynomial (call \mathbb{R} halting).
- $\mathbb{A}(\mathcal{M})$ has operation

$$P(u, v, x, y) = \begin{cases} x & \text{if } u, v \in M_i \text{ or } u, v \in \Sigma, \\ y & \text{otherwise.} \end{cases}$$

If \mathbb{R} is not a subset of $\Sigma^m \cup M_0^m \cup \cdots \cup M_N^m$, then \mathbb{R} directly decomposes (call \mathbb{R} non-synchronized).

Thus, the problematic relations are the non-halting, synchronized,
 ∩-irreducible relations.

In the partial algebra construction, these are very easy to understand.

- Introduction
- Computational models
- 4 Main results, elements of the proof
- Conclusion

Other directions

Question

If \mathcal{M} halts, is $\mathbb{A}(\mathcal{M})$ finitely related?

(tentative yes, but very complicated)

 $\mathbb{A}(\mathcal{M})$ has a semilattice operation, so it is $SD(\wedge)$.

Question

What are the connections between $SD(\land)$, residual size, finite axiomatizability, and dualizability?

Is $\mathbb{A}(\mathcal{M})$ finitely axiomatizable? Is $\mathbb{A}(\mathcal{M})$ residually small?

Conclusion

Theorem,

Let \mathcal{M} be a Minsky machine.

Let
$$\mathcal{R}_n = \bigcup_{k=1}^n \mathbf{S}(\mathbb{A}(\mathcal{M})^k)$$
, and \mathbb{S}_m be as before.

Let
$$\mathcal{R}_n^* = \bigcup_{k=1}^n \mathbf{S}(\mathbb{A}^*(\mathcal{M})^k)$$
. $(\mathbb{A}^*(\mathcal{M})$ is the partial algebra)

The following are equivalent:

- M halts,
- for some n, $\mathcal{R}_n \models \mathbb{S}_m$ for all $m \geq n$,
- for some n, $\mathcal{R}_n \models_d \mathbb{S}_m$ for all $m \geq n$,
- for some n, $\mathcal{R}_n^* \models \mathcal{R}_\omega^*$,
- for some n, $\mathcal{R}_n^* \models_d \mathcal{R}_\omega^*$.

Thank you.