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Decidability

Definition

The decision problem for property P(·) is the computational problem

Input: some finite object A.

Output: whether P(A) is true.

If there is an algorithm which solves this problem, then P(·) is decidable.

Otherwise P(·) is otherwise is undecidable.

Example

The halting problem is the decision problem

Input: a program P.

Output: whether P eventually halts.

The halting problem is famously undecidable.

General strategy: encode the halting problem into P(·).
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Known results (in Universal Algebra)

The following are known to be undecidable for finite algebra A:

• Whether A has a finite residual bound [McKenzie].

• strategy: encode Turing machine T into special A(T ).

• Whether A has a finite equational base [McKenzie; Willard].

• McKenzie: new algebra F(T ).
• Willard: A(T ) above works!

• Whether A has definable principal subcongruences [M].

• variation on McKenzie’s A(T ).

• Whether typ(V(A)) contains i for i ∈ {2, 3, 4, 5} [Wood, McKenzie].

• variation on McKenzie’s A(T ).

• Whether A has an NU term on A− {p, q} [Maroti].

• encode Minsky machine into a special B(M).
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Conjectures

The following are conjectured to be undecidable for finite A:

• (1) Whether A is finitely related.

• (2) Whether A is naturally dualizable.

• + many more problems from clone theory.

If V(A)...

• is congruence distributive, then we can decide (1) and (2).

• is congruence modular, then we can decide (1) and (sort of) (2).

• is congruence SD(∧), we have no strong results.

• has a compatible semilattice term, then we can decide both (‘yes’).
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Entailment

Let...

• A be a finite algebra,

• R an m-ary relation of A
(
R ≤ Am

)
,

• R be a set of finite arity relations of A
(
R ⊆

⋃N
n=1 S(An)

)
,

R entails R
(
R |= R

)
if R is obtained by applying the operations below

to members of R∪ {=}.
• intersection

• product

• permutation of coordinates

• projection onto a subset of coordinates

R duality entails R
(
R |=d R

)
if R is obtained by applying the

operations below to members of R∪ {=}.
• intersection

• product

• permutation of coordinates

• bijective projection onto coordinates
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Entailment

Definition

Let A be a finite algebra, and let Rn =
⋃

k≤n S(Ak).

• A is finitely related if Rn |= Rω for some n.

• A is finitely duality related if Rn |=d Rω for some n.

Problem (Relational entailment)

Input: finite algebra A.

Output: whether A is finitely related.

Problem (Relational duality entailment)

Input: finite algebra A.

Output: whether A is finitely duality related.
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Minsky machines

The Minsky machine is a simple model of computation.

A Minsky machine has...

• states 0, 1, . . . ,N (state 1 is starting state, 0 is halting),

• registers A and B that have integer values ≥ 0,

• instructions of the form (i ,R, j), meaning
“in state i , increase register R by 1 and enter j”.

• instructions of the form (i ,R, j , k), meaning
“in state i , if R is 0 enter j , otherwise decrease R by 1 and enter k”.
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A Minsky machine

Let M have instructions

(1,B,3,2), (2,A,1), (3,A,4), (4,A,0).

Start the machine with register contents A = 3, B = 2.

Step State A B
0 1 3 2
1 2 3 1
2 1 4 1
3 2 4 0

Step State A B
4 1 5 0
5 3 5 0
6 4 6 0
7 0 7 0

M computes A + B + 2 and stores the result in A.

Minsky machines more useful for us than Turing machines:

• no tape,

• no machine head,

• instructions are more condensed,

• “equivalent” to Turing machines,

• the Halting Problem for Minsky
machines is undecidable.
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A(M)

Let M be a Minsky machine with states 0, 1, . . . ,N. Let

• Σ = {◦, •,×},
• for each state i , Mi =

{
〈i , c〉 | c ∈ {0,A,B,×}

}
.

A(M) has underlying set A(M) = Σ ∪
⋃N

i=0Mi .

A(M) has the following operations, plus some more:

• a semilattice operation ∧: ◦ •

×

〈i ,×〉

〈i , 0〉〈i ,A〉 〈i ,B〉

• 〈1, 0〉 as a constant

• machine operations M(x , y), M ′(x)
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M(x , y) =



〈j ,R〉 if (i ,R, j) ∈M,

y = •, x = 〈i , 0〉 ;
〈j , 0〉 if (i ,R, k, j) ∈M,

y = •, x = 〈i ,R〉 ;
〈j , c〉 if (i ,R, j) or (i ,R, k, j) ∈M,

y = ◦, x = 〈i , c〉 ;
...

M ′(x) =


〈k, c〉 if (i ,R, k, j) ∈M,

x = 〈i , c〉 , c 6= R;

...

Let M =
{

(1,B, 3, 2), (2,A, 1), (3,A, 4), (4,A, 0)
}

. (A + B + 2 from before)

1: M


〈1, 0〉 , ◦
〈1,A〉 , ◦
〈1,B〉 , •
〈1, 0〉 , ◦

 =


〈2, 0〉
〈2,A〉
〈2, 0〉
〈2, 0〉

 4: M


〈3, 0〉 , •
〈3,A〉 , ◦
〈3, 0〉 , ◦
〈3,A〉 , ◦

 =


〈4,A〉
〈4,A〉
〈4, 0〉
〈4,A〉



2: M


〈2, 0〉 , ◦
〈2,A〉 , ◦
〈2, 0〉 , ◦
〈2, 0〉 , •

 =


〈1, 0〉
〈1,A〉
〈1, 0〉
〈1,A〉

 5: M


〈4,A〉 , ◦
〈4,A〉 , ◦
〈4, 0〉 , •
〈4,A〉 , ◦

 =


〈0,A〉
〈0,A〉
〈0,A〉
〈0,A〉



3: M′


〈1, 0〉
〈1,A〉
〈1, 0〉
〈1,A〉

 =


〈3, 0〉
〈3,A〉
〈3, 0〉
〈3,A〉



Step State A B
0 1 1 1
1 2 1 0
2 1 2 0
3 3 2 0
4 4 3 0
5 0 4 0
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Computational relations

Let Sn = SgA(M)n


•◦...
◦

 ,

◦•...
◦

 , . . . ,

◦◦...
•


 .

• 〈1, 0〉 is a constant, so every relation of A(M) contains

〈1, 0〉...
〈1, 0〉

.

• This represents a configuration in state 1, with A and B registers 0.

• The generators allow for simulated computation inside the relation.

Theorem

M halts if and only if eventually (M0 \ {〈0,×〉})n ∩ Sn 6= ∅.
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Theorem

Let M be a Minksky machine, Rn =
n⋃

k=1

S(A(M)k), and Sm be as before.

The following are equivalent:

• M halts, • eventually Rn |= Sm for all m ≥ n,

• eventually Rn |=d Sm for all m ≥ n.

A(M) is not finitely (duality) related if M does not halt.

Make A(M) into a partial algebra (call it A∗(M))
 fewer relations  finitely (duality) related?

Theorem

Let R∗n =
n⋃

k=1

S(A∗(M)k). The following are equivalent:

• M halts, • eventually R∗n |= R∗ω,

• eventually R∗n |=d R∗ω.
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Coding theorem

Theorem

M halts if and only if eventually (M0 \ {〈0,×〉})n ∩ Sn 6= ∅.

Define another operation of A(M):

N(u, x , y , z) =


m if u ∈ M0 \ {〈0,×〉},

(x , y , z) is NU with majority = m;

(x ∧ y) ∨ (x ∧ z) elif u ∈ M0 \ {〈0,×〉};
w else, where w = 〈i ,×〉 if x ∈ Mi

and w = × otherwise.

It follows that if (M0 \ {〈0,×〉})n ∩ Sn 6= ∅, then Sn has an NU polynomial.

Theorem

Let M be a Minsky machine. The following are equivalent:

• M halts, • eventually Sn has an NU polynomial,

• eventually (◦, ◦, . . . , ◦) ∈ Sn,
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If M does not halt

If Rn |= R, then R = π

(⋂
i∈I
µi

( ∏
j∈J

Rij

))
for some Rij ∈ Rn, finite sets I , J, permutations µi , and projection π.

Lemma

If

m



•
◦
...
◦

 ,


◦
•
...
◦

 , . . . ,


◦
◦
...
•

 ∈ π
(⋂

i∈I
µi

( ∏
j∈J

Rij

))
= T

where m > n and Rij ∈ Rn, then (◦, ◦, . . . , ◦) ∈ T.

In particular, if Rn |= Sm for some m > n, then (◦, . . . , ◦) ∈ Sm.

From the coding theorem, this holds if and only if M halts.

M does not halt ⇒ Rn 6|= Sm ⇒ A(M) is not finitely (duality) related.
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If M halts

The coding theorem:
if M halts, then eventually Sn has a 3-ary NU polynomial.

Let m(x , y , z) be the NU polynomial and define

Sin =
{

(s1, . . . ,
i
âi , . . . , sn) | ∃si (s1, . . . ,

i
ŝi , . . . , sn) ∈ Sn

}
, Ŝn =

n⋂
i=1

Sin.

Each Sin is a permutation of A(M)× Sn−1. Thus, Rn−1 |=d Ŝn.

Sn ⊆ S i
n, so Sn ⊆ Ŝn. If (a1, . . . , an) ∈ Ŝn \ Sn, then there are bi such that

b1
a2
...
an

 ,


a1
b2
...
an

 , . . . ,


a1
a2
...
bn

 ∈ Sn.

Since m(x , y , z) is a polynomial of Sn, applying m(x , y , z) to any 3 yields
(a1, . . . , an) ∈ Sn.
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If M halts

• We have that eventually Rn |= Sm, m > n.

What about other relations R ≤ A(M)m?

• If R contains a member of (M0 \ {〈0,×〉})m then it has an NU
polynomial (call R halting).

• A(M) has operation

P(u, v , x , y) =

{
x if u, v ∈ Mi or u, v ∈ Σ,

y otherwise.

If R is not a subset of Σm ∪Mm
0 ∪ · · · ∪Mm

N , then R directly
decomposes (call R non-synchronized).

• Thus, the problematic relations are the non-halting, synchronized,
∩-irreducible relations.

In the partial algebra construction, these are very easy to understand.
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Other directions

Question

If M halts, is A(M) finitely related?

(tentative yes, but very complicated)

A(M) has a semilattice operation, so it is SD(∧).

Question

What are the connections between SD(∧), residual size, finite
axiomatizability, and dualizability?

Is A(M) finitely axiomatizable? Is A(M) residually small?
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Conclusion

Theorem

Let M be a Minsky machine.

Let Rn =
n⋃

k=1

S(A(M)k), and Sm be as before.

Let R∗n =
n⋃

k=1

S(A∗(M)k). (A∗(M) is the partial algebra)

The following are equivalent:

• M halts,

• for some n, Rn |= Sm for all m ≥ n,

• for some n, Rn |=d Sm for all m ≥ n,

• for some n, R∗n |= R∗ω,

• for some n, R∗n |=d R∗ω.

Thank you.
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