Decidability in Universal Algebra

Matthew Moore

McMaster University
March 10, 2017

Decidability in universal algebra

(1) Introduction
(2) Computational models
(3) The algebra $\mathbb{A}(\mathcal{M})$
(4) Main results, elements of the proof
(5) Conclusion

Decidability in universal algebra

(1) Introduction
(2) Computational models
(3) The algebra $\mathbb{A}(\mathcal{M})$
(4) Main results, elements of the proof
(5) Conclusion

Decidability

Definition

The decision problem for property $P(\cdot)$ is the computational problem Input: some finite object A.
Output: whether $P(A)$ is true.
If there is an algorithm which solves this problem, then $P(\cdot)$ is decidable. Otherwise $P(\cdot)$ is otherwise is undecidable.

Example

The halting problem is the decision problem
Input: a program P.
Output: whether P eventually halts.
The halting problem is famously undecidable.
General strategy: encode the halting problem into $P(\cdot)$.

Known results (in Universal Algebra)

The following are known to be undecidable for finite algebra \mathbb{A} :

- Whether \mathbb{A} has a finite residual bound [McKenzie].
- strategy: encode Turing machine \mathcal{T} into special $\mathbb{A}(\mathcal{T})$.
- Whether \mathbb{A} has a finite equational base [McKenzie; Willard].
- McKenzie: new algebra $\mathbb{F}(\mathcal{T})$.
- Willard: $\mathbb{A}(\mathcal{T})$ above works!
- Whether \mathbb{A} has definable principal subcongruences [M].
- variation on McKenzie's $\mathbb{A}(\mathcal{T})$.
- Whether $\operatorname{typ}(\mathcal{V}(\mathbb{A}))$ contains i for $i \in\{\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}\}$ [Wood, McKenzie].
- variation on McKenzie's $\mathbb{A}(\mathcal{T})$.
- Whether \mathbb{A} has an NU term on $A-\{p, q\}$ [Maroti].
- encode Minsky machine into a special $\mathbb{B}(\mathcal{M})$.

Conjectures

The following are conjectured to be undecidable for finite \mathbb{A} :

- (1) Whether \mathbb{A} is finitely related.
- (2) Whether \mathbb{A} is naturally dualizable.
- + many more problems from clone theory.

If $\mathcal{V}(\mathbb{A}) \ldots$

- is congruence distributive, then we can decide (1) and (2).
- is congruence modular, then we can decide (1) and (sort of) (2).
- is congruence $\mathrm{SD}(\wedge)$, we have no strong results.
- has a compatible semilattice term, then we can decide both ('yes').

Entailment

Let...

- \mathbb{A} be a finite algebra,
- \mathbb{R} an m-ary relation of $\mathbb{A}\left(\mathbb{R} \leq \mathbb{A}^{m}\right)$,
- \mathcal{R} be a set of finite arity relations of $\mathbb{A}\left(\mathcal{R} \subseteq \bigcup_{n=1}^{N} \mathbf{S}\left(\mathbb{A}^{n}\right)\right)$,
\mathcal{R} entails $\mathbb{R}(\mathcal{R} \models \mathbb{R})$ if \mathbb{R} is obtained by applying the operations below to members of $\mathcal{R} \cup\{=\}$.
- intersection
- permutation of coordinates
- product
- projection onto a subset of coordinates
\mathcal{R} duality entails $\mathbb{R}\left(\mathcal{R} \models_{d} \mathbb{R}\right)$ if \mathbb{R} is obtained by applying the operations below to members of $\mathcal{R} \cup\{=\}$.
- intersection
- product
- permutation of coordinates
- bijective projection onto coordinates

Entailment

Definition

Let \mathbb{A} be a finite algebra, and let $\mathcal{R}_{n}=\bigcup_{k \leq n} \mathbf{S}\left(\mathbb{A}^{k}\right)$.

- \mathbb{A} is finitely related if $\mathcal{R}_{n}=\mathcal{R}_{\omega}$ for some n.
- \mathbb{A} is finitely duality related if $\mathcal{R}_{n} \models{ }_{d} \mathcal{R}_{\omega}$ for some n.

Problem (Relational entailment)

Input: finite algebra \mathbb{A}.
Output: whether \mathbb{A} is finitely related.

Problem (Relational duality entailment)

Input: finite algebra \mathbb{A}.
Output: whether \mathbb{A} is finitely duality related.

Decidability in universal algebra

(1) Introduction
(2) Computational models
(3) The algebra $\mathbb{A}(\mathcal{M})$
(4) Main results, elements of the proof
(5) Conclusion

Minsky machines

The Minsky machine is a simple model of computation.

A Minsky machine has...

- states $0,1, \ldots, N$ (state 1 is starting state, 0 is halting),
- registers A and B that have integer values ≥ 0,
- instructions of the form (i, R, j), meaning "in state i, increase register R by 1 and enter j ".
- instructions of the form (i, R, j, k), meaning "in state i, if R is 0 enter j, otherwise decrease R by 1 and enter k ".

A Minsky machine

Let \mathcal{M} have instructions

$$
(1, B, 3,2), \quad(2, A, 1), \quad(3, A, 4), \quad(4, A, 0)
$$

Start the machine with register contents $A=3, B=2$.

Step	State	A	\mathbf{B}	Step	State	A	B
0	1	3	2				
1	2	3	1	4	1	5	0
2	1	4	1	5	3	5	0
3	2	4	0	6	4	6	0
		7	0	7	0		

\mathcal{M} computes $A+B+2$ and stores the result in A.
Minsky machines more useful for us than Turing machines:

- no tape,
- no machine head,
- instructions are more condensed,
- "equivalent" to Turing machines,
- the Halting Problem for Minsky machines is undecidable.

Decidability in universal algebra

(1) Introduction
(2) Computational models
(3) The algebra $\mathbb{A}(\mathcal{M})$
(4) Main results, elements of the proof
(5) Conclusion

$A(\mathcal{M})$

Let \mathcal{M} be a Minsky machine with states $0,1, \ldots, N$. Let

- $\Sigma=\{\circ, \bullet, \times\}$,
- for each state $i, M_{i}=\{\langle i, c\rangle \mid c \in\{0, A, B, \times\}\}$.
$\mathbb{A}(\mathcal{M})$ has underlying set $A(\mathcal{M})=\Sigma \cup \bigcup_{i=0}^{N} M_{i}$.
$\mathbb{A}(\mathcal{M})$ has the following operations, plus some more:
- a semilattice operation \wedge :

- $\langle 1,0\rangle$ as a constant
- machine operations $M(x, y), M^{\prime}(x)$

$$
\begin{aligned}
& (\langle j, R\rangle \text { if }(i, R, j) \in \mathcal{M}, \\
& y=\bullet, x=\langle i, 0\rangle ; \\
& \langle j, 0\rangle \quad \text { if }(i, R, k, j) \in \mathcal{M} \text {, } \\
& M^{\prime}(x)=\left\{\begin{array}{cc}
\langle k, c\rangle & \text { if }(i, R, k, j) \in \mathcal{M} \\
\vdots & x=\langle i, c\rangle, c \neq R
\end{array}\right. \\
& \text { Let } \mathcal{M}=\{(1, B, 3,2),(2, A, 1),(3, A, 4),(4, A, 0)\} .(A+B+2 \text { from before }) \\
& \text { 1: } M\left(\begin{array}{l}
\langle 1,0\rangle, \circ \\
\langle 1, A\rangle, \circ \\
\langle 1, B\rangle, \bullet \\
\langle 1,0\rangle, \circ
\end{array}\right)=\left(\begin{array}{c}
\langle 2,0\rangle \\
\langle 2, A\rangle \\
\langle 2,0\rangle \\
\langle 2,0\rangle
\end{array}\right) \\
& \text { 4: } M\left(\begin{array}{c}
\langle 3,0\rangle, \bullet \\
\langle 3, A\rangle, \circ \\
\langle 3,0\rangle, \circ \\
\langle 3, A\rangle, \circ
\end{array}\right)=\left(\begin{array}{c}
\langle 4, A\rangle \\
\langle 4, A\rangle \\
\langle 4,0\rangle \\
\langle 4, A\rangle
\end{array}\right) \\
& \text { 3: } M^{\prime}\left(\begin{array}{c}
\langle 1,0\rangle \\
\langle 1, A\rangle \\
\langle 1,0\rangle \\
\langle 1, A\rangle
\end{array}\right)=\left(\begin{array}{c}
\langle 3,0\rangle \\
\langle 3, A\rangle \\
\langle 3,0\rangle \\
\langle 3, A\rangle
\end{array}\right)
\end{aligned}
$$

Computational relations

Let $\mathbb{S}_{n}=\operatorname{Sg}_{\mathbb{A}(\mathcal{M})^{n}}\left\{\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ \bullet \\ \vdots \\ 0\end{array}\right), \ldots,\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)\right\}$.

- $\langle 1,0\rangle$ is a constant, so every relation of $\mathbb{A}(\mathcal{M})$ contains $\left(\begin{array}{c}\langle 1,0\rangle \\ \vdots \\ \langle 1,0\rangle\end{array}\right)$.
- This represents a configuration in state 1 , with A and B registers 0 .
- The generators allow for simulated computation inside the relation.

Theorem

\mathcal{M} halts if and only if eventually $\left(M_{0} \backslash\{\langle 0, \times\rangle\}\right)^{n} \cap S_{n} \neq \emptyset$.

Decidability in universal algebra

(1) Introduction
(2) Computational models
(3) The algebra $\mathbb{A}(\mathcal{M})$
(4) Main results, elements of the proof

Theorem

Let \mathcal{M} be a Minksky machine, $\mathcal{R}_{n}=\bigcup_{k=1}^{n} \mathbf{S}\left(\mathbb{A}(\mathcal{M})^{k}\right)$, and \mathbb{S}_{m} be as before. The following are equivalent:

- \mathcal{M} halts,
- eventually $\mathcal{R}_{n} \models \mathbb{S}_{m}$ for all $m \geq n$,
- eventually $\mathcal{R}_{n} \models_{d} \mathbb{S}_{m}$ for all $m \geq n$.
$\mathbb{A}(\mathcal{M})$ is not finitely (duality) related if \mathcal{M} does not halt.
Make $\mathbb{A}(\mathcal{M})$ into a partial algebra (call it $\mathbb{A}^{*}(\mathcal{M})$)
\rightsquigarrow fewer relations \rightsquigarrow finitely (duality) related?

Theorem

Let $\mathcal{R}_{n}^{*}=\bigcup_{k=1}^{n} \mathbf{S}\left(\mathbb{A}^{*}(\mathcal{M})^{k}\right)$. The following are equivalent:

- \mathcal{M} halts,
- eventually $\mathcal{R}_{n}^{*}=\mathcal{R}_{\omega}^{*}$,
- eventually $\mathcal{R}_{n}^{*}=_{d} \mathcal{R}_{\omega}^{*}$.

Coding theorem

Theorem

\mathcal{M} halts if and only if eventually $\left(M_{0} \backslash\{\langle 0, \times\rangle\}\right)^{n} \cap S_{n} \neq \emptyset$.
Define another operation of $\mathbb{A}(\mathcal{M})$:

$$
N(u, x, y, z)= \begin{cases}m & \text { if } u \in M_{0} \backslash\{\langle 0, x\rangle\}, \\ & (x, y, z) \text { is } N U \text { with majority }=m ; \\ (x \wedge y) \vee(x \wedge z) & \text { elif } u \in M_{0} \backslash\{\langle 0, x\rangle\} ; \\ w & \text { else, where } w=\langle i, x\rangle \text { if } x \in M_{i} \\ & \text { and } w=x \text { otherwise. }\end{cases}
$$

It follows that if $\left(M_{0} \backslash\{\langle 0, \times\rangle\}\right)^{n} \cap S_{n} \neq \emptyset$, then \mathbb{S}_{n} has an $N U$ polynomial.

Theorem

Let \mathcal{M} be a Minsky machine. The following are equivalent:

- \mathcal{M} halts,
- eventually \mathbb{S}_{n} has an NU polynomial,
- eventually $(\circ, \circ, \ldots, \circ) \in S_{n}$,

If \mathcal{M} does not halt

If $\mathcal{R}_{n} \models \mathbb{R}$, then $\mathbb{R}=\pi\left(\bigcap_{i \in I} \mu_{i}\left(\prod_{j \in J} \mathbb{R}_{i j}\right)\right)$
for some $\mathbb{R}_{i j} \in \mathcal{R}_{n}$, finite sets I, J, permutations μ_{i}, and projection π.

Lemma

If

$$
m\left\{\left(\begin{array}{c}
\bullet \\
\circ \\
\vdots \\
\circ
\end{array}\right),\left(\begin{array}{c}
\circ \\
\bullet \\
\vdots \\
\circ
\end{array}\right), \ldots,\left(\begin{array}{c}
\circ \\
\circ \\
\vdots \\
\bullet
\end{array}\right) \in \pi\left(\bigcap_{i \in I} \mu_{i}\left(\prod_{j \in J} \mathbb{R}_{i j}\right)\right)=\mathbb{T}\right.
$$

where $m>n$ and $\mathbb{R}_{i j} \in \mathcal{R}_{n}$, then $(\circ, \circ, \ldots, \circ) \in T$.
In particular, if $\mathcal{R}_{n} \models \mathbb{S}_{m}$ for some $m>n$, then $(\circ, \ldots, \circ) \in S_{m}$.
From the coding theorem, this holds if and only if \mathcal{M} halts.
\mathcal{M} does not halt $\Rightarrow \mathcal{R}_{n} \not \vDash \mathbb{S}_{m} \Rightarrow \mathbb{A}(\mathcal{M})$ is not finitely (duality) related.

If \mathcal{M} halts

The coding theorem:

if \mathcal{M} halts, then eventually \mathbb{S}_{n} has a 3-ary NU polynomial.
Let $m(x, y, z)$ be the NU polynomial and define

$$
\mathbb{S}_{n}^{i}=\left\{\left(s_{1}, \ldots, \hat{a}_{i}, \ldots, s_{n}\right) \mid \exists s_{i}\left(s_{1}, \ldots, \stackrel{i}{\hat{s}_{i}}, \ldots, s_{n}\right) \in S_{n}\right\}, \quad \hat{\mathbb{S}}_{n}=\bigcap_{i=1}^{n} \mathbb{S}_{n}^{i}
$$

Each \mathbb{S}_{n}^{i} is a permutation of $\mathbb{A}(\mathcal{M}) \times \mathbb{S}_{n-1}$. Thus, $\mathcal{R}_{n-1}=_{d} \hat{\mathbb{S}}_{n}$.
$S_{n} \subseteq S_{n}^{i}$, so $S_{n} \subseteq \hat{S}_{n}$. If $\left(a_{1}, \ldots, a_{n}\right) \in \hat{S}_{n} \backslash S_{n}$, then there are b_{i} such that

$$
\left(\begin{array}{c}
b_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right),\left(\begin{array}{c}
a_{1} \\
b_{2} \\
\vdots \\
a_{n}
\end{array}\right), \ldots,\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
b_{n}
\end{array}\right) \in S_{n} .
$$

Since $m(x, y, z)$ is a polynomial of \mathbb{S}_{n}, applying $m(x, y, z)$ to any 3 yields $\left(a_{1}, \ldots, a_{n}\right) \in S_{n}$.

If \mathcal{M} halts

- We have that eventually $\mathcal{R}_{n} \models \mathbb{S}_{m}, m>n$.

What about other relations $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^{m}$?

- If \mathbb{R} contains a member of $\left(M_{0} \backslash\{\langle 0, \times\rangle\}\right)^{m}$ then it has an NU polynomial (call \mathbb{R} halting).
- $\mathbb{A}(\mathcal{M})$ has operation

$$
P(u, v, x, y)= \begin{cases}x & \text { if } u, v \in M_{i} \text { or } u, v \in \Sigma \\ y & \text { otherwise }\end{cases}
$$

If \mathbb{R} is not a subset of $\Sigma^{m} \cup M_{0}^{m} \cup \cdots \cup M_{N}^{m}$, then \mathbb{R} directly decomposes (call \mathbb{R} non-synchronized).

- Thus, the problematic relations are the non-halting, synchronized, \cap-irreducible relations.

In the partial algebra construction, these are very easy to understand.

Decidability in universal algebra

(1) Introduction
(2) Computational models
(3) The algebra $\mathbb{A}(\mathcal{M})$
(4) Main results, elements of the proof
(5) Conclusion

Other directions

Question

If \mathcal{M} halts, is $\mathbb{A}(\mathcal{M})$ finitely related?
(tentative yes, but very complicated)
$\mathbb{A}(\mathcal{M})$ has a semilattice operation, so it is $\operatorname{SD}(\wedge)$.

Question

What are the connections between $S D(\wedge)$, residual size, finite axiomatizability, and dualizability?

Is $\mathbb{A}(\mathcal{M})$ finitely axiomatizable? Is $\mathbb{A}(\mathcal{M})$ residually small?

Conclusion

Theorem

Let \mathcal{M} be a Minsky machine.
Let $\mathcal{R}_{n}=\bigcup_{k=1}^{n} \mathbf{S}\left(\mathbb{A}(\mathcal{M})^{k}\right)$, and \mathbb{S}_{m} be as before.
Let $\mathcal{R}_{n}^{*}=\bigcup_{k=1}^{n} \mathbf{S}\left(\mathbb{A}^{*}(\mathcal{M})^{k}\right) .\left(\mathbb{A}^{*}(\mathcal{M})\right.$ is the partial algebra)
The following are equivalent:

- \mathcal{M} halts,
- for some $n, \mathcal{R}_{n} \models \mathbb{S}_{m}$ for all $m \geq n$,
- for some $n, \mathcal{R}_{n} \models_{d} \mathbb{S}_{m}$ for all $m \geq n$,
- for some $n, \mathcal{R}_{n}^{*} \models \mathcal{R}_{\omega}^{*}$,
- for some $n, \mathcal{R}_{n}^{*} \models_{d} \mathcal{R}_{\omega}^{*}$.

Thank you.

