
Indecision: finitely generated, finitely related clones
(finite degree clones are undecidable)

Matthew Moore

The University of Kansas
Department of Electrical Engineering and Computer Science

March 22, 2019

Matthew Moore (KU) Indecision 2019-03-22 1 / 29

Indecision: finitely generated, finitely related clones

1 Clones

2 The finite degree problem

3 The encoding of computation

4 Non-halting implies infinite degree

5 Halting implies finite degree

6 Conclusion

Matthew Moore (KU) Indecision 2019-03-22 2 / 29

Indecision: finitely generated, finitely related clones

1 Clones

2 The finite degree problem

3 The encoding of computation

4 Non-halting implies infinite degree

5 Halting implies finite degree

6 Conclusion

Matthew Moore (KU) Indecision 2019-03-22 3 / 29

A clone is a set of finitary
operations closed under

composition,

variable identification,

variable permutation,

introduction of
extraneous variables.

Emil Post in 1941 famously
classified all Boolean clones.

Over (≥ 3)-element domains
structure is quite complicated.

·
Matthew Moore (KU) Indecision 2019-03-22 4 / 29

Clones are infinite. How can they be an input to an algorithm?

A clone on finite domain A can be finitely specified in essentially 2 ways.

First way: Given F , a finite set of operations of A, define
Clo(F) = “the smallest clone containing F”.

A with F forms a algebra, A = 〈A;F〉. Define Clo(A) = Clo(F).

A relation of A is a subpower R ⊆ An closed under F (hence Clo(F))

Define Reln(A) = Reln(F) = “all (≤ n)-ary relations of A”.

Define Rel(A) = Reln(F) =
⋃
n<∞

Reln(A)

These are the finitely generated clones

Second way: Given R, a finite set of subpowers of A, define
Pol(R) = “the set of all operations of A preserving all subpowers in R”.

These are the finitely related/finite degree clones. ·

Matthew Moore (KU) Indecision 2019-03-22 5 / 29

Rel(F) =
{
R ⊆ An | R is preserved by all operations in F

}
Pol(R) =

{
f : An → A | f preserves all subpowers in R

}
These two operators form a Galois connection.

R ⊆ Rel(F)

⇐⇒

F ⊆ Pol(R)

Rel(F)

R

F

Pol(R)
Pol

Rel

Every Galois connection defines two closure operators. Here, they are

Clo = Pol ◦Rel and RClo = Rel ◦Pol .

If R ∈ RClo(S), then we say “S entails R” and write S |= R

If f ∈ Pol(S), then we say “S entails f ” and write S |= f . ·

Matthew Moore (KU) Indecision 2019-03-22 6 / 29

Indecision: finitely generated, finitely related clones

1 Clones

2 The finite degree problem

3 The encoding of computation

4 Non-halting implies infinite degree

5 Halting implies finite degree

6 Conclusion

Matthew Moore (KU) Indecision 2019-03-22 7 / 29

For a set of relations S, define

deg(S) = sup
{

arity(R) | R ∈ S
}
.

For a clone C, define

deg(C) = inf
{

deg(S) | Pol(S) = C
}
.

For an algebra A, define

deg(A) = deg(Clo(A)).

The Finite Degree Problem

Input: F , a finite set of operations on a finite domain.

Output: whether deg(Clo(F)) <∞.

(Seems to originate in the 70s with the study of lattices of clones over
more than 2 element domains.) ·

Matthew Moore (KU) Indecision 2019-03-22 8 / 29

The Finite Degree Problem

Input: F , a finite set of operations on a finite domain.

Output: whether deg(Clo(F)) <∞.

Given a Minsky machine M, we encode it into a finite algebra A(M).

Theorem

The following are equivalent.

M halts,

deg(A(M)) <∞ (i.e. A(M) is finitely related),

Similar approaches have proved the following are undecidable:

finite residual bound (McKenzie)

finite axiomatizability/Tarski’s problem (McKenzie)

existence of a term op. that is NU on all but 2 elements (Maroti)

DPSC, leading to another solution to Tarski’s problem (M)

profiniteness (Nurakunov and Stronkowski) ·
Matthew Moore (KU) Indecision 2019-03-22 9 / 29

Indecision: finitely generated, finitely related clones

1 Clones

2 The finite degree problem

3 The encoding of computation

4 Non-halting implies infinite degree

5 Halting implies finite degree

6 Conclusion

Matthew Moore (KU) Indecision 2019-03-22 10 / 29

A Minsky machine has...

states 0, 1, . . . ,N (1 is the starting state, 0 is the halting state),

registers A and B that have integer values ≥ 0,

instructions of the form (i ,R, j), meaning
“in state i , increase register R by 1 and enter j”.

instructions of the form (i ,R, j , k), meaning
“in state i , if R is 0 enter j , otherwise decrease R by 1 and enter k”.

In this talk, M is some fixed Minsky machine. ·

Matthew Moore (KU) Indecision 2019-03-22 11 / 29

Let M have instructions

(1,B,3,2), (2,A,1), (3,A,4), (4,A,0).

Start the machine with register contents A = 3, B = 2.

Step State A B

0 (1, 3, 2)
1 (2, 3, 1)
2 (1, 4, 1)
3 (2, 4, 0)

Step State A B

4 (1, 5, 0)
5 (3, 5, 0)
6 (4, 6, 0)
7 (0, 7, 0)

M computes A + B + 2 and stores the result in A.

A configuration (i , α, β) represents each stage of computation.

Consider M as a function, and write

M(i , α, β) = (j , α′, β′) or Mn(i , α, β) = (j , α′, β′)

(single step of computation or multiple).

The capacity of M is the max sum of the registers. ·

Matthew Moore (KU) Indecision 2019-03-22 12 / 29

The algebra A(M) has set

A(M) =
{
〈i , 0〉 , 〈i ,A〉 , 〈i ,B〉 , 〈i , •〉 , 〈i ,×〉 | i a state of M

}
The algebra is A(M) =

〈
A(M) ; ∧,M,M ′, I ,H,N0, S ,N•,P

〉
.

M(x , y) =



〈j ,R〉 if (i ,R, j) ∈M,

x = 〈i , •〉 , y = 〈i , 0〉 ;
〈j , 0〉 if (i ,R, k, j) ∈M,

x = 〈i , •〉 , y = 〈i ,R〉 ;
〈j , c〉 if

[
(i ,R, j) or (i ,R, k, j) ∈M

]
,

x = y = 〈i , c〉 ;
〈j , c〉 if y = 〈i , c〉 ,M(y , x) = 〈j , d〉 ,

d 6= ×, by above rules;

〈j ,×〉 otherwise∗

M′(x) =


〈k, c〉 if (i ,R, k, j) ∈M,

x = 〈i , c〉 , c 6= R;

〈k,×〉 otherwise∗

M encodes addition and subtraction operations.

M ′ encodes testing for 0 in a register.

M(x , y) 6= 〈∗,×〉 implies x = y modulo a single coordinate transposition. ·

Matthew Moore (KU) Indecision 2019-03-22 13 / 29

M(x , y) =



〈j ,R〉 if (i ,R, j) ∈M,

x = 〈i , •〉 , y = 〈i , 0〉 ;
〈j , 0〉 if (i ,R, k, j) ∈M,

x = 〈i , •〉 , y = 〈i ,R〉 ;
〈j , c〉 if

[
(i ,R, j) or (i ,R, k, j) ∈M

]
,

x = y = 〈i , c〉 ;
〈j , c〉 if y = 〈i , c〉 ,M(y , x) = 〈j , d〉 ,

d 6= ×, by above rules;

· · · · · · · · · · · · · · ·

M ′(x) =

〈k, c〉 if (i ,R, k, j) ∈M,

x = 〈i , c〉 , c 6= R;

· · · · · · · · · · · ·

Let M =
{

(1,B, 3, 2), (2,A, 1), (3,A, 4), (4,A, 0)
}

. (A + B + 2 from before)

1: M


〈1, •〉 , 〈1,B〉
〈1, 0〉 , 〈1, 0〉
〈1, 0〉 , 〈1, 0〉
〈1,B〉 , 〈1, •〉

 =


〈2, 0〉
〈2, 0〉
〈2, 0〉
〈2, •〉

 4: M


〈3, •〉 , 〈3, 0〉
〈3, 0〉 , 〈3, •〉
〈3, 0〉 , 〈3, 0〉
〈3,A〉 , 〈3,A〉

 =


〈4,A〉
〈4, •〉
〈4, 0〉
〈4,A〉



2: M


〈2, 0〉 , 〈2, •〉
〈2, 0〉 , 〈2, 0〉
〈2, 0〉 , 〈2, 0〉
〈2, •〉 , 〈2, 0〉

 =


〈1, •〉
〈1, 0〉
〈1, 0〉
〈1,A〉

 5: M


〈4,A〉 , 〈4,A〉
〈4, •〉 , 〈4, 0〉
〈4, 0〉 , 〈4, •〉
〈4,A〉 , 〈4,A〉

 =


〈0,A〉
〈0,A〉
〈0, •〉
〈0,A〉



3: M′


〈1, •〉
〈1, 0〉
〈1, 0〉
〈1,A〉

 =


〈3, •〉
〈3, 0〉
〈3, 0〉
〈3,A〉



Step State A B
0 1 0 1
1 2 0 0
2 1 1 0
3 3 1 0
4 4 2 0
5 0 3 0

·
Matthew Moore (KU) Indecision 2019-03-22 14 / 29

Takeaways: on a relation R ≤ A(M)n ...

certain elements of R encode configurations of M,

M and M ′ encode the action of M in the presence of certain
elements of R.

Questions

What if R doesn’t contain these kinds of elements?

What if R contains elements that aren’t “computational”:
multiple •’s or non-constant states.

Given configuration (k , α, β), in A(M)n define

c(k, α, β) =
⋃
p∈Pn

{
p
(
〈k , •〉 , 〈k,A〉 , . . . , 〈k,A〉︸ ︷︷ ︸

α

, 〈k,B〉 , . . . , 〈k,B〉︸ ︷︷ ︸
β

, 〈k, 0〉 , . . . , 〈k, 0〉︸ ︷︷ ︸
n−α−β−1

)}

Call R computational if it doesn’t contain any elements with 2 •’s or
non-constant state.

The capacity of computational R is (number of coordinates with •)−1. ·
Matthew Moore (KU) Indecision 2019-03-22 15 / 29

Let Sm = SgA(M)m
(
c(1, 0, 0)

)
.

Theorem (The Coding Theorem)

If Mn(1, 0, 0) = (k , α, β) and this computation has capacity m − 1,
then c(k , α, β) ⊆ Sm.

If c(k , α, β) ⊆ Sm and M does not halt with capacity m − 1 then for
some n we have Mn(1, 0, 0) = (k, α, β) and this computation has
capacity m − 1.

Corollary

The following are equivalent.

M halts with capacity m − 1,

Sm is halting,

every computational R ≤ A(M)` with capacity m − 1 is halting.

·

Matthew Moore (KU) Indecision 2019-03-22 16 / 29

Indecision: finitely generated, finitely related clones

1 Clones

2 The finite degree problem

3 The encoding of computation

4 Non-halting implies infinite degree

5 Halting implies finite degree

6 Conclusion

Matthew Moore (KU) Indecision 2019-03-22 17 / 29

Observe

deg(C) =∞ if and only if Reln(C) 6|= Rel(C) for all n

if and only if Reln(C) 6|= R for all n and some R

Idea: to show that deg(A(M)) =∞ when M does not halt, we prove the
last equivalence for C = Clo(A(M)). ·

Matthew Moore (KU) Indecision 2019-03-22 18 / 29

Reln(C) |= R if and only if R can be built from Reln(C), in finitely many
steps, by applying the following constructions:

intersection of equal arity relations,

(cartesian) product of finitely many relations,

permutation of the coordinates of a relation, and

projection of a relation onto a subset of coordinates.

Theorem (Zadori 1995)

Reln(A) |= S if and only if

S = π

(⋂
i∈I
µi

(∏
j∈Ji

Rij

))

for some Rij ∈ Reln(A), some coordinate projection π, and some
coordinate permutations µi .

·
Matthew Moore (KU) Indecision 2019-03-22 19 / 29

Lemma

Suppose that

c(1, 0, 0) ⊆ π

(⋂
i∈I

µi

(∏
j∈Ji

Rij

))
= S ≤ A(M)m,

where π is a projection, the µi are permutations, and the Rij are a finite
collection of members of Reln(A(M)), and n < m. Then S is halting.

Theorem

The following hold for any Minsky machine M.

If M does not halt with capacity m then m < deg(A(M)).

If M does not halt then A(M) is not finitely related.

Proof: Suppose that deg(A(M)) ≤ m. This implies in particular that
Relm(A(M)) |= Sm+1. By Zadori’s theorem, Sm+1 can be represented as in the
Lemma above, so by that same Lemma it is halting. By the Coding Theorem, this
implies that M halts with capacity m, a contradiction. ·

Matthew Moore (KU) Indecision 2019-03-22 20 / 29

Indecision: finitely generated, finitely related clones

1 Clones

2 The finite degree problem

3 The encoding of computation

4 Non-halting implies infinite degree

5 Halting implies finite degree

6 Conclusion

Matthew Moore (KU) Indecision 2019-03-22 21 / 29

Strategy

The relations Sm witnessed non-entailment when M did not halt.
When M does halt, these relations eventually witness the halting.

Show that for some suitably chosen k, we have
Relk(A(M)) |= Reln(A(M)) for all n.

We proceed with induction on n.

The base case of n = k is trivial.

We thus endeavor to prove Reln−1(A(M)) |= R for R ∈ Reln(A(M)).

Relations in Reln(A(M)) can be divided into 4 different kinds, so we
proceed by cases.

Recall A(M) =
〈
A(M) ; ∧,M,M ′, I ,H,N0, S ,N•,P

〉
.

Different collections of operations handle entailment in each of the
different cases. ·

Matthew Moore (KU) Indecision 2019-03-22 22 / 29

A(M) =
〈
A(M) ; ∧,M,M ′, I ,H,N0,S ,N•,P

〉
Case R is non-computational

There is an element with 2 •’s or with non-constant state.

2 •’s: operation N• handles entailment.

Non-constant state: operation P handles entailment.

Theorem

If m ≥ 3 and R ≤ A(M)m is non-computational then Relm−1(A(M)) |= R.

Case R is halting

R contains c(0, 0, 0).

Any element of c(0, 0, 0) can be used with operations I , H, and N0 to
prove entailment.

Theorem

If m ≥ 3 and R ≤ A(M)m is halting then Relm−1(A(M)) |= R.

Matthew Moore (KU) Indecision 2019-03-22 23 / 29

We are left to examine computational non-halting R ≤ A(M)n.

Let’s say that M halts with capacity κ.

Two metrics: (both subsets of [n])

D(R) = “coordinates i such that r ∈ R with r(i) = 〈j , •〉”
= “the • (dot) part of R.

N (R) = “the inherently non-halting part of R” ...

πN (R)(R) is non-halting,

If K =
∣∣N (R) ∩ D(R)

∣∣ then SK ≤ R.

Case R is computational and |N (R) ∩ D(R)| > κ∣∣N (R) ∩ D(R)
∣∣ > κ then R contains a halting subalgebra.

it follows that R halts!

We thus consider computational non-halting R with
∣∣N (R)∩D(R)

∣∣ ≤ κ. ·

Matthew Moore (KU) Indecision 2019-03-22 24 / 29

Case computational non-halting R with
∣∣N (R) ∩ D(R)

∣∣ ≤ κ
Theorem

Assume that n ≥ κ+ 16 and

R ≤ A(M)n is computational non-halting,∣∣N (R) ∩ D(R)
∣∣ ≤ κ,

... (several technical hypotheses)

Then Reln(A(M)) |= R.

This completes the case analysis!

Theorem

If M halts with capacity κ then deg(A(M)) ≤ κ+ 16. ·

Matthew Moore (KU) Indecision 2019-03-22 25 / 29

Indecision: finitely generated, finitely related clones

1 Clones

2 The finite degree problem

3 The encoding of computation

4 Non-halting implies infinite degree

5 Halting implies finite degree

6 Conclusion

Matthew Moore (KU) Indecision 2019-03-22 26 / 29

Theorem

The following are equivalent.

M halts,

deg(A(M)) <∞ (i.e. A(M) is finitely related),

M halts with capacity deg(A(M)).

Interesting observations

There are infinitely many M and n ∈ N such that M halts in ≤ n
steps but this is not provable in ZFC.

Thus, there are infinitely many M and n ∈ N such that
deg(A(M)) ≤ n is true but not provable in ZFC.

There are finite algebras A that are finitely related but for which a
bound on deg(A) cannot be proven.

maxdegσ(n) = sup

{
deg(A) |

A has signature σ,

deg(A) <∞, and |A| ≤ n

}
not computable. ·
Matthew Moore (KU) Indecision 2019-03-22 27 / 29

Problem (Finite Generation Problem)

Given relations R, decide if C = Pol(R) is finitely generated. That is,
whether C = Clo(F) for some finite set of operations F .

The theory of Natural Dualities for algebras has a very similar notion of
relational entailment.

We can modify the definition of deg(·) to obtain a duality degree: deg∂(·).

Problem (Finite Duality Degree)

Decide whether deg∂(A) <∞ for finite A.

Duality entailment implies usual entailment, so we already have that
A(M) is not finitely duality related when M does not halt.

Problem

If M halts, is deg∂(A(M)) <∞? ·

Matthew Moore (KU) Indecision 2019-03-22 28 / 29

Theorem

The following are equivalent.

M halts,

deg(A(M)) <∞ (i.e. A(M) is finitely related),

M halts with capacity deg(A(M)).

“Finite Degree Clones are Undecidable”

Thank you for your attention.

Matthew Moore (KU) Indecision 2019-03-22 29 / 29

	Clones
	The finite degree problem
	The encoding of computation
	Non-halting implies infinite degree
	Halting implies finite degree
	Conclusion

