Indecision: finitely generated, finitely related clones (finite degree clones are undecidable)

Matthew Moore

The University of Kansas Department of Electrical Engineering and Computer Science

March 22, 2019

- 2 The finite degree problem
- The encoding of computation
- 4 Non-halting implies infinite degree
- 5 Halting implies finite degree

Clones

- 2 The finite degree problem
- 3 The encoding of computation
- 4 Non-halting implies infinite degree
- 5 Halting implies finite degree
- 6 Conclusion

A **clone** is a set of finitary operations closed under

- composition,
- variable identification,
- variable permutation,
- introduction of extraneous variables.

Emil Post in 1941 famously classified all Boolean clones.

Over (\geq 3)-element domains structure is quite complicated.

Clones are infinite. How can they be an input to an algorithm?

A clone on <u>finite</u> domain A can be **finitely specified** in essentially 2 ways.

First way: Given \mathcal{F} , a finite set of operations of A, define $Clo(\mathcal{F}) =$ "the smallest clone containing \mathcal{F} ".

- A with \mathcal{F} forms a algebra, $\mathbb{A} = \langle A; \mathcal{F} \rangle$. Define $Clo(\mathbb{A}) = Clo(\mathcal{F})$.
- A relation of \mathbb{A} is a subpower $R \subseteq A^n$ closed under \mathcal{F} (hence $Clo(\mathcal{F})$)
- Define $\operatorname{Rel}_n(\mathbb{A}) = \operatorname{Rel}_n(\mathcal{F}) =$ "all ($\leq n$)-ary relations of \mathbb{A} ".
- Define $\operatorname{Rel}(\mathbb{A}) = \operatorname{Rel}_n(\mathcal{F}) = \bigcup_{n < \infty} \operatorname{Rel}_n(\mathbb{A})$

These are the finitely generated clones

Second way: Given \mathcal{R} , a finite set of subpowers of A, define $Pol(\mathcal{R}) =$ "the set of all operations of A preserving all subpowers in \mathcal{R} ".

These are the **finitely related**/finite degree clones.

٠

 $\mathsf{Rel}(\mathcal{F}) = \left\{ R \subseteq A^n \mid R \text{ is preserved by all operations in } \mathcal{F} \right\}$ $\mathsf{Pol}(\mathcal{R}) = \left\{ f : A^n \to A \mid f \text{ preserves all subpowers in } \mathcal{R} \right\}$

These two operators form a Galois connection.

Every Galois connection defines two closure operators. Here, they are

 $Clo = Pol \circ Rel$ and $RClo = Rel \circ Pol$.

If $\mathbb{R} \in \mathsf{RClo}(\mathcal{S})$, then we say " \mathcal{S} entails \mathbb{R} " and write $\mathcal{S} \models \mathbb{R}$

If $f \in Pol(S)$, then we say "S entails f" and write $S \models f$.

٠

Indecision: finitely generated, finitely related clones

1) Clones

- 2 The finite degree problem
 - 3 The encoding of computation
 - 4 Non-halting implies infinite degree
- 5 Halting implies finite degree
- 6 Conclusion

For a set of relations \mathcal{S} , define

$$\mathsf{deg}(\mathcal{S}) = \mathsf{sup} \, \big\{ \mathsf{arity}(\mathbb{R}) \mid \mathbb{R} \in \mathcal{S} \big\}.$$

For a clone \mathcal{C} , define

$$\deg(\mathcal{C}) = \inf \{ \deg(\mathcal{S}) \mid \mathsf{Pol}(\mathcal{S}) = \mathcal{C} \}.$$

For an algebra \mathbb{A} , define

$$deg(\mathbb{A}) = deg(Clo(\mathbb{A})).$$

The Finite Degree Problem

Input: \mathcal{F} , a finite set of operations on a finite domain.

Output: whether $\deg(\mathsf{Clo}(\mathcal{F})) < \infty$.

(Seems to originate in the 70s with the study of lattices of clones over more than 2 element domains.)

.

The Finite Degree Problem

Input: \mathcal{F} , a finite set of operations on a finite domain. Output: whether deg(Clo(\mathcal{F})) < ∞ .

Given a Minsky machine \mathcal{M} , we encode it into a finite algebra $\mathbb{A}(\mathcal{M})$.

Theorem

The following are equivalent.

- *M* halts,
- $deg(\mathbb{A}(\mathcal{M})) < \infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),

Similar approaches have proved the following are undecidable:

- finite residual bound (McKenzie)
- finite axiomatizability/Tarski's problem (McKenzie)
- existence of a term op. that is NU on all but 2 elements (Maroti)
- DPSC, leading to another solution to Tarski's problem (M)
- profiniteness (Nurakunov and Stronkowski)

Clones

- 2 The finite degree problem
- 3 The encoding of computation
 - 4 Non-halting implies infinite degree
 - 5 Halting implies finite degree
 - 6 Conclusion

A Minsky machine has...

- states 0, 1, ..., N (1 is the starting state, 0 is the halting state),
- registers A and B that have integer values ≥ 0 ,
- instructions of the form (i, R, j), meaning
 "in state i, increase register R by 1 and enter j".
- instructions of the form (i, R, j, k), meaning
 "in state i, if R is 0 enter j, otherwise decrease R by 1 and enter k".

In this talk, \mathcal{M} is some fixed Minsky machine.

Let ${\mathcal M}$ have instructions

$$(1,B,3,2),$$
 $(2,A,1),$ $(3,A,4),$ $(4,A,0).$

Start the machine with register contents A = 3, B = 2.

Step	State	Α	В	_	Step	State	Α	В
0	(1,	3,	2)	_	4	(1,	5,	0)
1	(2,	3,	1)		5	(3,	5,	0)
2	(1,	4,	1)		6	(4,	6,	0)
3	(2,	4,	0)		7	(0,	7,	0)

 \mathcal{M} computes A + B + 2 and stores the result in A.

A configuration (i, α, β) represents each stage of computation.

Consider $\ensuremath{\mathcal{M}}$ as a function, and write

 $\mathcal{M}(i, \alpha, \beta) = (j, \alpha', \beta')$ or $\mathcal{M}^n(i, \alpha, \beta) = (j, \alpha', \beta')$

(single step of computation or multiple).

The **capacity** of \mathcal{M} is the max sum of the registers.

The algebra $\mathbb{A}(\mathcal{M})$ has set

$$A(\mathcal{M}) = \{ \langle i, 0 \rangle, \langle i, A \rangle, \langle i, B \rangle, \langle i, \bullet \rangle, \langle i, \times \rangle \mid i \text{ a state of } \mathcal{M} \}$$

The algebra is $\mathbb{A}(\mathcal{M}) = \langle A(\mathcal{M}); \land, M, M', I, H, N_0, S, N_{\bullet}, P \rangle.$

$$M(x,y) = \begin{cases} \langle j, R \rangle & \text{if } (i, R, j) \in \mathcal{M}, \\ & x = \langle i, \bullet \rangle, y = \langle i, 0 \rangle; \\ \langle j, 0 \rangle & \text{if } (i, R, k, j) \in \mathcal{M}, \\ & x = \langle i, \bullet \rangle, y = \langle i, R \rangle; \\ \langle j, c \rangle & \text{if } [(i, R, j) \text{ or } (i, R, k, j) \in \mathcal{M}], \\ & x = y = \langle i, c \rangle; \\ \langle j, c \rangle & \text{if } y = \langle i, c \rangle, M(y, x) = \langle j, d \rangle, \\ & d \neq x, \text{ by above rules;} \end{cases} \begin{pmatrix} \langle k, c \rangle & \text{if } (i, R, k, j) \in \mathcal{M}, \\ \langle k, x \rangle & \text{otherwise}^* \end{pmatrix}$$

- *M* encodes addition and subtraction operations.
- M' encodes testing for 0 in a register.
- $M(x, y) \neq \langle *, \times \rangle$ implies x = y modulo a single coordinate transposition.

•

$$M(x,y) = \begin{cases} \langle j, R \rangle & \text{if } (i, R, j) \in \mathcal{M}, \\ & x = \langle i, \bullet \rangle, y = \langle i, 0 \rangle; \\ \langle j, 0 \rangle & \text{if } (i, R, k, j) \in \mathcal{M}, \\ & x = \langle i, \bullet \rangle, y = \langle i, R \rangle; \\ \langle j, c \rangle & \text{if } [(i, R, j) \text{ or } (i, R, k, j) \in \mathcal{M}], \quad M'(x) = \begin{cases} \langle k, c \rangle & \text{if } (i, R, k, j) \in \mathcal{M}, \\ & x = \langle i, c \rangle, c \neq R; \\ & x = y = \langle i, c \rangle; \\ \langle j, c \rangle & \text{if } y = \langle i, c \rangle, \mathcal{M}(y, x) = \langle j, d \rangle, \\ & d \neq x, \text{ by above rules;} \\ & \cdots & \cdots & \cdots \end{cases}$$

Let $\mathcal{M} = \{(1, B, 3, 2), (2, A, 1), (3, A, 4), (4, A, 0)\}$. (A + B + 2 from before)

$$\mathbf{1:} M \begin{pmatrix} \langle 1, \bullet \rangle, \langle 1, B \rangle \\ \langle 1, 0 \rangle, \langle 1, 0 \rangle \\ \langle 1, 0 \rangle, \langle 1, 0 \rangle \\ \langle 1, 0 \rangle, \langle 1, 0 \rangle \\ \langle 1, 0 \rangle, \langle 1, 0 \rangle \end{pmatrix} = \begin{pmatrix} \langle 2, 0 \rangle \\ \langle 2, \bullet \rangle \end{pmatrix} \mathbf{4:} M \begin{pmatrix} \langle 3, \bullet \rangle, \langle 3, 0 \rangle \\ \langle 3, 0 \rangle, \langle 3, \bullet \rangle \\ \langle 3, 0 \rangle, \langle 3, 0 \rangle \\ \langle 3, 0 \rangle, \langle 3, 0 \rangle \\ \langle 3, 0 \rangle, \langle 3, 0 \rangle \\ \langle 4, 0 \rangle \\ \langle 4, 0 \rangle \\ \langle 4, 0 \rangle \end{pmatrix} = \begin{pmatrix} \langle 4, A \rangle \\ \langle 4, \bullet \rangle \\ \langle 4, 0 \rangle \\ \langle 4, 0 \rangle \\ \langle 4, A \rangle \end{pmatrix} \frac{\mathbf{Step State A B}}{\mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \\ \mathbf{1} \quad \mathbf{2} \quad \mathbf{0} \quad \mathbf{0} \\ \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \\ \mathbf{1} \quad \mathbf{2} \quad \mathbf{0} \quad \mathbf{0} \\ \mathbf{2} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \\ \mathbf{2} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \\ \mathbf{1} \quad \mathbf{2} \quad \mathbf{0} \quad \mathbf{0} \\ \mathbf{2} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \\ \mathbf{2} \quad \mathbf{0} \quad \langle 4, A \rangle \\ \langle 4, A \rangle, \langle 4, A \rangle \\ \langle 4, 0 \rangle, \langle 4, \bullet \rangle \\ \langle 4, 0 \rangle, \langle 4, \bullet \rangle \\ \langle 4, A \rangle, \langle 4, A \rangle \end{pmatrix} = \begin{pmatrix} \langle 0, A \rangle \\ \langle 0, A \rangle \\ \langle 0, A \rangle \\ \langle 5, 0 \rangle \\ \mathbf{5} \quad \mathbf{0} \quad \mathbf{3} \quad \mathbf{0} \\ \mathbf{5} \quad \mathbf{0} \quad \mathbf{3} \quad \mathbf{0} \\ \mathbf{3} \quad \mathbf{0} \\ \langle 3, 0 \rangle \\ \langle 1, A \rangle \end{pmatrix} = \begin{pmatrix} \langle 3, \bullet \rangle \\ \langle 3, 0 \rangle \\ \langle 3, 0 \rangle \\ \langle 3, A \rangle \end{pmatrix}$$

Matthew Moore (KU)

Takeaways: on a relation $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^n \dots$

- certain elements of R encode configurations of \mathcal{M} ,
- M and M' encode the action of \mathcal{M} in the presence of certain elements of R.

Questions

- What if *R* doesn't contain these kinds of elements?
- What if *R* contains elements that aren't "computational": multiple •'s or non-constant states.

Given configuration (k, α, β) , in $\mathbb{A}(\mathcal{M})^n$ define

$$\mathsf{c}(k,\alpha,\beta) = \bigcup_{p \in P_n} \left\{ p\left(\langle k, \bullet \rangle, \underbrace{\langle k, A \rangle, \dots, \langle k, A \rangle}_{\alpha}, \underbrace{\langle k, B \rangle, \dots, \langle k, B \rangle}_{\beta}, \underbrace{\langle k, 0 \rangle, \dots, \langle k, 0 \rangle}_{n-\alpha-\beta-1} \right) \right\}$$

Call \mathbb{R} computational if it doesn't contain any elements with 2 •'s or non-constant state.

The capacity of computational $\mathbb R$ is (number of coordinates with ullet)-1.

Let
$$\mathbb{S}_m = \mathsf{Sg}_{\mathbb{A}(\mathcal{M})^m} (c(1,0,0)).$$

Theorem (The Coding Theorem)

 If Mⁿ(1,0,0) = (k, α, β) and this computation has capacity m − 1, then c(k, α, β) ⊆ S_m.

 If c(k, α, β) ⊆ S_m and M does not halt with capacity m − 1 then for some n we have Mⁿ(1,0,0) = (k, α, β) and this computation has capacity m − 1.

Corollary

The following are equivalent.

- \mathcal{M} halts with capacity m-1,
- S_m is halting,
- every computational $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^\ell$ with capacity m-1 is halting.

Clones

- 2 The finite degree problem
- 3 The encoding of computation
- 4 Non-halting implies infinite degree
 - 5 Halting implies finite degree
 - 6 Conclusior

Observe

$$\begin{split} \deg(\mathcal{C}) &= \infty \quad \text{if and only if} \quad \operatorname{Rel}_n(\mathcal{C}) \not\models \operatorname{Rel}(\mathcal{C}) \text{ for all } n \\ & \text{if and only if} \quad \operatorname{Rel}_n(\mathcal{C}) \not\models \mathbb{R} \text{ for all } n \text{ and some } \mathbb{R} \end{split}$$

Idea: to show that deg($\mathbb{A}(\mathcal{M})$) = ∞ when \mathcal{M} does not halt, we prove the last equivalence for $\mathcal{C} = Clo(\mathbb{A}(\mathcal{M}))$.

 $\operatorname{Rel}_n(\mathcal{C}) \models \mathbb{R}$ if and only if \mathbb{R} can be built from $\operatorname{Rel}_n(\mathcal{C})$, in finitely many steps, by applying the following constructions:

- intersection of equal arity relations,
- (cartesian) product of finitely many relations,
- permutation of the coordinates of a relation, and
- projection of a relation onto a subset of coordinates.

Theorem (Zadori 1995)

 $\operatorname{Rel}_n(\mathbb{A}) \models \mathbb{S}$ if and only if

$$\mathbb{S} = \pi \left(\bigcap_{i \in I} \mu_i \Big(\prod_{j \in J_i} \mathbb{R}_{ij} \Big) \right)$$

for some $\mathbb{R}_{ij} \in \operatorname{Rel}_n(\mathbb{A})$, some coordinate projection π , and some coordinate permutations μ_i .

Lemma

Suppose that

$$\mathsf{c}(1,0,0)\subseteq \piigg(igcap_{i\in I}\mu_i\Big(\prod_{j\in J_i}\mathbb{R}_{ij}\Big)igg)=\mathbb{S}\leq \mathbb{A}(\mathcal{M})^m_i$$

where π is a projection, the μ_i are permutations, and the \mathbb{R}_{ij} are a finite collection of members of $\operatorname{Rel}_n(\mathbb{A}(\mathcal{M}))$, and n < m. Then \mathbb{S} is halting.

Theorem

The following hold for any Minsky machine \mathcal{M} .

- If \mathcal{M} does not halt with capacity m then $m < \deg(\mathbb{A}(\mathcal{M}))$.
- If \mathcal{M} does not halt then $\mathbb{A}(\mathcal{M})$ is not finitely related.

Proof: Suppose that $\deg(\mathbb{A}(\mathcal{M})) \leq m$. This implies in particular that $\operatorname{Rel}_m(\mathbb{A}(\mathcal{M})) \models \mathbb{S}_{m+1}$. By Zadori's theorem, \mathbb{S}_{m+1} can be represented as in the Lemma above, so by that same Lemma it is halting. By the Coding Theorem, this implies that \mathcal{M} halts with capacity m, a contradiction.

Clones

- 2 The finite degree problem
- 3 The encoding of computation
- 4 Non-halting implies infinite degree
- 5 Halting implies finite degree

6 Conclusion

Strategy

- The relations \mathbb{S}_m witnessed non-entailment when \mathcal{M} did not halt. When \mathcal{M} does halt, these relations eventually witness the halting.
- Show that for some suitably chosen k, we have $\operatorname{Rel}_k(\mathbb{A}(\mathcal{M})) \models \operatorname{Rel}_n(\mathbb{A}(\mathcal{M}))$ for all n.
- We proceed with induction on *n*.
- The base case of n = k is trivial.
- We thus endeavor to prove $\operatorname{Rel}_{n-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$ for $\mathbb{R} \in \operatorname{Rel}_n(\mathbb{A}(\mathcal{M}))$.
- Relations in Rel_n(A(M)) can be divided into 4 different kinds, so we proceed by cases.
- Recall A(M) = ⟨A(M); ∧, M, M', I, H, N₀, S, N_●, P⟩.
 Different collections of operations handle entailment in each of the different cases.

.

$$\mathbb{A}(\mathcal{M}) = \left\langle \mathcal{A}(\mathcal{M}) \; ; \; \land, M, M', I, H, N_0, S, N_{\bullet}, P \right\rangle$$

Case \mathbb{R} is non-computational

- There is an element with 2 •'s or with non-constant state.
- 2 •'s: operation N_{\bullet} handles entailment.
- Non-constant state: operation P handles entailment.

Theorem

If $m \geq 3$ and $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^m$ is non-computational then $\operatorname{Rel}_{m-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

Case ${\mathbb R}$ is halting

- *R* contains c(0,0,0).
- Any element of c(0,0,0) can be used with operations *I*, *H*, and *N*₀ to prove entailment.

Theorem

If $m \geq 3$ and $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^m$ is halting then $\operatorname{Rel}_{m-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

We are left to examine computational non-halting $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^n$. Let's say that \mathcal{M} halts with capacity κ .

Two metrics: (both subsets of [n])

D(ℝ) = "coordinates i such that r ∈ R with r(i) = (j, •)"
 = "the • (dot) part of ℝ.

• $\mathcal{N}(\mathbb{R}) =$ "the inherently non-halting part of \mathbb{R} " ...

• $\pi_{\mathcal{N}(\mathbb{R})}(\mathbb{R})$ is non-halting,

• If $K = |\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})|$ then $\mathbb{S}_K \leq \mathbb{R}$.

Case \mathbb{R} is computational and $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| > \kappa$

- $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| > \kappa$ then \mathbb{R} contains a halting subalgebra.
- it follows that \mathbb{R} halts!

We thus consider computational non-halting \mathbb{R} with $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$.

Case computational non-halting \mathbb{R} with $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$

Theorem

Assume that $n \ge \kappa + 16$ and

- $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^n$ is computational non-halting,
- $\left|\mathcal{N}(\mathbb{R})\cap\mathcal{D}(\mathbb{R})\right|\leq\kappa$,
- : (several technical hypotheses)

Then $\operatorname{Rel}_n(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

This completes the case analysis!

Theorem

If \mathcal{M} halts with capacity κ then deg($\mathbb{A}(\mathcal{M})$) $\leq \kappa + 16$.

Clones

- 2 The finite degree problem
- 3 The encoding of computation
- 4 Non-halting implies infinite degree
- 5 Halting implies finite degree

Theorem

The following are equivalent.

- ${\cal M}$ halts,
- $deg(\mathbb{A}(\mathcal{M})) < \infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),
- \mathcal{M} halts with capacity deg($\mathbb{A}(\mathcal{M})$).

Interesting observations

- There are infinitely many *M* and *n* ∈ N such that *M* halts in ≤ *n* steps but this is not provable in ZFC.
- Thus, there are infinitely many *M* and *n* ∈ N such that deg(A(*M*)) ≤ *n* is true but not provable in ZFC.
- There are finite algebras A that are finitely related but for which a bound on deg(A) cannot be proven.

•
$$\mathsf{maxdeg}_{\sigma}(n) = \mathsf{sup} \left\{ \begin{array}{ll} \mathsf{deg}(\mathbb{A}) & | & \mathbb{A} \text{ has signature } \sigma, \\ & | & \mathsf{deg}(\mathbb{A}) < \infty, \text{ and } |\mathcal{A}| \leq n \end{array} \right\}$$

not computable.

Problem (Finite Generation Problem)

Given relations \mathcal{R} , decide if $\mathcal{C} = Pol(\mathcal{R})$ is finitely generated. That is, whether $\mathcal{C} = Clo(\mathcal{F})$ for some finite set of operations \mathcal{F} .

The theory of Natural Dualities for algebras has a very similar notion of relational entailment.

We can modify the definition of deg(·) to obtain a duality degree: deg_{∂}(·).

Problem (Finite Duality Degree)

Decide whether deg $_{\partial}(\mathbb{A}) < \infty$ for finite \mathbb{A} .

Duality entailment implies usual entailment, so we already have that $\mathbb{A}(\mathcal{M})$ is not finitely duality related when \mathcal{M} does not halt.

Problem

If \mathcal{M} halts, is deg $_{\partial}(\mathbb{A}(\mathcal{M})) < \infty$?

Theorem

The following are equivalent.

- *M* halts,
- $deg(\mathbb{A}(\mathcal{M})) < \infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),
- \mathcal{M} halts with capacity deg($\mathbb{A}(\mathcal{M})$).

"Finite Degree Clones are Undecidable"

Thank you for your attention.