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A clone is a set of finitary
operations closed under

composition,

variable identification,

variable permutation,

introduction of
extraneous variables.

Emil Post in 1941 famously
classified all Boolean clones.

Over (≥ 3)-element domains
structure is quite complicated.

·
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Clones are infinite. How can they be an input to an algorithm?

A clone on finite domain A can be finitely specified in essentially 2 ways.

First way: Given F , a finite set of operations of A, define
Clo(F) = “the smallest clone containing F”.

A with F forms a algebra, A = 〈A;F〉. Define Clo(A) = Clo(F).

A relation of A is a subpower R ⊆ An closed under F (hence Clo(F))

Define Reln(A) = Reln(F) = “all (≤ n)-ary relations of A”.

Define Rel(A) = Reln(F) =
⋃
n<∞

Reln(A)

These are the finitely generated clones

Second way: Given R, a finite set of subpowers of A, define
Pol(R) = “the set of all operations of A preserving all subpowers in R”.

These are the finitely related/finite degree clones. ·
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Rel(F) =
{
R ⊆ An | R is preserved by all operations in F

}
Pol(R) =

{
f : An → A | f preserves all subpowers in R

}
These two operators form a Galois connection.

R ⊆ Rel(F)

⇐⇒

F ⊆ Pol(R)

Rel(F)

R

F

Pol(R)
Pol

Rel

Every Galois connection defines two closure operators. Here, they are

Clo = Pol ◦Rel and RClo = Rel ◦Pol .

If R ∈ RClo(S), then we say “S entails R” and write S |= R

If f ∈ Pol(S), then we say “S entails f ” and write S |= f . ·
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For a set of relations S, define

deg(S) = sup
{

arity(R) | R ∈ S
}
.

For a clone C, define

deg(C) = inf
{

deg(S) | Pol(S) = C
}
.

For an algebra A, define

deg(A) = deg(Clo(A)).

The Finite Degree Problem

Input: F , a finite set of operations on a finite domain.

Output: whether deg(Clo(F)) <∞.

(Seems to originate in the 70s with the study of lattices of clones over
more than 2 element domains.) ·
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The Finite Degree Problem

Input: F , a finite set of operations on a finite domain.

Output: whether deg(Clo(F )) <∞.

Given a Minsky machine M, we encode it into a finite algebra A(M).

Theorem

The following are equivalent.

M halts,

deg(A(M)) <∞ (i.e. A(M) is finitely related),

Similar approaches have proved the following are undecidable:

finite residual bound (McKenzie)

finite axiomatizability/Tarski’s problem (McKenzie)

existence of a term op. that is NU on all but 2 elements (Maroti)

DPSC, leading to another solution to Tarski’s problem (M)

profiniteness (Nurakunov and Stronkowski) ·
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A Minsky machine has...

states 0, 1, . . . ,N (1 is the starting state, 0 is the halting state),

registers A and B that have integer values ≥ 0,

instructions of the form (i ,R, j), meaning
“in state i , increase register R by 1 and enter j”.

instructions of the form (i ,R, j , k), meaning
“in state i , if R is 0 enter j , otherwise decrease R by 1 and enter k”.

In this talk, M is some fixed Minsky machine. ·
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Let M have instructions

(1,B,3,2), (2,A,1), (3,A,4), (4,A,0).

Start the machine with register contents A = 3, B = 2.

Step State A B

0 (1, 3, 2)
1 (2, 3, 1)
2 (1, 4, 1)
3 (2, 4, 0)

Step State A B

4 (1, 5, 0)
5 (3, 5, 0)
6 (4, 6, 0)
7 (0, 7, 0)

M computes A + B + 2 and stores the result in A.

A configuration (i , α, β) represents each stage of computation.

Consider M as a function, and write

M(i , α, β) = (j , α′, β′) or Mn(i , α, β) = (j , α′, β′)

(single step of computation or multiple).

The capacity of M is the max sum of the registers. ·
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The algebra A(M) has set

A(M) =
{
〈i , 0〉 , 〈i ,A〉 , 〈i ,B〉 , 〈i , •〉 , 〈i ,×〉 | i a state of M

}
The algebra is A(M) =

〈
A(M) ; ∧,M,M ′, I ,H,N0, S ,N•,P

〉
.

M(x , y) =



〈j ,R〉 if (i ,R, j) ∈M,

x = 〈i , •〉 , y = 〈i , 0〉 ;
〈j , 0〉 if (i ,R, k, j) ∈M,

x = 〈i , •〉 , y = 〈i ,R〉 ;
〈j , c〉 if

[
(i ,R, j) or (i ,R, k, j) ∈M

]
,

x = y = 〈i , c〉 ;
〈j , c〉 if y = 〈i , c〉 ,M(y , x) = 〈j , d〉 ,

d 6= ×, by above rules;

〈j ,×〉 otherwise∗

M′(x) =


〈k, c〉 if (i ,R, k, j) ∈M,

x = 〈i , c〉 , c 6= R;

〈k,×〉 otherwise∗

M encodes addition and subtraction operations.

M ′ encodes testing for 0 in a register.

M(x , y) 6= 〈∗,×〉 implies x = y modulo a single coordinate transposition. ·
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M(x , y) =



〈j ,R〉 if (i ,R, j) ∈M,

x = 〈i , •〉 , y = 〈i , 0〉 ;
〈j , 0〉 if (i ,R, k, j) ∈M,

x = 〈i , •〉 , y = 〈i ,R〉 ;
〈j , c〉 if

[
(i ,R, j) or (i ,R, k, j) ∈M

]
,

x = y = 〈i , c〉 ;
〈j , c〉 if y = 〈i , c〉 ,M(y , x) = 〈j , d〉 ,

d 6= ×, by above rules;

· · · · · · · · · · · · · · ·

M ′(x) =

〈k, c〉 if (i ,R, k, j) ∈M,

x = 〈i , c〉 , c 6= R;

· · · · · · · · · · · ·

Let M =
{

(1,B, 3, 2), (2,A, 1), (3,A, 4), (4,A, 0)
}

. (A + B + 2 from before)

1: M


〈1, •〉 , 〈1,B〉
〈1, 0〉 , 〈1, 0〉
〈1, 0〉 , 〈1, 0〉
〈1,B〉 , 〈1, •〉

 =


〈2, 0〉
〈2, 0〉
〈2, 0〉
〈2, •〉

 4: M


〈3, •〉 , 〈3, 0〉
〈3, 0〉 , 〈3, •〉
〈3, 0〉 , 〈3, 0〉
〈3,A〉 , 〈3,A〉

 =


〈4,A〉
〈4, •〉
〈4, 0〉
〈4,A〉



2: M


〈2, 0〉 , 〈2, •〉
〈2, 0〉 , 〈2, 0〉
〈2, 0〉 , 〈2, 0〉
〈2, •〉 , 〈2, 0〉

 =


〈1, •〉
〈1, 0〉
〈1, 0〉
〈1,A〉

 5: M


〈4,A〉 , 〈4,A〉
〈4, •〉 , 〈4, 0〉
〈4, 0〉 , 〈4, •〉
〈4,A〉 , 〈4,A〉

 =


〈0,A〉
〈0,A〉
〈0, •〉
〈0,A〉



3: M′


〈1, •〉
〈1, 0〉
〈1, 0〉
〈1,A〉

 =


〈3, •〉
〈3, 0〉
〈3, 0〉
〈3,A〉



Step State A B
0 1 0 1
1 2 0 0
2 1 1 0
3 3 1 0
4 4 2 0
5 0 3 0

·
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Takeaways: on a relation R ≤ A(M)n ...

certain elements of R encode configurations of M,

M and M ′ encode the action of M in the presence of certain
elements of R.

Questions

What if R doesn’t contain these kinds of elements?

What if R contains elements that aren’t “computational”:
multiple •’s or non-constant states.

Given configuration (k , α, β), in A(M)n define

c(k, α, β) =
⋃
p∈Pn

{
p
(
〈k , •〉 , 〈k,A〉 , . . . , 〈k,A〉︸ ︷︷ ︸

α

, 〈k,B〉 , . . . , 〈k,B〉︸ ︷︷ ︸
β

, 〈k, 0〉 , . . . , 〈k, 0〉︸ ︷︷ ︸
n−α−β−1

)}

Call R computational if it doesn’t contain any elements with 2 •’s or
non-constant state.

The capacity of computational R is (number of coordinates with •)−1. ·
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Let Sm = SgA(M)m
(
c(1, 0, 0)

)
.

Theorem (The Coding Theorem)

If Mn(1, 0, 0) = (k , α, β) and this computation has capacity m − 1,
then c(k , α, β) ⊆ Sm.

If c(k , α, β) ⊆ Sm and M does not halt with capacity m − 1 then for
some n we have Mn(1, 0, 0) = (k, α, β) and this computation has
capacity m − 1.

Corollary

The following are equivalent.

M halts with capacity m − 1,

Sm is halting,

every computational R ≤ A(M)` with capacity m − 1 is halting.

·
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Observe

deg(C) =∞ if and only if Reln(C) 6|= Rel(C) for all n

if and only if Reln(C) 6|= R for all n and some R

Idea: to show that deg(A(M)) =∞ when M does not halt, we prove the
last equivalence for C = Clo(A(M)). ·
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Reln(C) |= R if and only if R can be built from Reln(C), in finitely many
steps, by applying the following constructions:

intersection of equal arity relations,

(cartesian) product of finitely many relations,

permutation of the coordinates of a relation, and

projection of a relation onto a subset of coordinates.

Theorem (Zadori 1995)

Reln(A) |= S if and only if

S = π

(⋂
i∈I
µi

(∏
j∈Ji

Rij

))

for some Rij ∈ Reln(A), some coordinate projection π, and some
coordinate permutations µi .

·
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Lemma

Suppose that

c(1, 0, 0) ⊆ π

(⋂
i∈I

µi

(∏
j∈Ji

Rij

))
= S ≤ A(M)m,

where π is a projection, the µi are permutations, and the Rij are a finite
collection of members of Reln(A(M)), and n < m. Then S is halting.

Theorem

The following hold for any Minsky machine M.

If M does not halt with capacity m then m < deg(A(M)).

If M does not halt then A(M) is not finitely related.

Proof: Suppose that deg(A(M)) ≤ m. This implies in particular that
Relm(A(M)) |= Sm+1. By Zadori’s theorem, Sm+1 can be represented as in the
Lemma above, so by that same Lemma it is halting. By the Coding Theorem, this
implies that M halts with capacity m, a contradiction. ·
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Strategy

The relations Sm witnessed non-entailment when M did not halt.
When M does halt, these relations eventually witness the halting.

Show that for some suitably chosen k, we have
Relk(A(M)) |= Reln(A(M)) for all n.

We proceed with induction on n.

The base case of n = k is trivial.

We thus endeavor to prove Reln−1(A(M)) |= R for R ∈ Reln(A(M)).

Relations in Reln(A(M)) can be divided into 4 different kinds, so we
proceed by cases.

Recall A(M) =
〈
A(M) ; ∧,M,M ′, I ,H,N0, S ,N•,P

〉
.

Different collections of operations handle entailment in each of the
different cases. ·
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A(M) =
〈
A(M) ; ∧,M,M ′, I ,H,N0,S ,N•,P

〉
Case R is non-computational

There is an element with 2 •’s or with non-constant state.

2 •’s: operation N• handles entailment.

Non-constant state: operation P handles entailment.

Theorem

If m ≥ 3 and R ≤ A(M)m is non-computational then Relm−1(A(M)) |= R.

Case R is halting

R contains c(0, 0, 0).

Any element of c(0, 0, 0) can be used with operations I , H, and N0 to
prove entailment.

Theorem

If m ≥ 3 and R ≤ A(M)m is halting then Relm−1(A(M)) |= R.
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We are left to examine computational non-halting R ≤ A(M)n.

Let’s say that M halts with capacity κ.

Two metrics: (both subsets of [n])

D(R) = “coordinates i such that r ∈ R with r(i) = 〈j , •〉”
= “the • (dot) part of R.

N (R) = “the inherently non-halting part of R” ...

πN (R)(R) is non-halting,

If K =
∣∣N (R) ∩ D(R)

∣∣ then SK ≤ R.

Case R is computational and |N (R) ∩ D(R)| > κ∣∣N (R) ∩ D(R)
∣∣ > κ then R contains a halting subalgebra.

it follows that R halts!

We thus consider computational non-halting R with
∣∣N (R)∩D(R)

∣∣ ≤ κ. ·
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Case computational non-halting R with
∣∣N (R) ∩ D(R)

∣∣ ≤ κ
Theorem

Assume that n ≥ κ+ 16 and

R ≤ A(M)n is computational non-halting,∣∣N (R) ∩ D(R)
∣∣ ≤ κ,

... (several technical hypotheses)

Then Reln(A(M)) |= R.

This completes the case analysis!

Theorem

If M halts with capacity κ then deg(A(M)) ≤ κ+ 16. ·
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Theorem

The following are equivalent.

M halts,

deg(A(M)) <∞ (i.e. A(M) is finitely related),

M halts with capacity deg(A(M)).

Interesting observations

There are infinitely many M and n ∈ N such that M halts in ≤ n
steps but this is not provable in ZFC.

Thus, there are infinitely many M and n ∈ N such that
deg(A(M)) ≤ n is true but not provable in ZFC.

There are finite algebras A that are finitely related but for which a
bound on deg(A) cannot be proven.

maxdegσ(n) = sup

{
deg(A) |

A has signature σ,

deg(A) <∞, and |A| ≤ n

}
not computable. ·
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Problem (Finite Generation Problem)

Given relations R, decide if C = Pol(R) is finitely generated. That is,
whether C = Clo(F) for some finite set of operations F .

The theory of Natural Dualities for algebras has a very similar notion of
relational entailment.

We can modify the definition of deg(·) to obtain a duality degree: deg∂(·).

Problem (Finite Duality Degree)

Decide whether deg∂(A) <∞ for finite A.

Duality entailment implies usual entailment, so we already have that
A(M) is not finitely duality related when M does not halt.

Problem

If M halts, is deg∂(A(M)) <∞? ·
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Theorem

The following are equivalent.

M halts,

deg(A(M)) <∞ (i.e. A(M) is finitely related),

M halts with capacity deg(A(M)).

“Finite Degree Clones are Undecidable”

Thank you for your attention.
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