Indecision: finitely generated, finitely related clones (finite degree clones are undecidable)

Matthew Moore

The University of Kansas
Department of Electrical Engineering and Computer Science

March 22, 2019

Indecision: finitely generated, finitely related clones

(1) Clones
(2) The finite degree problem
(3) The encoding of computation

4 Non-halting implies infinite degree
(5) Halting implies finite degree
6) Conclusion

Indecision: finitely generated, finitely related clones

(1) Clones
(2) The finite degree problem
(3) The encoding of computation
(4) Non-halting implies infinite degree
(5) Halting implies finite degree
6) Conclusion

A clone is a set of finitary operations closed under

- composition,
- variable identification,
- variable permutation,
- introduction of extraneous variables.

Emil Post in 1941 famously classified all Boolean clones.

Over (≥ 3)-element domains structure is quite complicated.

Clones are infinite. How can they be an input to an algorithm?
A clone on finite domain A can be finitely specified in essentially 2 ways.
First way: Given \mathcal{F}, a finite set of operations of A, define
$\operatorname{Clo}(\mathcal{F})=$ "the smallest clone containing \mathcal{F} ".

- A with \mathcal{F} forms a algebra, $\mathbb{A}=\langle A ; \mathcal{F}\rangle$. Define $\operatorname{Clo}(\mathbb{A})=\operatorname{Clo}(\mathcal{F})$.
- A relation of \mathbb{A} is a subpower $R \subseteq A^{n}$ closed under \mathcal{F} (hence $\operatorname{Clo}(\mathcal{F})$)
- Define $\operatorname{Rel}_{n}(\mathbb{A})=\operatorname{Rel}_{n}(\mathcal{F})=$ "all $(\leq n)$-ary relations of \mathbb{A}^{\prime}.
- Define $\operatorname{Rel}(\mathbb{A})=\operatorname{Rel}_{n}(\mathcal{F})=\bigcup_{n<\infty} \operatorname{Rel}_{n}(\mathbb{A})$

These are the finitely generated clones
Second way: Given \mathcal{R}, a finite set of subpowers of A, define $\operatorname{Pol}(\mathcal{R})=$ "the set of all operations of A preserving all subpowers in \mathcal{R} ".

These are the finitely related/finite degree clones.

$$
\begin{aligned}
& \operatorname{Rel}(\mathcal{F})=\left\{R \subseteq A^{n} \mid R \text { is preserved by all operations in } \mathcal{F}\right\} \\
& \operatorname{Pol}(\mathcal{R})=\left\{f: A^{n} \rightarrow A \mid f \text { preserves all subpowers in } \mathcal{R}\right\}
\end{aligned}
$$

These two operators form a Galois connection.

$$
\begin{gathered}
\mathcal{R} \subseteq \operatorname{Rel}(\mathcal{F}) \\
\Longleftrightarrow \\
\mathcal{F} \subseteq \operatorname{Pol}(\mathcal{R})
\end{gathered}
$$

Every Galois connection defines two closure operators. Here, they are

$$
\text { Clo }=\text { Pol } \circ \text { Rel } \quad \text { and } \quad \text { RClo }=\text { Rel } \circ \text { Pol } .
$$

If $\mathbb{R} \in \operatorname{RClo}(\mathcal{S})$, then we say " \mathcal{S} entails \mathbb{R} " and write $\mathcal{S} \models \mathbb{R}$
If $f \in \operatorname{Pol}(\mathcal{S})$, then we say " \mathcal{S} entails f " and write $\mathcal{S} \models f$.

Indecision: finitely generated, finitely related clones

(1) Clones
(2) The finite degree problem
(3) The encoding of computation
(4) Non-halting implies infinite degree
(5) Halting implies finite degree

6 Conclusion

For a set of relations \mathcal{S}, define

$$
\operatorname{deg}(\mathcal{S})=\sup \{\operatorname{arity}(\mathbb{R}) \mid \mathbb{R} \in \mathcal{S}\}
$$

For a clone \mathcal{C}, define

$$
\operatorname{deg}(\mathcal{C})=\inf \{\operatorname{deg}(\mathcal{S}) \mid \operatorname{Pol}(\mathcal{S})=\mathcal{C}\}
$$

For an algebra \mathbb{A}, define

$$
\operatorname{deg}(\mathbb{A})=\operatorname{deg}(\operatorname{Clo}(\mathbb{A}))
$$

The Finite Degree Problem

Input: \mathcal{F}, a finite set of operations on a finite domain.
Output: whether $\operatorname{deg}(\operatorname{Clo}(\mathcal{F}))<\infty$.
(Seems to originate in the 70 s with the study of lattices of clones over more than 2 element domains.)

The Finite Degree Problem

Input: \mathcal{F}, a finite set of operations on a finite domain.
Output: whether $\operatorname{deg}(\operatorname{Clo}(F))<\infty$.
Given a Minsky machine \mathcal{M}, we encode it into a finite algebra $\mathbb{A}(\mathcal{M})$.

Theorem

The following are equivalent.

- \mathcal{M} halts,
- $\operatorname{deg}(\mathbb{A}(\mathcal{M}))<\infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),

Similar approaches have proved the following are undecidable:

- finite residual bound (McKenzie)
- finite axiomatizability/Tarski's problem (McKenzie)
- existence of a term op. that is NU on all but 2 elements (Maroti)
- DPSC, leading to another solution to Tarski's problem (M)
- profiniteness (Nurakunov and Stronkowski)

Indecision: finitely generated, finitely related clones

(2) The finite degree problem
(3) The encoding of computation
(4) Non-halting implies infinite degree
(5) Halting implies finite degree
6) Conclusion

A Minsky machine has...

- states $0,1, \ldots, N$ (1 is the starting state, 0 is the halting state),
- registers A and B that have integer values ≥ 0,
- instructions of the form (i, R, j), meaning "in state i, increase register R by 1 and enter j ".
- instructions of the form (i, R, j, k), meaning "in state i, if R is 0 enter j, otherwise decrease R by 1 and enter k ". In this talk, \mathcal{M} is some fixed Minsky machine.

Let \mathcal{M} have instructions
(1,B,3,2),
(2,A,1),
$(3, A, 4)$,
(4,A,0).

Start the machine with register contents $A=3, B=2$.

Step	State	\mathbf{A}	\mathbf{B}				
0	$(1$,	3,	$2)$				
1	$(2$,	3,	$1)$				
2	$(1$,	4,	$1)$				
3	$(2$,	4,	$0)$		Step	State	A
	B						

\mathcal{M} computes $A+B+2$ and stores the result in A.
A configuration (i, α, β) represents each stage of computation.
Consider \mathcal{M} as a function, and write

$$
\mathcal{M}(i, \alpha, \beta)=\left(j, \alpha^{\prime}, \beta^{\prime}\right) \quad \text { or } \quad \mathcal{M}^{n}(i, \alpha, \beta)=\left(j, \alpha^{\prime}, \beta^{\prime}\right)
$$

(single step of computation or multiple).
The capacity of \mathcal{M} is the max sum of the registers.

The algebra $\mathbb{A}(\mathcal{M})$ has set

$$
A(\mathcal{M})=\{\langle i, 0\rangle,\langle i, A\rangle,\langle i, B\rangle,\langle i, \bullet\rangle,\langle i, \times\rangle \mid i \text { a state of } \mathcal{M}\}
$$

The algebra is $\quad \mathbb{A}(\mathcal{M})=\left\langle A(\mathcal{M}) ; \wedge, M, M^{\prime}, I, H, N_{0}, S, N_{\bullet}, P\right\rangle$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\langle j, R\rangle \quad \text { if }(i, R, j) \in \mathcal{M}, \\
x=\langle i, \bullet\rangle, y=\langle i, 0\rangle ;
\end{array}\right. \\
& \langle j, 0\rangle \quad \text { if }(i, R, k, j) \in \mathcal{M} \text {, } \\
& M(x, y)=\left\{\begin{array}{cc}
x=\langle i, \bullet\rangle, y=\langle i, R\rangle ; \\
\langle j, c\rangle & \text { if }[(i, R, j) \text { or }(i, R, k, j) \in \mathcal{M}], \\
x=y=\langle i, c\rangle ;
\end{array} \quad M^{\prime}(x)=\left\{\begin{array}{cc}
\langle k, c\rangle & \text { if }(i, R, k, j) \in \mathcal{M}, \\
& x=\langle i, c\rangle, c \neq R ; \\
\langle k, x\rangle & \text { otherwise* }
\end{array}\right.\right. \\
& \langle j, c\rangle \quad \text { if } y=\langle i, c\rangle, M(y, x)=\langle j, d\rangle \text {, } \\
& d \neq x \text {, by above rules; } \\
& \langle j, x\rangle \text { otherwise* }
\end{aligned}
$$

- M encodes addition and subtraction operations.
- M^{\prime} encodes testing for 0 in a register.
- $M(x, y) \neq\langle *, x\rangle$ implies $x=y$ modulo a single coordinate transposition.

$$
\begin{aligned}
& (\langle j, R\rangle \text { if }(i, R, j) \in \mathcal{M}, \\
& x=\langle i, \bullet\rangle, y=\langle i, 0\rangle ; \\
& \langle j, 0\rangle \quad \text { if }(i, R, k, j) \in \mathcal{M} \text {, } \\
& M(x, y)=\left\{\begin{array}{cc}
x=\langle i, \bullet\rangle, y=\langle i, R\rangle ; \\
\langle j, c\rangle & \text { if }[(i, R, j) \text { or }(i, R, k, j) \in \mathcal{M}], M^{\prime}(x)=\left\{\begin{array}{cc}
\langle k, c\rangle & \text { if }(i, R, k, j) \in \mathcal{M}, \\
& x=y=\langle i, c\rangle ; \\
& x=\langle i, c\rangle, c \neq R ;
\end{array}, \ldots\right.
\end{array}\right. \\
& \langle j, c\rangle \quad \text { if } y=\langle i, c\rangle, M(y, x)=\langle j, d\rangle, \\
& d \neq x \text {, by above rules; } \\
& \text { Let } \mathcal{M}=\{(1, B, 3,2),(2, A, 1),(3, A, 4),(4, A, 0)\} .(A+B+2 \text { from before })
\end{aligned}
$$

Takeaways: on a relation $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^{n} \ldots$

- certain elements of R encode configurations of \mathcal{M},
- M and M^{\prime} encode the action of \mathcal{M} in the presence of certain elements of R.

Questions

- What if R doesn't contain these kinds of elements?
- What if R contains elements that aren't "computational": multiple •'s or non-constant states.

Given configuration (k, α, β), in $\mathbb{A}(\mathcal{M})^{n}$ define

$$
c(k, \alpha, \beta)=\bigcup_{p \in P_{n}}\{p(\langle k, \bullet\rangle, \underbrace{\langle k, A\rangle, \ldots,\langle k, A\rangle}_{\alpha}, \underbrace{\langle k, B\rangle, \ldots,\langle k, B\rangle}_{\beta}, \underbrace{\langle k, 0\rangle, \ldots,\langle k, 0\rangle}_{n-\alpha-\beta-1})\}
$$

Call \mathbb{R} computational if it doesn't contain any elements with $2 \bullet$'s or non-constant state.

The capacity of computational \mathbb{R} is (number of coordinates with \bullet)-1.

$$
\text { Let } \mathbb{S}_{m}=\operatorname{Sg}_{\mathbb{A}(\mathcal{M})^{m}}(c(1,0,0))
$$

Theorem (The Coding Theorem)

- If $\mathcal{M}^{n}(1,0,0)=(k, \alpha, \beta)$ and this computation has capacity $m-1$, then $\mathrm{c}(k, \alpha, \beta) \subseteq S_{m}$.
- If $\mathrm{c}(k, \alpha, \beta) \subseteq S_{m}$ and \mathcal{M} does not halt with capacity $m-1$ then for some n we have $\mathcal{M}^{n}(1,0,0)=(k, \alpha, \beta)$ and this computation has capacity $m-1$.

Corollary

The following are equivalent.

- \mathcal{M} halts with capacity $m-1$,
- \mathbb{S}_{m} is halting,
- every computational $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^{\ell}$ with capacity $m-1$ is halting.

Indecision: finitely generated, finitely related clones

(1) Clones

(2) The finite degree problem
(3) The encoding of computation

4 Non-halting implies infinite degree
(5) Halting implies finite degree

6 Conclusion

Observe

$$
\begin{array}{lll}
\operatorname{deg}(\mathcal{C})=\infty & \text { if and only if } & \operatorname{Rel}_{n}(\mathcal{C}) \not \models \operatorname{Rel}(\mathcal{C}) \text { for all } n \\
& \text { if and only if } & \operatorname{Rel}_{n}(\mathcal{C}) \not \models \mathbb{R} \text { for all } n \text { and some } \mathbb{R}
\end{array}
$$

Idea: to show that $\operatorname{deg}(\mathbb{A}(\mathcal{M}))=\infty$ when \mathcal{M} does not halt, we prove the last equivalence for $\mathcal{C}=\operatorname{Clo}(\mathbb{A}(\mathcal{M}))$.
$\operatorname{Rel}_{n}(\mathcal{C}) \models \mathbb{R}$ if and only if \mathbb{R} can be built from $\operatorname{Rel}_{n}(\mathcal{C})$, in finitely many steps, by applying the following constructions:

- intersection of equal arity relations,
- (cartesian) product of finitely many relations,
- permutation of the coordinates of a relation, and
- projection of a relation onto a subset of coordinates.

Theorem (Zadori 1995)

$\operatorname{Rel}_{n}(\mathbb{A}) \models \mathbb{S}$ if and only if

$$
\mathbb{S}=\pi\left(\bigcap_{i \in I} \mu_{i}\left(\prod_{j \in J_{i}} \mathbb{R}_{i j}\right)\right)
$$

for some $\mathbb{R}_{i j} \in \operatorname{Rel}_{n}(\mathbb{A})$, some coordinate projection π, and some coordinate permutations μ_{i}.

Lemma

Suppose that

$$
c(1,0,0) \subseteq \pi\left(\bigcap_{i \in I} \mu_{i}\left(\prod_{j \in J_{i}} \mathbb{R}_{i j}\right)\right)=\mathbb{S} \leq \mathbb{A}(\mathcal{M})^{m}
$$

where π is a projection, the μ_{i} are permutations, and the $\mathbb{R}_{i j}$ are a finite collection of members of $\operatorname{Rel}_{n}(\mathbb{A}(\mathcal{M}))$, and $n<m$. Then \mathbb{S} is halting.

Theorem

The following hold for any Minsky machine \mathcal{M}.

- If \mathcal{M} does not halt with capacity m then $m<\operatorname{deg}(\mathbb{A}(\mathcal{M}))$.
- If \mathcal{M} does not halt then $\mathbb{A}(\mathcal{M})$ is not finitely related.

Proof: Suppose that $\operatorname{deg}(\mathbb{A}(\mathcal{M})) \leq m$. This implies in particular that $\operatorname{Rel}_{m}(\mathbb{A}(\mathcal{M})) \models \mathbb{S}_{m+1}$. By Zadori's theorem, \mathbb{S}_{m+1} can be represented as in the Lemma above, so by that same Lemma it is halting. By the Coding Theorem, this implies that \mathcal{M} halts with capacity m, a contradiction.

Indecision: finitely generated, finitely related clones

(1) Clones

(2) The finite degree problem
(3) The encoding of computation

4 Non-halting implies infinite degree
(5) Halting implies finite degree

Strategy

- The relations \mathbb{S}_{m} witnessed non-entailment when \mathcal{M} did not halt. When \mathcal{M} does halt, these relations eventually witness the halting.
- Show that for some suitably chosen k, we have $\operatorname{Rel}_{k}(\mathbb{A}(\mathcal{M})) \models \operatorname{Rel}_{n}(\mathbb{A}(\mathcal{M}))$ for all n.
- We proceed with induction on n.
- The base case of $n=k$ is trivial.
- We thus endeavor to prove $\operatorname{Rel}_{n-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$ for $\mathbb{R} \in \operatorname{Rel}_{n}(\mathbb{A}(\mathcal{M}))$.
- Relations in $\operatorname{Rel}_{n}(\mathbb{A}(\mathcal{M}))$ can be divided into 4 different kinds, so we proceed by cases.
- Recall $\mathbb{A}(\mathcal{M})=\left\langle A(\mathcal{M}) ; \wedge, M, M^{\prime}, I, H, N_{0}, S, N_{\bullet}, P\right\rangle$.

Different collections of operations handle entailment in each of the different cases.

$$
\mathbb{A}(\mathcal{M})=\left\langle A(\mathcal{M}) ; \wedge, M, M^{\prime}, I, H, N_{0}, S, N_{\mathbf{0}}, P\right\rangle
$$

Case \mathbb{R} is non-computational

- There is an element with $2 \bullet$'s or with non-constant state.
- $2 \bullet$'s: operation N_{\bullet} handles entailment.
- Non-constant state: operation P handles entailment.

Theorem

If $m \geq 3$ and $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^{m}$ is non-computational then $\operatorname{Rel}_{m-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

Case \mathbb{R} is halting

- R contains $c(0,0,0)$.
- Any element of $c(0,0,0)$ can be used with operations I, H, and N_{0} to prove entailment.

Theorem

If $m \geq 3$ and $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^{m}$ is halting then $\operatorname{Rel}_{m-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

We are left to examine computational non-halting $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^{n}$.
Let's say that \mathcal{M} halts with capacity κ.
Two metrics: (both subsets of $[n]$)

- $\mathcal{D}(\mathbb{R})=$ "coordinates i such that $r \in R$ with $r(i)=\langle j, \bullet\rangle "$ $=$ "the $\bullet(\operatorname{dot})$ part of \mathbb{R}.
- $\mathcal{N}(\mathbb{R})=$ "the inherently non-halting part of \mathbb{R} "...
- $\pi_{\mathcal{N}(\mathbb{R})}(\mathbb{R})$ is non-halting,
- If $K=|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})|$ then $\mathbb{S}_{K} \leq \mathbb{R}$.

Case \mathbb{R} is computational and $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})|>\kappa$

- $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})|>\kappa$ then \mathbb{R} contains a halting subalgebra.
- it follows that \mathbb{R} halts!

We thus consider computational non-halting \mathbb{R} with $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$.

Case computational non-halting \mathbb{R} with $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$

Theorem

Assume that $n \geq \kappa+16$ and

- $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^{n}$ is computational non-halting,
- $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$,
- $\quad \vdots \quad$ (several technical hypotheses)

Then $\operatorname{Rel}_{n}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

This completes the case analysis!

Theorem

If \mathcal{M} halts with capacity κ then $\operatorname{deg}(\mathbb{A}(\mathcal{M})) \leq \kappa+16$.

Indecision: finitely generated, finitely related clones

(1) Clones
(2) The finite degree problem
(3) The encoding of computation
(4) Non-halting implies infinite degree
(5) Halting implies finite degree
(6) Conclusion

Theorem

The following are equivalent.

- \mathcal{M} halts,
- $\operatorname{deg}(\mathbb{A}(\mathcal{M}))<\infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),
- \mathcal{M} halts with capacity $\operatorname{deg}(\mathbb{A}(\mathcal{M}))$.

Interesting observations

- There are infinitely many \mathcal{M} and $n \in \mathbb{N}$ such that \mathcal{M} halts in $\leq n$ steps but this is not provable in ZFC.
- Thus, there are infinitely many \mathcal{M} and $n \in \mathbb{N}$ such that $\operatorname{deg}(\mathbb{A}(\mathcal{M})) \leq n$ is true but not provable in ZFC.
- There are finite algebras \mathbb{A} that are finitely related but for which a bound on $\operatorname{deg}(\mathbb{A})$ cannot be proven.
 not computable.

Problem (Finite Generation Problem)

Given relations \mathcal{R}, decide if $\mathcal{C}=\operatorname{Pol}(\mathcal{R})$ is finitely generated. That is, whether $\mathcal{C}=\operatorname{Clo}(\mathcal{F})$ for some finite set of operations \mathcal{F}.

The theory of Natural Dualities for algebras has a very similar notion of relational entailment.

We can modify the definition of $\operatorname{deg}(\cdot)$ to obtain a duality degree: $\operatorname{deg}_{\partial}(\cdot)$.

Problem (Finite Duality Degree)

Decide whether $\operatorname{deg}_{\partial}(\mathbb{A})<\infty$ for finite \mathbb{A}.
Duality entailment implies usual entailment, so we already have that $\mathbb{A}(\mathcal{M})$ is not finitely duality related when \mathcal{M} does not halt.

Problem

If \mathcal{M} halts, is $\operatorname{deg}_{\partial}(\mathbb{A}(\mathcal{M}))<\infty$?

Theorem

The following are equivalent.

- \mathcal{M} halts,
- $\operatorname{deg}(\mathbb{A}(\mathcal{M}))<\infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),
- \mathcal{M} halts with capacity $\operatorname{deg}(\mathbb{A}(\mathcal{M}))$.
"Finite Degree Clones are Undecidable"

Thank you for your attention.

