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A clone is a set of finitary
operations closed under

• composition,

• variable identification,

• variable permutation,

• introduction of
extraneous variables.

Emil Post in 1941 famously
classified all Boolean clones.

Over (≥ 3)-element domains
structure is quite complicated.

·
Matthew Moore (KU) Finite Degree Clones Are Undecidable 2019-05-20 4 / 32



Clones are infinite. How can they be an input to an algorithm?

A clone on finite domain A can be finitely specified in essentially 2 ways.

First way: Given F , a finite set of operations of A, define
Clo(F) = “the smallest clone containing F”.

• A with F forms a algebra, A = 〈A;F〉. Define Clo(A) = Clo(F).

• A relation of A is a subpower R ⊆ An closed under F (hence Clo(F))

• Define Reln(A) = Reln(F) = “all (≤ n)-ary relations of A”.

• Define Rel(A) = Reln(F) =
⋃
n<∞

Reln(A)

These are the finitely generated clones.

Second way: Given R, a finite set of subpowers of A, define
Pol(R) = “the set of all operations of A preserving all subpowers in R”.

These are the finitely related/finite degree clones. ·
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Rel(F) =
{
R ⊆ An | R is preserved by all operations in F

}
Pol(R) =

{
f : An → A | f preserves all subpowers in R

}
These two operators form a Galois connection.

R ⊆ Rel(F)

⇐⇒

F ⊆ Pol(R)

Rel(F)

R

F

Pol(R)
Pol

Rel

Every Galois connection defines two closure operators. Here, they are

Clo = Pol ◦Rel and RClo = Rel ◦Pol .

If R ∈ RClo(S), then we say “S entails R” and write S |= R.

If f ∈ Pol(S), then we say “S entails f ” and write S |= f . ·
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For a set of relations S, define

deg(S) = sup
{

arity(R) | R ∈ S
}
.

For a clone C, define

deg(C) = inf
{

deg(S) | Pol(S) = C
}
.

For an algebra A, define

deg(A) = deg(Clo(A)).

The Finite Degree Problem

Input: finite algebra A = 〈A; f1, . . . , fn〉 generating clone C
Output: whether deg(C) <∞

(seems to originate in the 70s with the study of lattices of clones over
domains of more than 2 elements) ·
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The Finite Degree Problem

Input: finite algebra A = 〈A; f1, . . . , fn〉 generating clone C
Output: whether deg(C) <∞

Given a Minsky machine M, we encode it into a finite algebra A(M).

Theorem

The following are equivalent.

• M halts,

• deg(A(M)) <∞ (i.e. A(M) is finitely related),

Similar approaches have proved the following are undecidable:
• finite residual bound (McKenzie)

• finite axiomatizability/Tarski’s problem (McKenzie)

• certain omitting types (McKenzie, Wood)

• existence of a term op. that is NU on all but 2 elements (Maroti)

• DPSC, leading to another solution to Tarski’s problem (M)

• profiniteness (Nurakunov and Stronkowski) ·
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A Minsky machine has

• registers A and B that have integer values ≥ 0,

• instructions to add 1 to a register,

A+ or B+

• instructions to test if a register is 0 and otherwise subtract 1 from it.

A−
0

or B−
0

We can represent a Minsky machine as a finite flow graph.

M =

start A− B− A+

B− A− B+

end

0 0

0 0

·
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start A− B− A+

B− A− B+

end

0 0

0 0

start A−
0

B−

B−
0

A+

end

1:A− 2:B− 3:A+

4:B− 5:A− 6:B+

0:end

How to represent intermediate
computations?

Step State A B

0 (1, 2, 3)
1 (4, 1, 3)
2 (1, 1, 2)
3 (4, 0, 2)
4 (1, 0, 1)
5 (2, 0, 1)
6 (2, 0, 0)
7 (3, 0, 0)
8 (0, 1, 0)

• Assign a state to each node.

• A configuration (i , α, β) represents each stage of computation.

• Consider M as a function, and write

M(i , α, β) = (j , α′, β′) or Mn(i , α, β) = (j , α′, β′)

(single step of computation or multiple).

• On (α, β), M halts with registers (1, 0) if α ≤ β and (0, 1) otherwise. ·
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The encoding of computation

• let A(M) be the algebra we intend to build

• configurations (i , α, β) ! special elements of A(M)n

• term operations should simulate the action of M (need placemarker, •)

• computation on configurations ! subalgebra generation

Config (i , 2, 1) !

{(
〈i ,A〉 , 〈i ,A〉 , 〈i ,B〉

)
,
(
〈i ,A〉 , 〈i ,B〉 , 〈i ,A〉

)
,(

〈i ,B〉 , 〈i ,A〉 , 〈i ,A〉
) }

⊆ A(M)3

A(M) has universe... A(M) =
{
〈i , c〉 | i a state of M, c ∈ {A,B, 0, •,×}

}

Given configuration (k , α, β) and n ∈ N define a subset of A(M)n,

conf(k, α, β) =
⋃
p∈Pn

{
p
(
〈k,A〉 , . . . , 〈k,A〉︸ ︷︷ ︸

α

, 〈k,B〉 , . . . , 〈k,B〉︸ ︷︷ ︸
β

, 〈k, 0〉 , . . . , 〈k, 0〉︸ ︷︷ ︸
n−α−β−1

, 〈k , •〉
)}
·
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The encoding of computation

• term operations should simulate the action of M
• computation on configurations ! subalgebra generation

start 1:A− 2:B− 3:A+

4:B− 5:A− 6:B+

0:end

0 0

0 0

Term operations

• M(x , y) for R+ or R−

• M ′(x) for R−
0−→

Design considerations

• M(r , s) = t if and only if...

◦ r , s ∈ conf(i , α, β)

◦ r 6= s

◦ t ∈ conf(M(i , α, β))

via some R+ or R−

• M ′(r) = t if and only if...

◦ r ∈ conf(i , α, β)

◦ t ∈ conf(M(i , α, β))

via some R−
0−→

• otherwise introduce × into the output t ·
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Can we actually define M and M ′ with these features?

M(x , y) =



〈j ,R〉 if x = 〈i , •〉 , y = 〈i , 0〉 , i : R+ −→ j : ∗ ,

〈j , 0〉 if x = 〈i , •〉 , y = 〈i ,R〉 , i : R− −→ j : ∗ ,

〈j , •〉 if x = 〈i , 0〉 , y = 〈i , •〉 , i : R+ −→ j : ∗ ,

〈j , •〉 if x = 〈i ,R〉 , y = 〈i , •〉 , i : R− −→ j : ∗ ,

〈j , c〉 if x = y = 〈i , c〉 , i : R+ −→ j : ∗ or i : R− −→ j : ∗ ,

〈j ,×〉 else if x = 〈i , c〉 , y = 〈i , d〉 , i : R+ −→ j : ∗ or i : R− −→ j : ∗ ,

〈i ,×〉 otherwise, where y = 〈i , c〉 .

M′(x) =


〈k, c〉 if x = 〈i , c〉 , i : R+

0−→ k : ∗ , c 6= R,

〈k,×〉 else if x = 〈i ,R〉 , i : R+
0−→ k : ∗ ,

〈i ,×〉 otherwise, where x = 〈i , c〉 .

Let’s see an example computation... ·
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start 1:A− 2:B− 3:A+

4:B− 5:A− 6:B+

0:end

0 0

0 0

Step State A B

0 1 2 1
1 4 1 1
2 1 1 0
3 4 0 0
4 5 0 0
5 6 0 0
6 0 0 1

1: M


〈1, •〉 , 〈1,A〉
〈1,A〉 , 〈1, •〉
〈1,A〉 , 〈1,A〉
〈1,B〉, 〈1,B〉

 =


〈4, 0〉
〈4, •〉
〈4,A〉
〈4,B〉



2: M


〈4, 0〉 , 〈4, 0〉
〈4, •〉 , 〈4,B〉
〈4,A〉 , 〈4,A〉
〈4,B〉 , 〈4, •〉

 =


〈1, 0〉
〈1, 0〉
〈1,A〉
〈1, •〉



3: M


〈1, 0〉 , 〈1, 0〉
〈1, 0〉 , 〈1, 0〉
〈1,A〉 , 〈1, •〉
〈1, •〉 , 〈1,A〉

 =


〈4, 0〉
〈4, 0〉
〈4, •〉
〈4, 0〉



4: M ′


〈4, 0〉
〈4, 0〉
〈4, •〉
〈4, 0〉

 =


〈5, 0〉
〈5, 0〉
〈5, •〉
〈5, 0〉



5: M ′


〈5, 0〉
〈5, 0〉
〈5, •〉
〈5, 0〉

 =


〈6, 0〉
〈6, 0〉
〈6, •〉
〈6, 0〉



6: M


〈6, 0〉 , 〈6, 0〉
〈6, 0〉 , 〈6, •〉
〈6, •〉 , 〈6, 0〉
〈6, 0〉 , 〈6, 0〉

 =


〈0, 0〉
〈0, •〉
〈0,B〉
〈0, 0〉

 ·
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Takeaways on a relation R ≤ A(M)n ...

• certain elements of R encode configurations of M,

• M and M ′ encode the action of M in the presence of these elements.

conf(k, α, β) =
⋃
p∈Pn

{
p
(
〈k,A〉 , . . . , 〈k,A〉︸ ︷︷ ︸

α

, 〈k,B〉 , . . . , 〈k,B〉︸ ︷︷ ︸
β

, 〈k, 0〉 , . . . , 〈k, 0〉︸ ︷︷ ︸
n−α−β−1

, 〈k, •〉
)}

Questions

• What if R doesn’t contain these kinds of elements?

• What if R contains elements that aren’t “computational”?
(multiple •’s or non-constant states)

Call R computational if it doesn’t contain any elements with 2 •’s or
non-constant state.

The capacity of a computation Mk(i , α, β) = (j , α′, β′) is the max sum
of the registers.

The capacity of computational R is (number of coordinates with •)−1. ·
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We consider the halting problem on 0 register input: config = (1, 0, 0).

Let Sm = SgA(M)m
(
conf(1, 0, 0)

)
.

Theorem (The Coding Theorem)

• If Mn(1, 0, 0) = (k , α, β) has capacity < m then conf(k , α, β) ⊆ Sm.

• If conf(k, α, β) ⊆ Sm and M does not halt with capacity < m then
Mn(1, 0, 0) = (k, α, β) for some n and has capacity < m.

Corollary

The following are equivalent.

• M halts with capacity < m,

• Sm is halting (i.e. contains conf(0, α, β)),

• every computational R ≤ A(M)` with capacity ≥ m is halting. ·
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Theorem (The Coding Theorem)

• If Mn(1, 0, 0) = (k , α, β) has capacity < m then conf(k , α, β) ⊆ Sm.

• If conf(k, α, β) ⊆ Sm and M does not halt with capacity < m then
Mn(1, 0, 0) = (k , α, β) for some n and has capacity < m.

Framework for proving the hardness of algebraic properties

• Start out with A(M) = 〈A(M) ; M,M ′〉.

• Add operations so that the property is recognizable in Rel(A(M))(
ideally in the (Sm)m∈N

)
.

• Use a computer to verify necessary computations.

• Use software development techniques:

write unit tests, rapidly iterate the operation definitions.

This allows us to give a more unified construction for the previously
mentioned undecidability results in Universal Algebra. ·
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Observe

deg(C) =∞ if and only if ∀n Reln(C) 6|= Rel(C)

if and only if ∀n ∃R Reln(C) 6|= R

Idea: to show that deg(A(M)) =∞ when M does not halt, we show the
last equivalence holds for C = Clo(A(M)).

Two operations involved

• semilattice operation ∧
locally flat: a ∧ b 6= 〈∗,×〉 iff a = b

• “initialization” operation I (x , y)
returns any configuration to conf(1, 0, 0)

At this point A(M) = 〈A(M) ; M,M ′,∧, I 〉. ·
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Reln(C) |= R if and only if R can be built from Reln(C) using

• intersection of equal arity relations,

• (cartesian) product of finitely many relations,

• permutation of the coordinates of a relation, and

• projection of a relation onto a subset of coordinates.

Theorem (Zadori 1995)

Reln(A) |= S if and only if

S = π

(⋂
i∈I
µi

(∏
j∈Ji

Rij

))

for some Rij ∈ Reln(A), some coordinate projection π, and some
coordinate permutations µi .

·
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Lemma

Suppose that

conf(1, 0, 0) ⊆ π

(⋂
i∈I

µi

(∏
j∈Ji

Rij

))
= S ≤ A(M)m,

where π is a projection, the µi are permutations, and the Rij are a finite
collection of members of Reln(A(M)), and n < m. Then S is halting.

Theorem

The following hold for any Minsky machine M.

• If M does not halt with capacity m then m < deg(A(M)).

• If M does not halt then A(M) is not finitely related.

Proof: Suppose that deg(A(M)) ≤ m. This implies in particular that
Relm(A(M)) |= Sm+1. By Zadori’s theorem, Sm+1 can be represented as in the
Lemma above, so by that same Lemma it is halting. By the Coding Theorem, this
implies that M halts with capacity m, a contradiction. ·
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Strategy

• The relations Sm witnessed non-entailment when M did not halt.
When M does halt, these relations eventually witness the halting.

• Show that for some suitably chosen k, we have
Relk(A(M)) |= Reln(A(M)) for all n.

• We proceed by induction on n.

• The base case of n = k is trivial.

• We thus endeavor to prove Reln−1(A(M)) |= R for R ∈ Reln(A(M)).

• Relations in Reln(A(M)) can be divided into 4 different kinds, so we
proceed by cases.

• We add operations to handle entailment in each of the different cases:
N•(w , x , y , z), P(u, v , x , y), H(x , y), N0(x , y , z), S(x , y , z).

• A(M) =
〈
A(M) ; M,M ′,∧, I ,N•,P,H,N0,S

〉
(final version) ·
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A(M) =
〈
A(M) ; M,M ′,∧, I ,N•,P,H,N0,S

〉
Case R is non-computational

• There is an element with 2 •’s or with non-constant state.

• 2 •’s: operation N• handles entailment.

• Non-constant state: operation P handles entailment.

Theorem

If m ≥ 3 and R ≤ A(M)m is non-computational then Relm−1(A(M)) |= R.

Case R is halting

• R contains an element of conf(0, 0, 0).

• Any element of conf(0, 0, 0) can be used with operations I , H, and
N0 to prove entailment.

Theorem

If 3 ≤ m and R ≤ A(M)m is halting then Relm−1(A(M)) |= R. ·
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We are left to examine computational non-halting R ≤ A(M)n.

Let’s say that M halts with capacity κ.

Two metrics (both subsets of [n])

• D(R) = “coordinates i such that ∃r ∈ R with r(i) = 〈j , •〉”
= “the • (dot) part of R.”

• N (R) = “the inherently non-halting part of R” ...

◦ πN (R)(R) is non-halting,

◦ if K =
∣∣N (R) ∩ D(R)

∣∣ then SK ≤ R.

Case R is computational and |N (R) ∩ D(R)| > κ

•
∣∣N (R) ∩ D(R)

∣∣ > κ then R contains a halting subalgebra.

• it follows that R halts!

We thus consider computational non-halting R with
∣∣N (R)∩D(R)

∣∣ ≤ κ. ·
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Case computational non-halting R with
∣∣N (R) ∩ D(R)

∣∣ ≤ κ
Theorem

Assume that n ≥ κ+ 16 and

• R ≤ A(M)n is computational non-halting,

•
∣∣N (R) ∩ D(R)

∣∣ ≤ κ,

• ... (several technical hypotheses)

Then Reln−1(A(M)) |= R.

This completes the case analysis!

Theorem

If M halts with capacity κ then deg(A(M)) ≤ κ+ 16. ·
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Theorem

The following are equivalent.

• M halts,

• deg(A(M)) <∞ (i.e. A(M) is finitely related),

• M halts with capacity at least deg(A(M))− 16.

Interesting observations

• There are infinitely many M with halting status independent of ZFC.

• Thus, there are infinitely many M such that deg(A(M)) <∞ is
independent of ZFC.

• There are finite algebras A that whose finite-relatedness is
independent of ZFC.

• maxdegσ(n) = sup

{
deg(A) |

A has signature σ,

deg(A) <∞, and |A| ≤ n

}
is not computable. ·
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Finite Generation Problems

Problem

Given relations R, decide if C = Pol(R) is finitely generated.
That is, decide whether C = Clo(F) for some finite set of operations F .

Problem

Given relations R and operations F , decide whether Pol(R) = Clo(F). ·
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Natural Duality Problems

We can modify the definition of deg(·) to obtain a duality degree: deg∂(·).

Problem (Finite Duality Degree)

Decide whether deg∂(A) <∞ for finite A.

Duality entailment implies usual entailment, so we already have that
A(M) is not finitely duality related when M does not halt.

Problem

If M halts, is deg∂(A(M)) <∞?

Problem

Given finite A, decide whether A admits a duality. ·
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Finite Degree Clones Are Undecidable

Theorem

The following are equivalent.

• M halts,

• deg(A(M)) <∞ (i.e. A(M) is finitely related),

• M halts with capacity at least deg(A(M))− 16.

Thank you for your attention.
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