Finite Degree Clones are Undecidable

Matthew Moore

The University of Kansas
Department of Electrical Engineering and Computer Science

June 22, 2019

Finite Degree Clones are Undecidable

- 1 Clones and the Finite Degree Problem
- 2 The Encoding of Computation
- 3 Non-halting Implies Infinite Degree
- 4 Halting Implies Finite Degree
- **5** Conclusion and Open Problems

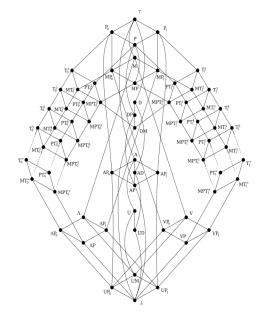
CLONES AND THE FINITE DEGREE PROBLEM

A **clone** is a set of finitary operations closed under

- composition,
- variable identification,
- variable permutation,
- introduction of extraneous variables.

Emil Post in 1941 famously classified all Boolean clones.

Over (≥ 3) -element domains structure is quite complicated.



Clones are infinite. How can they be an input to an algorithm?

A clone on $\underline{\text{finite}}$ domain A can be **finitely specified** in essentially 2 ways.

First way: Given \mathcal{F} , a finite set of operations of A, define $Clo(\mathcal{F}) =$ "the smallest clone containing \mathcal{F} ".

- A with $\mathcal F$ forms a algebra, $\mathbb A=\langle A;\mathcal F\rangle$. Define $\mathsf{Clo}(\mathbb A)=\mathsf{Clo}(\mathcal F)$.
- A **relation** of $\mathbb A$ is a subpower $R\subseteq A^n$ closed under $\mathcal F$ (hence $\mathsf{Clo}(\mathcal F)$)
- Define $\operatorname{Rel}_n(\mathbb{A}) = \operatorname{Rel}_n(\mathcal{F}) =$ "all $(\leq n)$ -ary relations of \mathbb{A} ".
- Define $\operatorname{Rel}(\mathbb{A}) = \operatorname{Rel}_n(\mathcal{F}) = \bigcup_{n < \infty} \operatorname{Rel}_n(\mathbb{A})$

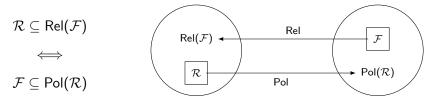
These are the **finitely generated** clones.

Second way: Given \mathcal{R} , a finite set of subpowers of A, define $Pol(\mathcal{R}) =$ "the set of all operations of A preserving all subpowers in \mathcal{R} ".

These are the **finitely related/finite degree** clones.

$$\mathsf{Rel}(\mathcal{F}) = \big\{ R \subseteq A^n \mid R \text{ is preserved by all operations in } \mathcal{F} \big\}$$
$$\mathsf{Pol}(\mathcal{R}) = \big\{ f : A^n \to A \mid f \text{ preserves all subpowers in } \mathcal{R} \big\}$$

These two operators form a Galois connection.



Every Galois connection defines two closure operators. Here, they are

$$Clo = Pol \circ Rel$$
 and $RClo = Rel \circ Pol$.

If $\mathbb{R} \in \mathsf{RClo}(\mathcal{S})$, then we say " \mathcal{S} entails \mathbb{R} " and write $\mathcal{S} \models \mathbb{R}$.

If $f \in Pol(S)$, then we say "S entails f" and write $S \models f$.

For a set of relations S, define

$$\mathsf{deg}(\mathcal{S}) = \mathsf{sup}\,\big\{\mathsf{arity}(\mathbb{R}) \mid \mathbb{R} \in \mathcal{S}\big\}.$$

For a clone C, define

$$deg(C) = inf \{ deg(S) \mid Pol(S) = C \}.$$

For an algebra A, define

$$deg(A) = deg(Clo(A)).$$

The Finite Degree Problem

Input: finite algebra $\mathbb{A} = \langle A; f_1, \dots, f_n \rangle$ generating clone \mathcal{C}

Output: whether $\deg(\mathcal{C}) < \infty$

(seems to originate in the 70s with the study of lattices of clones over domains of more than 2 elements)

The Finite Degree Problem

Input: finite algebra $\mathbb{A} = \langle A; f_1, \dots, f_n \rangle$ generating clone \mathcal{C}

Output: whether $\deg(\mathcal{C}) < \infty$

Given a Minsky machine \mathcal{M} , we encode it into a finite algebra $\mathbb{A}(\mathcal{M})$.

Theorem

The following are equivalent.

- M halts,
- $deg(\mathbb{A}(\mathcal{M})) < \infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),

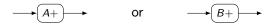
Similar approaches have proved the following are undecidable:

- finite residual bound (McKenzie)
- finite axiomatizability/Tarski's problem (McKenzie)
- certain omitting types (McKenzie, Wood)
- existence of a term op. that is NU on all but 2 elements (Maroti)
- DPSC, leading to another solution to Tarski's problem (M)
- profiniteness (Nurakunov and Stronkowski)

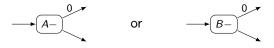
THE ENCODING OF COMPUTATION

A Minsky machine has

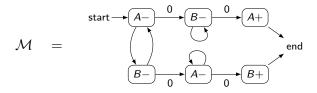
- registers A and B that have integer values ≥ 0 ,
- instructions to add 1 to a register,

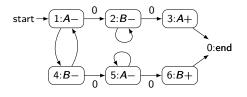


instructions to test if a register is 0 and otherwise subtract 1 from it.



We can represent a Minsky machine as a finite flow graph.





Step	State	Α	В
0	(1,	2,	3)
1	(4,	1,	3)
2	(1,	1,	2)
3	(4,	0,	2)
4	(1,	0,	1)
5	(2,	0,	1)
6	(2,	0,	0)
7	(3,	0,	0)
8	(0,	1,	0)

How to represent intermediate computations?

- Assign a state to each node.
- A **configuration** (i, α, β) represents each stage of computation.
- ullet Consider ${\mathcal M}$ as a function, and write

$$\mathcal{M}(i,\alpha,\beta) = (j,\alpha',\beta')$$
 or $\mathcal{M}^n(i,\alpha,\beta) = (j,\alpha',\beta')$

(single step of computation or multiple).

• On (α, β) , \mathcal{M} halts with registers (1,0) if $\alpha \leq \beta$ and (0,1) otherwise.

The encoding of computation

- let $\mathbb{A}(\mathcal{M})$ be the algebra we intend to build
- configurations (i, α, β) \iff special elements of $A(\mathcal{M})^n$
- ullet term operations should simulate the action of ${\mathcal M}$ (need placemarker, ullet)
- computation on configurations \iff subalgebra generation

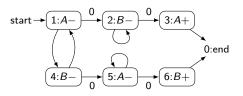
$$\mathbb{A}(\mathcal{M}) \text{ has universe...} \qquad A(\mathcal{M}) = \Big\{ \left. \langle i, c \rangle \mid i \text{ a state of } \mathcal{M}, \ c \in \{A, B, 0, \bullet, \times\} \Big\}$$

Given configuration (k, α, β) and $n \in \mathbb{N}$ define a subset of $\mathbb{A}(\mathcal{M})^n$,

$$\mathtt{conf}(k,\alpha,\beta) = \bigcup_{p \in P_n} \left\{ p\left(\underbrace{\langle k,A\rangle,\ldots,\langle k,A\rangle}_{\alpha},\underbrace{\langle k,B\rangle,\ldots,\langle k,B\rangle}_{\beta},\underbrace{\langle k,0\rangle,\ldots,\langle k,0\rangle}_{n-\alpha-\beta-1},\langle k,\bullet\rangle\right) \right\}$$

The encoding of computation

- ullet term operations should simulate the action of ${\mathcal M}$



Term operations

- M(x,y) for (R+) or (R-)
- M'(x) for R- \longrightarrow

Design considerations

- M(r,s) = t if and only if...
 - \circ $r, s \in conf(i, \alpha, \beta)$
 - \circ $r \neq s$
 - \circ $t \in \operatorname{conf}(\mathcal{M}(i, \alpha, \beta))$ via some (R+) or (R-)

- M'(r) = t if and only if...
 - \circ $r \in conf(i, \alpha, \beta)$
 - $\circ \ \ t \in \operatorname{conf}(\mathcal{M}(i,\alpha,\beta))$ via some $\nearrow{R-} \xrightarrow{0}$

otherwise introduce × into the output t

Can we actually define M and M' with these features?

$$M(x,y) = \begin{cases} \langle j,R \rangle & \text{if } x = \langle i, \bullet \rangle \,, \ y = \langle i,0 \rangle \,, \ \overbrace{i:R+} \longrightarrow \underbrace{j:*} \,, \\ \langle j,0 \rangle & \text{if } x = \langle i,\bullet \rangle \,, \ y = \langle i,R \rangle \,, \ \underbrace{i:R-} \longrightarrow \underbrace{j:*} \,, \\ \langle j,\bullet \rangle & \text{if } x = \langle i,0 \rangle \,, \ y = \langle i,\bullet \rangle \,, \ \underbrace{i:R+} \longrightarrow \underbrace{j:*} \,, \\ \langle j,\bullet \rangle & \text{if } x = \langle i,R \rangle \,, \ y = \langle i,\bullet \rangle \,, \ \underbrace{i:R-} \longrightarrow \underbrace{j:*} \,, \\ \langle j,c \rangle & \text{if } x = y = \langle i,c \rangle \,, \ c \neq \bullet \,, \ \underbrace{i:R+} \longrightarrow \underbrace{j:*} \,, \text{or} \quad \underbrace{i:R-} \longrightarrow \underbrace{j:*} \,, \\ \langle j,\times \rangle & \text{else if } x = \langle i,c \rangle \,, \ y = \langle i,d \rangle \,, \ \underbrace{i:R+} \longrightarrow \underbrace{j:*} \,, \text{or} \quad \underbrace{i:R-} \longrightarrow \underbrace{j:*} \,, \\ \langle i,\times \rangle & \text{otherwise, where } y = \langle i,c \rangle \,. \end{cases}$$

$$M'(x) = \begin{cases} \langle k, c \rangle & \text{if } x = \langle i, c \rangle \,, \, \overbrace{i:R+} \xrightarrow{0} \underbrace{k:*}, \,\, c \neq R, \\ \langle k, \times \rangle & \text{else if } x = \langle i, R \rangle \,, \, \underbrace{i:R+} \xrightarrow{0} \underbrace{k:*}, \\ \langle i, \times \rangle & \text{otherwise, where } x = \langle i, c \rangle \,. \end{cases}$$

Let's see an example computation...

start
$$\rightarrow$$
 $\begin{array}{c} 0 \\ 1:A- \\ \hline \end{array}$ $\begin{array}{c} 0 \\ 2:B- \\ \hline \end{array}$ $\begin{array}{c} 0 \\ 3:A+ \\ \hline \end{array}$ $\begin{array}{c} 0 \\ 0:end \\ \hline \end{array}$

$$\mathbf{1:} \ M \begin{pmatrix} \langle 1, \bullet \rangle, \langle 1, A \rangle \\ \langle 1, A \rangle, \langle 1, \bullet \rangle \\ \langle 1, A \rangle, \langle 1, A \rangle \\ \langle 1, B \rangle, \langle 1, B \rangle \end{pmatrix} = \begin{pmatrix} \langle 4, 0 \rangle \\ \langle 4, \bullet \rangle \\ \langle 4, A \rangle \\ \langle 4, B \rangle \end{pmatrix} \qquad \mathbf{4:} \ M' \begin{pmatrix} \langle 4, 0 \rangle \\ \langle 4, 0 \rangle \\ \langle 4, \bullet \rangle \\ \langle 4, \bullet \rangle \\ \langle 4, 0 \rangle \end{pmatrix} = \begin{pmatrix} \langle 5, 0 \rangle \\ \langle 5, 0 \rangle \\ \langle 5, \bullet \rangle \\ \langle 5, 0 \rangle \end{pmatrix}$$

4:
$$M'$$
 $\begin{pmatrix} \langle 4, 0 \rangle \\ \langle 4, 0 \rangle \\ \langle 4, \bullet \rangle \\ \langle 4, 0 \rangle \end{pmatrix} = \begin{pmatrix} \langle 5, 0 \rangle \\ \langle 5, 0 \rangle \\ \langle 5, \bullet \rangle \end{pmatrix}$

$$\mathbf{2:} \ M \begin{pmatrix} \langle 4, 0 \rangle \ , \langle 4, 0 \rangle \\ \langle 4, \bullet \rangle \ , \langle 4, B \rangle \\ \langle 4, A \rangle \ , \langle 4, A \rangle \end{pmatrix} = \begin{pmatrix} \langle 1, 0 \rangle \\ \langle 1, 0 \rangle \\ \langle 1, A \rangle \\ \langle 1, \bullet \rangle \end{pmatrix} \qquad \mathbf{5:} \ M' \begin{pmatrix} \langle 5, 0 \rangle \\ \langle 5, 0 \rangle \\ \langle 5, \bullet \rangle \\ \langle 5, 0 \rangle \end{pmatrix} = \begin{pmatrix} \langle 6, 0 \rangle \\ \langle 6, 0 \rangle \\ \langle 6, \bullet \rangle \\ \langle 6, 0 \rangle \end{pmatrix}$$

5:
$$M'$$
 $\begin{pmatrix} \langle 5, 0 \rangle \\ \langle 5, 0 \rangle \\ \langle 5, \bullet \rangle \\ \langle 5, 0 \rangle \end{pmatrix} = \begin{pmatrix} \langle 6, 0 \rangle \\ \langle 6, 0 \rangle \\ \langle 6, \bullet \rangle \\ \langle 6, 0 \rangle \end{pmatrix}$

$$\mathbf{3:}\ \ M\begin{pmatrix} \langle 1,0\rangle \ , \langle 1,0\rangle \\ \langle 1,0\rangle \ , \langle 1,0\rangle \\ \langle 1,A\rangle \ , \langle 1,\bullet\rangle \\ \langle 1,\bullet\rangle \ , \langle 1,A\rangle \end{pmatrix} = \begin{pmatrix} \langle 4,0\rangle \\ \langle 4,0\rangle \\ \langle 4,0\rangle \\ \langle 4,\bullet\rangle \\ \langle 4,0\rangle \end{pmatrix}$$

3:
$$M \begin{pmatrix} \langle 1,0 \rangle, \langle 1,0 \rangle \\ \langle 1,0 \rangle, \langle 1,0 \rangle \\ \langle 1,A \rangle, \langle 1,\bullet \rangle \\ \langle 1,\bullet \rangle, \langle 1,A \rangle \end{pmatrix} = \begin{pmatrix} \langle 4,0 \rangle \\ \langle 4,0 \rangle \\ \langle 4,\bullet \rangle \\ \langle 4,0 \rangle \end{pmatrix}$$
6: $M \begin{pmatrix} \langle 6,0 \rangle, \langle 6,0 \rangle \\ \langle 6,0 \rangle, \langle 6,\bullet \rangle \\ \langle 6,0 \rangle, \langle 6,0 \rangle \\ \langle 6,0 \rangle, \langle 6,0 \rangle \end{pmatrix} = \begin{pmatrix} \langle 0,0 \rangle \\ \langle 0,\bullet \rangle \\ \langle 0,B \rangle \\ \langle 0,0 \rangle \end{pmatrix}$

Takeaways on a relation $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^n$...

- certain elements of R encode configurations of \mathcal{M} ,
- M and M' encode the action of $\mathcal M$ in the presence of these elements.

$$\mathrm{conf}(k,\alpha,\beta) = \bigcup_{p \in P_n} \left\{ p\left(\underbrace{\langle k,A \rangle, \dots, \langle k,A \rangle}_{\alpha}, \underbrace{\langle k,B \rangle, \dots, \langle k,B \rangle}_{\beta}, \underbrace{\langle k,0 \rangle, \dots, \langle k,0 \rangle}_{n-\alpha-\beta-1}, \langle k, \bullet \rangle \right) \right\}$$

Questions

- What if R doesn't contain these kinds of elements?
- What if R contains elements that aren't "computational"?
 (multiple •'s or non-constant states)

Call $\mathbb R$ computational if it doesn't contain any elements with 2 \bullet 's or non-constant state.

The **capacity** of a computation $\mathcal{M}^k(i,\alpha,\beta)=(j,\alpha',\beta')$ is the max sum of the registers.

The **capacity** of computational \mathbb{R} is (number of coordinates with \bullet)-1.

We consider the halting problem on $\mathbf{0}$ register input: config = (1,0,0).

Let
$$\mathbb{S}_m = \mathsf{Sg}_{\mathbb{A}(\mathcal{M})^m} (\mathsf{conf}(1,0,0)).$$

Theorem (The Coding Theorem)

The following are equivalent.

- $\mathcal{M}^n(1,0,0) = (k,\alpha,\beta)$ with capacity < m,
- $conf(k, \alpha, \beta) \subseteq S_m$.

Corollary

The following are equivalent.

- M halts with capacity < m,
- \mathbb{S}_m is halting (i.e. contains $conf(0, \alpha, \beta)$),
- every computational $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^{\ell}$ with capacity \geq m is halting.

Theorem (The Coding Theorem)

The following are equivalent.

- $\mathcal{M}^n(1,0,0) = (k,\alpha,\beta)$ with capacity < m,
- $conf(k, \alpha, \beta) \subseteq S_m$.

Framework for proving the hardness of algebraic properties

- Start out with $\mathbb{A}(\mathcal{M}) = \langle A(\mathcal{M}) ; M, M' \rangle$.
- Add operations so that the property is recognizable in $\operatorname{Rel}(\mathbb{A}(\mathcal{M}))$ (ideally in the $(\mathbb{S}_m)_{m\in\mathbb{N}}$).
- Use a computer to verify necessary computations.
- Use software development techniques: write unit tests, rapidly iterate the operation definitions.

This allows us to give a more unified construction for the previously mentioned undecidability results in Universal Algebra.

Non-halting Implies Infinite Degree

Observe

$$\deg(\mathcal{C}) = \infty \quad \text{if and only if} \quad \forall n \ \operatorname{Rel}_n(\mathcal{C}) \not\models \operatorname{Rel}(\mathcal{C})$$

$$\text{if and only if} \quad \forall n \ \exists \mathbb{R} \ \operatorname{Rel}_n(\mathcal{C}) \not\models \mathbb{R}$$

Idea: to show that $deg(\mathbb{A}(\mathcal{M})) = \infty$ when \mathcal{M} does not halt, we show the last equivalence holds for $\mathcal{C} = Clo(\mathbb{A}(\mathcal{M}))$.

Two operations involved

- semilattice operation \land locally flat: $a \land b \neq \langle *, \times \rangle$ iff a = b
- "initialization" operation I(x, y) returns any configuration to conf(1, 0, 0)

At this point $\mathbb{A}(\mathcal{M}) = \langle A(\mathcal{M}) ; M, M', \wedge, I \rangle$.

 $\mathrm{Rel}_n(\mathcal{C}) \models \mathbb{R}$ if and only if \mathbb{R} can be built from $\mathrm{Rel}_n(\mathcal{C})$ using

- intersection of equal arity relations,
- (cartesian) product of finitely many relations,
- permutation of the coordinates of a relation, and
- projection of a relation onto a subset of coordinates.

Theorem (Zadori 1995)

 $Rel_n(\mathbb{A}) \models \mathbb{S}$ if and only if

$$\mathbb{S} = \pi \left(\bigcap_{i \in I} \mu_i \left(\prod_{j \in J_i} \mathbb{R}_{ij} \right) \right)$$

for some $\mathbb{R}_{ij} \in \mathsf{Rel}_n(\mathbb{A})$, some coordinate projection π , and some coordinate permutations μ_i .

Lemma

Suppose that

$$\mathtt{conf}(1,0,0) \subseteq \pi \Bigg(\bigcap_{i \in I} \mu_i \Big(\prod_{j \in J_i} \mathbb{R}_{ij} \Big) \Bigg) = \mathbb{S} \le \mathbb{A}(\mathcal{M})^m,$$

where π is a projection, the μ_i are permutations, and the \mathbb{R}_{ij} are a finite collection of members of $\text{Rel}_n(\mathbb{A}(\mathcal{M}))$, and n < m. Then \mathbb{S} is halting.

Theorem

The following hold for any Minsky machine \mathcal{M} .

- If $\mathcal M$ does not halt with capacity m then $m < \deg(\mathbb A(\mathcal M))$.
- If \mathcal{M} does not halt then $\mathbb{A}(\mathcal{M})$ is not finitely related.

Proof: Suppose that $\deg(\mathbb{A}(\mathcal{M})) \leq m$. This implies in particular that $\operatorname{Rel}_m(\mathbb{A}(\mathcal{M})) \models \mathbb{S}_{m+1}$. By Zadori's theorem, \mathbb{S}_{m+1} can be represented as in the Lemma above, so by that same Lemma it is halting. By the Coding Theorem, this implies that \mathcal{M} halts with capacity m, a contradiction.

HALTING IMPLIES FINITE DEGREE

Strategy

- The relations \mathbb{S}_m witnessed non-entailment when \mathcal{M} did not halt. When \mathcal{M} does halt, these relations eventually witness the halting.
- Show that for some suitably chosen k, we have $\operatorname{Rel}_k(\mathbb{A}(\mathcal{M})) \models \operatorname{Rel}_n(\mathbb{A}(\mathcal{M}))$ for all n.
- We proceed by induction on *n*.
- The base case of n = k is trivial.
- We thus endeavor to prove $Rel_{n-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$ for $\mathbb{R} \in Rel_n(\mathbb{A}(\mathcal{M}))$.
- Relations in $Rel_n(\mathbb{A}(\mathcal{M}))$ can be divided into 4 different kinds, so we proceed by cases.
- We add operations to handle entailment in each of the different cases: $N_{\bullet}(w,x,y,z)$, P(u,v,x,y), H(x,y), $N_{0}(x,y,z)$, S(x,y,z).
- $\mathbb{A}(\mathcal{M}) = \langle A(\mathcal{M}); M, M', \wedge, I, N_{\bullet}, P, H, N_0, S \rangle$ (final version)

$$\mathbb{A}(\mathcal{M}) = \left\langle A(\mathcal{M}) \; ; \; M, M', \wedge, I, N_{\bullet}, P, H, N_0, S \right\rangle$$

Case $\mathbb R$ is non-computational

- There is an element with 2 •'s or with non-constant state.
- 2 •'s: operation N_• handles entailment.
- Non-constant state: operation P handles entailment.

Theorem

If $m \geq 3$ and $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^m$ is non-computational then $\mathsf{Rel}_{m-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

Case \mathbb{R} is halting

- R contains an element of conf(0,0,0).
- Any element of conf(0,0,0) can be used with operations I, H, and N_0 to prove entailment.

Theorem

If $3 \leq m$ and $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^m$ is halting then $\mathsf{Rel}_{m-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

We are left to examine computational non-halting $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^n$.

Two metrics (both subsets of [n])

Let's say that \mathcal{M} halts with capacity κ .

- $\mathcal{D}(\mathbb{R}) =$ "coordinates i such that $\exists r \in R$ with $r(i) = \langle j, \bullet \rangle$ " = "the (dot) part of \mathbb{R} ."
- $\mathcal{N}(\mathbb{R})=$ "the inherently non-halting part of \mathbb{R} " ...
 - \circ $\pi_{\mathcal{N}(\mathbb{R})}(\mathbb{R})$ is non-halting,
 - \circ if $K = |\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})|$ then $\mathbb{S}_K \leq \mathbb{R}$.

Case $\mathbb R$ is computational and $|\mathcal N(\mathbb R)\cap\mathcal D(\mathbb R)|>\kappa$

- $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| > \kappa$ then \mathbb{R} contains a halting subalgebra.
- it follows that \mathbb{R} halts!

We thus consider computational non-halting $\mathbb R$ with $|\mathcal N(\mathbb R)\cap\mathcal D(\mathbb R)|\leq\kappa$.

Case computational non-halting $\mathbb R$ with $\left|\mathcal N(\mathbb R)\cap\mathcal D(\mathbb R)\right|\leq \kappa$

Theorem

Assume that $n \ge \kappa + 16$ and

- $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^n$ is computational non-halting,
- $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$,
- (several technical hypotheses)

Then $\operatorname{Rel}_{n-1}(\mathbb{A}(\mathcal{M})) \models \mathbb{R}$.

This completes the case analysis!

Theorem,

If \mathcal{M} halts with capacity κ then $deg(\mathbb{A}(\mathcal{M})) \leq \kappa + 16$.

CONCLUSION AND OPEN PROBLEMS

Theorem

The following are equivalent.

- M halts,
- $deg(\mathbb{A}(\mathcal{M})) < \infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),
- \mathcal{M} halts with capacity at least $deg(\mathbb{A}(\mathcal{M})) 16$.

Interesting observations

- ullet There are infinitely many ${\mathcal M}$ with halting status independent of ZFC.
- There are infinitely many $\mathcal M$ such that $\deg(\mathbb A(\mathcal M))<\infty$ is independent of ZFC.
- There are finite algebras A that whose finite-relatedness is independent of ZFC.
- $\bullet \;\; \mathsf{maxdeg}_\sigma(n) = \mathsf{sup} \left\{ \left. \mathsf{deg}(\mathbb{A}) \;\; \right| \;\; \begin{array}{c} \mathbb{A} \;\; \mathsf{has} \;\; \mathsf{signature} \;\; \sigma, \\ \mathsf{deg}(\mathbb{A}) < \infty, \;\; \mathsf{and} \;\; |A| \leq n \end{array} \right\}$

is not computable.

Finite Generation Problems

Problem

Given relations \mathcal{R} , decide if $\mathcal{C} = Pol(\mathcal{R})$ is finitely generated.

That is, decide whether $C = Clo(\mathcal{F})$ for some finite set of operations \mathcal{F} .

Problem

Given relations \mathcal{R} and operations \mathcal{F} , decide whether $Pol(\mathcal{R}) = Clo(\mathcal{F})$.

Natural Duality Problems

We can modify the definition of $deg(\cdot)$ to obtain a duality degree: $deg_{\partial}(\cdot)$.

Problem (Finite Duality Degree)

Decide whether $\deg_{\partial}(\mathbb{A}) < \infty$ for finite \mathbb{A} .

Duality entailment implies usual entailment, so we already have that $\mathbb{A}(\mathcal{M})$ is not finitely duality related when \mathcal{M} does not halt.

Problem

If \mathcal{M} halts, is $\deg_{\partial}(\mathbb{A}(\mathcal{M})) < \infty$?

Problem

Given finite \mathbb{A} , decide whether \mathbb{A} admits a duality.

Finite Degree Clones are Undecidable

Theorem

The following are equivalent.

- M halts,
- $deg(\mathbb{A}(\mathcal{M})) < \infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),
- \mathcal{M} halts with capacity at least $deg(\mathbb{A}(\mathcal{M})) 16$.

Thank you for your attention.