The Hidden Subgroup Problem for Universal Algebras

Matthew Moore

The University of Kansas
Department of Electrical Engineering and Computer Science

October 17, 2019

The Hidden Subgroup Problem for Universal Algebras

1 Quantum Computation

2 Hidden Subgroups, Hidden Kernels

3 The Hidden Kernel Problem for Post's Lattice

QUANTUM COMPUTATION

Compared to classical computers, quantum computers are

- based on a different model of computation,
- very hard/maybe impossible to build at scale,
- very hard to program and reason about.

Classical computers are

- based on well-studied model of computation,
- cheap/easy to build,
- "easy" to program and reason about.
- fast (approx. exponential growth in speed).

Why bother?

Physical constraints: we will probably never have

- clock speeds faster than the electron transition frequency ($\approx 10^{15}$ Hz),
- components smaller than the diameter of a hydrogen atom ($\approx 10^{-8}$ cm).

Even in the distant future, classical computers will continue to struggle with problems of exponential complexity.

Idea: exploit natural phenomena to aid in computation.

Quantum phenomena are hard to exploit...

How about using classical phenomena? Maybe use an analog co-processor?

- Classical phenomena can be simulated in polynomial time and space.
- Speedup will be at most polynomial.
- Classical physics is too "easy" to be useful.

Consider a quantum system of n particles with spins 0 or 1.

- Each particle is modelled by vector space $\mathfrak{B} = \mathbb{C}$ -span $\{|0\rangle, |1\rangle\}$.
- Total system is modelled by 2^n -dimensional vector space,

$$\mathfrak{B}^{\otimes n} = \mathbb{C}$$
-span $\{ |s_1 \cdots s_n\rangle \mid s_i \in \{0,1\} \}.$

• Possible states of the system are norm 1 vectors,

$$\sum_{s_1,\ldots,s_n\in\{0,1\}}\lambda_{s_1\cdots s_n}|s_1\cdots s_n\rangle=|\alpha\rangle.$$

- Probability of observing $|t_1 \cdots t_n\rangle$ when $|\alpha\rangle$ is measured $= |\lambda_{t_1 \cdots t_n}|^2$.
- Evolution over time is determined by action of $2^n \times 2^n$ unitary matrices.

Quantum systems represent exponentially difficult computational problems, in contrast to "easy" classical systems.

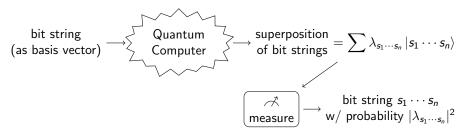
Qubits

- Qubits are what a quantum computer operates on.
- single qubit pprox basis vector of $\mathfrak{B}\coloneqq\mathbb{C}$ -span $\{\ket{0},\ket{1}\}pprox\ket{s},\ s\in\{0,1\}$
- multiple qubits pprox basis vectors of $\mathfrak{B}^{\otimes n} pprox |s_1 \cdots s_n\rangle$ for $s_i \in \{0,1\}$
- quantum state pprox norm 1 element of $\mathfrak{B}^{\otimes n} pprox |lpha
 angle = \sum \lambda_{s_1\cdots s_n} |s_1\cdots s_n
 angle$
- probability of observing state $|s_1 \cdots s_n\rangle \approx |\lambda_{s_1 \cdots s_n}|^2 \approx |\langle \alpha \mid s_1 \cdots s_n \rangle|^2$
- evolution of $|\alpha\rangle$ over time $\approx U |\alpha\rangle$, U a unitary matrix

Conventions

- ullet |s
 angle is a vertical vector, $|0
 angle = inom{1}{0}$, $|1
 angle = inom{0}{1}$
- $\langle s|\coloneqq |s\rangle^*$ (conjugate transpose) is a horizontal vector
- $\langle s | | t \rangle =: \langle s | t \rangle$ is the inner product
- $|s\rangle\otimes|t\rangle=:|st\rangle$ or $|s,t\rangle$
- U unitary $\Leftrightarrow U$ preserves inner product $\Leftrightarrow U^{-1} = U^*$

- deterministic: equal inputs give equal outputs
- need not be reversible
- represented by a boolean circuit (for fixed length input)



- probabilistic, likely need to run multiple times
- must be reversible (before measurement)
- represented by a quantum circuit (for fixed length input)

A quantum circuit consists of

gates (unitary transformations),

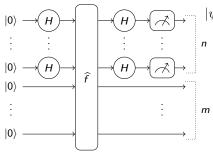
H , σ_x , ...

• measurement operations.

 \bigcirc

Every unitary transf. can be built using gates from the standard gate set.

Circuits are specified graphically or given inline.



$$|\psi\rangle = (H^{\otimes n} \otimes I_m) \widehat{f} (H^{\otimes n} \otimes I_m) (|0^n\rangle \otimes |0^m\rangle)$$

The complexity of a circuit is the number of gates.

Measurement of a subset of qubits is the partial trace of the density matrix, $\operatorname{Tr}_{n}(|\psi\rangle\langle\psi|)$.

The
$$\stackrel{\textstyle (H)}{}$$
 gate is the Hadamard operator, $H\ket{q}=rac{1}{\sqrt{2}}\Big(\ket{0}+(-1)^q\ket{1}\Big).$

Pre-measurement outcome:

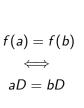
This is the uniform distribution!

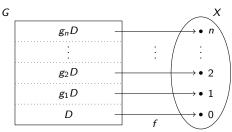
The circuit generates perfect *n*-bit random numbers.

HIDDEN SUBGROUPS, HIDDEN KERNELS

Let \mathbb{G} be a group, X a set, and $f:G\to X$ a <u>function</u>.

f hides a subgroup $\mathbb{D} \leq \mathbb{G}$ if f is constant precisely on \mathbb{D} -cosets.





The Hidden Subgroup Problem (HSP)

Input: \mathbb{G} , $f: G \to X$ hiding some subgroup **as a blackbox**

Output: the subgroup \mathbb{D} that f hides (as generators)

Considerations

- Input size is lg(|G|).
- D must be specified with poly(lg(|G|)) information.

- Clearly in $\mathcal{O}(|G|) = \mathcal{O}(2^{\lg(|G|)})$.
- Two kinds of complexity: circuit size, evaluations of f.

The Hidden Subgroup Problem (HSP)

Input: \mathbb{G} , $f: G \to X$ hiding some subgroup (as a blackbox): $[f(a) = f(b) \Leftrightarrow aD = bD]$

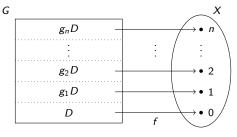
Output: the subgroup \mathbb{D} that f hides (as generators)

Many famous problems are special cases of the HSP.

Problem	\mathbb{G}	Classical	Quantum
Simon's problem	\mathbb{Z}_2^n	$\Omega(2^n)$	$\mathcal{O}(n^2)$
Factoring	\mathbb{Z}	$\mathcal{O}(2^{K \lg(n)^{1/3} \lg \lg(n)^{2/3}})$	$\mathcal{O}(n^3)$
Discrete log	$\mathbb{Z}\times\mathbb{Z}$	$\mathcal{O}(2^{K \lg(n)^{1/3} \lg \lg(n)^{2/3}})$	$\mathcal{O}(n^3)$
Shortest vector	\mathbb{D}_n	$\mathcal{O}(2^{Kn})$	$pprox \mathcal{O}(8^{\sqrt{n}})$
Graph isomorphism	\mathbb{S}_n	$\mathcal{O}(2^{\lg(n)^K})$	

Polynomial-time quantum algorithms are known for

- abelian groups (Simon, Shor, Kitaev, et al),
- an irregular constellation of other groups.



Questions

- What makes abelian groups special?
- Can "hiding" a subgroup be made more natural?

Algebras

- An algebra is a set A together with operations $f_i: A^{n_i} \to A$ for $i \in I$, Written $\mathbb{A} = \langle A; \{f_i\}_{i \in I} \rangle$.
- Subalgebras don't form a meaningful partition of *A*, it's not clear how to define "hiding" a subalgebra.
- A congruence of $\mathbb A$ is a compatible equivalence relation. Equivalently, a congruence is the kernel of a homomorphism $\varphi:\mathbb A\to\mathbb B$.
- How does $f: A \to X$ hide a congruence θ of \mathbb{A} ?

Hidden Kernel Problem (v1)

Input: A, $f: A \rightarrow X$ hiding some congruence (as a blackbox)

Output: the congruence θ of \mathbb{A} that f hides (as generators)

For $f: A \to X$, we say that f hides congruence θ of \mathbb{A} if

$$f(a) = f(b) \iff a \theta b.$$

This allows us to impose algebraic structure on X: \mathbb{A}/θ .

f is actually a homomorphism with kernel θ !

Hidden Kernel Problem

Input: algebras \mathbb{A} , \mathbb{B} , homomorphism $\varphi : \mathbb{A} \to \mathbb{B}$ (as a blackbox)

Output: generators of $ker(\varphi)$

THE HIDDEN KERNEL PROBLEM FOR POST'S LATTICE

Hidden Kernel Problem

Input: homomorphism

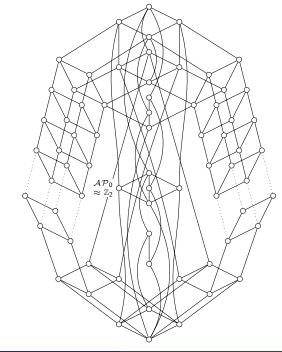
 $\varphi: \mathbb{A} \to \mathbb{B}$

Output: $ker(\varphi)$ (generators)

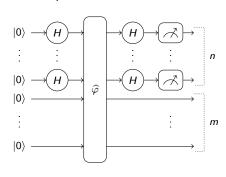
Simon's algorithm solves this for $\mathbb{A} = (\mathbb{Z}_2)^n$.

How about if $\mathbb{A} = \mathbb{B}^n$, where \mathbb{B} is a 2-element algebra?

How many such \mathbb{B} are there?



Define quantum circuit S =



Consider an instance of the HKP:

- B a 2-element algebra,
 - $\mathbb{A} = \mathbb{B}^n$, $\mathbb{D} = \mathbb{B}^m$,
 - homomorphism $\varphi : \mathbb{A} \to \mathbb{D}$.

The $\widehat{\varphi}$ gate

- Define $\varphi_{\oplus} : \{0,1\}^{n+m} \to \{0,1\}^{n+m}$ by $\varphi_{\oplus}(x,y) = (x,y+f(x)).$
- Define unitary transformation $\widehat{\varphi}$ by $\widehat{\varphi} |x, y\rangle = |x, y + \varphi(x)\rangle$.

What does it mean for S to solve this problem?

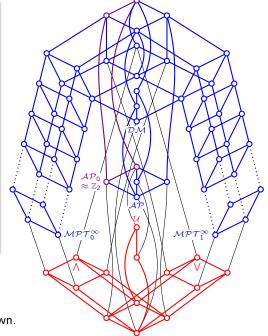
- Output is probabilistic.
- Must run S multiple times, collecting the output.
- Overall complexity is (size of S)·(number of runs).

Theorem

There exists / doesn't exist a poly-time quantum solution for $HKP(\mathbb{B}^n)$, where

\mathbb{B}	Ops on $\{0,1\}$
\mathcal{AP}_0	x + y (known)
\mathcal{MPT}_0^∞	$x \wedge (y \vee z)$
\mathcal{MPT}_1^∞	$x \vee (y \wedge z)$
\mathcal{AP}	x + y + z
\mathcal{DM}	maj(x, y, z)
\wedge	$x \wedge y$, 0, 1
V	$x \vee y$, 0, 1
\mathcal{U}	¬ <i>x</i> , 0

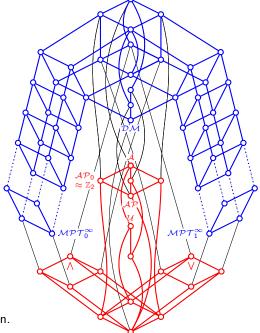
- exists is inherited up,
- doesn't exist is inherited down.



Theorem

There exists / doesn't exist a poly-time classical solution for $HKP(\mathbb{B}^n)$, where

\mathbb{B}	Ops on $\{0,1\}$
\mathcal{MPT}_0^∞	$x \wedge (y \vee z)$
\mathcal{MPT}_1^∞	$x \vee (y \wedge z)$
\mathcal{DM}	maj(x, y, z)
\mathcal{A}	$x \leftrightarrow y$, 0
\wedge	$x \wedge y$, 0, 1
\bigvee	$x \vee y$, 0, 1



Observations

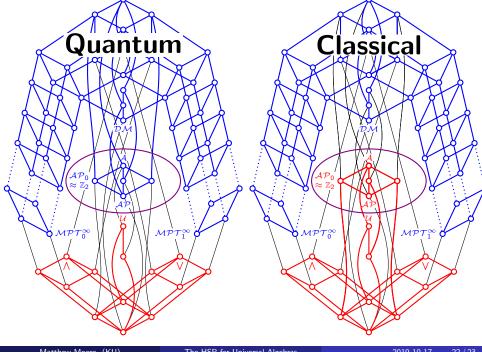
- exists is inherited up,
- doesn't exist is inherited down.

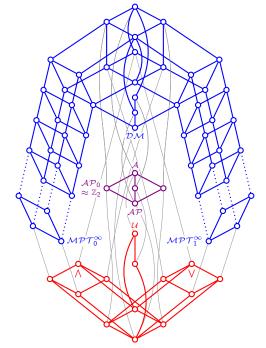
How does S work?

Notes

•
$$H\ket{q} = \frac{1}{\sqrt{2}} \Big(\ket{0} + (-1)^q \ket{1}\Big) = \frac{1}{\sqrt{2}} \sum_{p \in \{0,1\}} (-1)^{pq} \ket{p}$$

- $H^{-1} = H^* = H$
- $\varphi: \{0,1\}^n \to \{0,1\}^m$ defines gate $\widehat{\varphi}$, $\widehat{\varphi}|x,y\rangle = |x,y+\varphi(x)\rangle$





The Hidden Subgroup Problem for Universal Algebras

Theorem

Let \mathbb{B} be a 2-element algebra and consider $HKP(\mathbb{B}^n)$.

- If MPT₀[∞], MPT₁[∞], or DM is contained in B then classical and quantum poly-time solutions exist.
- If AP ≤ B ≤ A then a quantum poly-time solution exists while no classical poly-time one does.
- If B is contained in \, \, or
 U, then no poly-time quantum
 or classical solutions exist.

Thank you for your attention.

