Supernilpotence Need Not Imply Nilpotence

Matthew Moore*, ${ }^{1}$, Andrew Moorhead ${ }^{2}$

The University of Kansas ${ }^{1}$, Charles University in Prague ${ }^{2}$

January 15, 2020

Let \mathbb{A} be an algebra and $\mathbb{R} \leq \mathbb{A}^{4}$.

instead, we will write

Let α_{1}, α_{2} be congruences of \mathbb{A}. The $\left(\alpha_{1}, \alpha_{2}\right)$-squares of \mathbb{A} are

$$
\mathrm{M}\left(\alpha_{1}, \alpha_{2}\right):=\operatorname{Sg}_{\mathbb{A}^{4}}\left\{\left.\begin{array}{l}
a-b \\
|,|,|c| \\
a-b-c
\end{array} \right\rvert\,(a, b) \in \alpha_{1},(c, d) \in \alpha_{2}\right\}
$$

Observe

$$
\mathrm{M}\left(\alpha_{1}, \alpha_{2}\right):=\operatorname{Sg}_{\mathbb{A}^{4}}\left\{\left.\right|_{a-b} ^{a-b},\left.\right|_{d-d} ^{c-c} \mid(a, b) \in \alpha_{1},(c, d) \in \alpha_{2}\right\}
$$

α_{1} centralizes α_{2} modulo δ if \ldots
[write $\mathrm{C}\left(\alpha_{1}, \alpha_{2} ; \delta\right)$]

The commutator of α_{1} and α_{2} is the smallest δ satisfying the above,

$$
\left[\alpha_{1}, \alpha_{2}\right]:=\bigwedge_{\mathrm{C}\left(\alpha_{1}, \alpha_{2} ; \delta\right)} \delta
$$

Can we generalize this to a higher arity commutator?

Let \mathbb{A} be an algebra and $\mathbb{R} \leq \mathbb{A}^{\mathbb{2}^{3}}$.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be congruences of \mathbb{A}. The $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$-cubes of \mathbb{A} are

Observe

 α_{1}, α_{2} centralize α_{3} modulo δ if \ldots
[write $\mathrm{C}\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; \delta\right)$]

The 3 -dim commutator of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is the smallest δ satisfying the above,

$$
\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]:=\bigwedge_{\mathrm{C}\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; \delta\right)} \delta
$$

Can we generalize this to a higher arity commutator?
Yes, even for arbitrary n !

A general definition of the commutator yields general notions of abelianness, solvability, and nilpotence.

- \mathbb{A} is abelian if $[\mathbb{1}, \mathbb{1}]=0$.
- Define the derived series,

$$
[\alpha]_{0}:=\alpha \quad[\alpha]_{n+1}:=\left[[\alpha]_{n},[\alpha]_{n}\right]
$$

\mathbb{A} is m-solvable if $[\mathbb{1}]_{m}=\mathbb{D}$ for some m.

- define the lower central series,

$$
(\alpha]_{0}:=\alpha \quad(\alpha]_{n+1}:=\left[\alpha,(\alpha]_{n}\right]
$$

\mathbb{A} is (left) m-nilpotent if $(\mathbb{1}]_{m}=\mathbb{0}$ for some m.

- The higher dimensional commutator has its own series,

$$
\alpha \geq[\alpha, \alpha] \geq[\alpha, \alpha, \alpha] \geq \cdots \geq[\alpha, \ldots, \alpha] \geq \ldots
$$

\mathbb{A} is $(m+1)$-supernilpotent if $[\mathbb{1}, \ldots, \mathbb{1}]=\mathbb{O}(m$-ary $)$
($\mathbb{1}$ is the universal congruence and \mathbb{D} is the trivial congruence)

For an algebra \mathbb{A} we have general notions of

- abelianness
- solvability
- nilpotence
- supernilpotence

How are these related?
How are nilpotence and supernilpotence related?
Does supernilpotence imply nilpotence?
Theorem (Moorhead)
If \mathbb{A} satisfies a non-trivial idempotent equational condition, then "Yes".
Theorem (Kearnes, Szendrei)
If \mathbb{A} is finite, then "Yes".

Theorem ($\mathrm{M}+\mathrm{M}$)
Supernilpotence does not imply nilpotence in general.

Idea: Construct \mathbb{A} as simply as possible.

- Make $\mathbb{A} 2$-supernilpotent: $[\mathbb{1}, \mathbb{1}, \mathbb{1}]=\mathbb{0}$.
- When $[\cdot, \cdot]$ is not symmetric, there are many different notions of nilpotence. All of them imply solvability.
- Make \mathbb{A} not solvable.

What does $[\mathbb{1}, \mathbb{1}, \mathbb{1}]=\mathbb{C}$ mean?

We will need to carefully analyze the generation of $M(\mathbb{1}, \mathbb{1}, \mathbb{1})$.

What is the simplest way to ensure $[\mathbb{1}, \mathbb{1}, \mathbb{1}]=\mathbb{0}$?

- consider $\mathbb{A}=\langle A ; t(x, y)\rangle$ where $t(x, y)$ is injective (infinite \mathbb{A})
- generating $\mathrm{M}(\mathbb{1}, \mathbb{1}, \mathbb{1})$ in layers, look for first failure of (\dagger)
- \mathbb{A} is 2 -supernilpotent! \mathbb{A} is also nilpotent!

What is the simplest way to ensure $[\mathbb{1}, \mathbb{1}, \mathbb{1}]=\mathbb{0}$?

- consider $\mathbb{A}=\langle A ; t(x, y)\rangle$ where $t(x, y)$ is injective (infinite \mathbb{A})
- generating $\mathrm{M}(\mathbb{1}, \mathbb{1}, \mathbb{1})$ in layers, look for first failure of (\dagger)
- \mathbb{A} is 2 -supernilpotent! \mathbb{A} is also nilpotent!

Idea:

- $\mathbb{A}=\langle A ; t(x, y)\rangle$, injective $t(x, y)$
- carefully redefine $t(x, y)$ to sabotage injectivity and nilpotence
- be clever so that $t(x, y)$ is injective enough to ensure $[\mathbb{1}, \mathbb{1}, \mathbb{1}]=\mathbb{0}$

Define

$$
O:=\left\{o_{i}^{j} \mid i, j \in \mathbb{N}\right\}, \quad R:=\left\{r_{i}^{j} \mid i, j \in \mathbb{N}\right\}, \quad A:=O \cup R \cup \mathbb{N} .
$$

Fix an injection $s: A^{2} \rightarrow \mathbb{N}$. Define

$$
t\left(\begin{array}{ccc}
r_{4 i}^{j}-r_{4 i+2}^{j} & r_{4 i}^{j}-r_{4 i}^{j} \\
\mid & \mid & \mid \\
r_{4 i}^{j}-r_{4 i+2}^{j} & r_{4 i+2}^{j}-r_{4 i+2}^{j}
\end{array}\right):=\begin{array}{cc}
o_{i}^{j}-r_{i}^{j+1} \\
\mid & \mid \\
o_{i}^{j}-r_{i+1}^{j+1}
\end{array}
$$

Otherwise, define $t(x, y):=s(x, y)$. Let $\mathbb{A}=\langle A ; t(x, y)\rangle$.
Observe: $t(x, y)$ is injective except when the output is in O.

Define $A=O \cup R \cup \mathbb{N}$ and

$$
t\left(\begin{array}{ccc}
r_{4 i}^{j}-r_{4 i+2}^{j} & r_{4 i}^{j}-r_{4 i}^{j} \\
\mid & \mid & \mid \\
r_{4 i}^{j}-r_{4 i+2}^{j} & r_{4 i+2}^{j}-r_{4 i+2}^{j}
\end{array}\right):=\begin{gathered}
o_{i}^{j}-r_{i}^{j+1} \\
\mid \\
o_{i}^{j}-r_{i+1}^{j+1}
\end{gathered},
$$

otherwise define $t(x, y):=s(x, y)$ for some injection $s: A^{2} \rightarrow \mathbb{N}$.

\mathbb{A} is not solvable

- Dervived series: $\quad[\alpha]_{0}:=\alpha, \quad[\alpha]_{n+1}:=\left[[\alpha]_{n},[\alpha]_{n}\right]$.
- $R^{j}:=\left\{r_{i}^{j} \mid i, j \in \mathbb{N}\right\}$ is contained in a $[\mathbb{1}]_{j}$-class (induction on j).
- Thus $[\mathbb{1}]_{j} \neq \mathbb{O}$ for any j, so \mathbb{A} is not solvable.

Define $A=O \cup R \cup \mathbb{N}$ and

$$
t\left(\begin{array}{ccc}
r_{4 i}^{j}-r_{4 i+2}^{j} & r_{4 i}^{j}-r_{4 i}^{j} \\
\mid & \mid & \mid \\
\mid \\
r_{4 i}^{j}-r_{4 i+2}^{j} & r_{4 i+2}^{j} \cdot r_{4 i+2}^{j}
\end{array}\right):=\begin{gathered}
o_{i}^{j}-r_{i}^{j+1} \\
\mid \\
\\
o_{i}^{j}-r_{i+1}^{j+1}
\end{gathered},
$$

otherwise define $t(x, y):=s(x, y)$ for some injection $s: A^{2} \rightarrow \mathbb{N}$.
Generating $M(\mathbb{1}, \mathbb{1}, \mathbb{1})$ in layers, look for first instance of

Observations

- If $t(a, b)=t(c, d)$ then $a=c$.
- Argument squares: if 3 back-to-front edges are equal, then the 4th is too.
- $b_{2} \neq f_{2}$, otherwise $b=f$. At most 2 back-to-front edges in the second argument cube are equal.
The rest of the argument is technical ...

Define $A=O \cup R \cup \mathbb{N}$ and

$$
t\left(\begin{array}{ccc}
r_{4 i}^{j}-r_{4 i+2}^{j} & r_{4 i}^{j}-r_{4 i}^{j} \\
1 & 1 & 1 \\
r_{4 i}^{j}-r_{4 i+2}^{j} & r_{4 i+2}^{j} \cdot r_{4 i+2}^{j}
\end{array}\right):=\begin{gathered}
o_{i}^{j}-r_{i}^{j+1} \\
1 \\
o_{i}^{j} \\
o_{i}^{j}-r_{i+1}^{j+1}
\end{gathered},
$$

otherwise define $t(x, y):=s(x, y)$ for some injection $s: A^{2} \rightarrow \mathbb{N}$.
Generating $\mathrm{M}(\mathbb{1}, \mathbb{1}, \mathbb{1})$ in layers, look for first instance of

Observations

- If $t(a, b)=t(c, d)$ then $a=c$.
- Argument squares: if 3 back-to-front edges are equal, then the 4th is too.
- $b_{2} \neq f_{2}$, otherwise $b=f$. At most 2 back-to-front edges in the second argument cube are equal.
The rest of the argument is technical ...

Theorem ($\mathrm{M}+\mathrm{M}$)

The algebra \mathbb{A} is 3 -supernilpotent but not solvable.

- nilpotence and solvability can be generalized using the n-ary commutator
- call the generalized notions n-dimensional nilpotence and solvability
- a similar construction yields $\mathbb{A}_{n}:=\left\langle A ; t\left(x_{1}, \ldots, x_{n}\right)\right\rangle$.

Theorem ($\mathrm{M}+\mathrm{M}$)

The algebra \mathbb{A}_{n} is $(n+1)$-supernilpotent but not n-dimensional solvable.

Supernilpotence Need Not Imply Nilpotence

Theorem ($\mathrm{M}+\mathrm{M}$)

The algebra \mathbb{A} is 3-supernilpotent but not solvable.

Theorem ($\mathrm{M}+\mathrm{M}$)

The algebra \mathbb{A}_{n} is $(n+1)$-supernilpotent but not n-dimensional solvable.

Thank you for your attention.

