The Hidden Subgroup Problem for Universal Algebras

Matthew Moore*, Taylor Walenczyk

The University of Kansas
Department of Electrical Engineering and Computer Science

July 8 - 11, 2020

The Hidden Subgroup Problem for Universal Algebras

1 Quantum Computation

2 Hidden Subgroups, Hidden Kernels

3 The Hidden Kernel Problem for Post's Lattice

QUANTUM COMPUTATION

Compared to classical computers, quantum computers are

- based on a different model of computation,
- very hard/maybe impossible to build,
- very hard to program and reason about.

Classical computers are

- based on well-studied model of computation,
- cheap/easy to build,
- "easy" to program and reason about,
- fast (approx. exponential growth in speed).

Why bother?

Physical constraints: we will probably never have

- clock speeds faster than the electron transition frequency ($\approx 10^{15}$ Hz),
- components smaller than the diameter of a hydrogen atom ($\approx 10^{-8}$ cm).

Classical computers will always struggle with exponential complexity.

Idea: exploit natural phenomena to aid in computation.

• Quantum phenomena are hard to exploit...

How about using classical phenomena? Maybe use an analog co-processor?

- Classical phenomena can be simulated in polynomial time and space.
- Speedup will be at most polynomial.
- Classical physics is too "easy" to be useful.

Consider a quantum system of n particles with spins 0 or 1.

- Each particle is modelled by vector space $\mathfrak{B} = \mathbb{C}$ -span $\{|0\rangle, |1\rangle\}$.
- Total system is modelled by 2^n -dimensional vector space,

$$\mathfrak{B}^{\otimes n} = \mathbb{C}$$
-span $\{ |s_1 \cdots s_k\rangle \mid s_i \in \{0,1\} \}.$

Possible states of the system are norm 1 vectors,

$$\sum_{s_1,\ldots,s_n\in\{0,1\}}\lambda_{s_1\cdots s_n}|s_1\cdots s_n\rangle=|\alpha\rangle.$$

- Probability of observing $|t_1 \cdots t_n\rangle$ when $|\alpha\rangle$ is measured $= |\lambda_{t_1 \cdots t_n}|^2$.
- Evolution over time is determined by action of $2^n \times 2^n$ unitary matrices.

Quantum systems represent exponentially difficult computational problems, in contrast to "easy" classical systems.

HIDDEN SUBGROUPS, HIDDEN KERNELS

Let \mathbb{G} be a group, X a set, and $f:G\to X$ a <u>function</u>.

f hides a subgroup $\mathbb{D} \leq \mathbb{G}$ if f is constant precisely on \mathbb{D} -cosets.

The Hidden Subgroup Problem (HSP)

Input: \mathbb{G} , $f: G \to X$ hiding some subgroup **as a blackbox**

Output: the subgroup \mathbb{D} that f hides (as generators)

Considerations

- Input size is lg(|G|).
- D must be specified with poly(lg(|G|)) information.

- Clearly in $\mathcal{O}(|G|) = \mathcal{O}(2^{\lg(|G|)})$.
- Two kinds of complexity: circuit size, evaluations of f.

The Hidden Subgroup Problem (HSP)

Input: \mathbb{G} , $f: G \to X$ hiding some subgroup (as a blackbox): $[f(a) = f(b) \Leftrightarrow aD = bD]$

Output: the subgroup $\mathbb D$ that f hides (as generators)

Many famous problems are special cases of the HSP.

Problem	\mathbb{G}	Classical	Quantum
Simon's problem	\mathbb{Z}_2^n	$\Omega(2^n)$	$\mathcal{O}(n^2)$
Factoring	\mathbb{Z}	$\mathcal{O}(2^{K \lg(n)^{1/3} \lg \lg(n)^{2/3}})$	$\mathcal{O}(n^3)$
Discrete log	$\mathbb{Z} \times \mathbb{Z}$	$\mathcal{O}(2^{K \lg(n)^{1/3} \lg \lg(n)^{2/3}})$	$\mathcal{O}(n^3)$
Graph isomorphism	\mathbb{S}_n	$\mathcal{O}(2^{\lg(n)^K})$	
Shortest vector	\mathbb{D}_n	$\mathcal{O}(2^{Kn})$	sub-exp

Polynomial-time quantum algorithms are known for

- abelian groups (Simon, Shor, Kitaev, et al),
- an irregular constellation of other groups.

Questions

- What makes abelian groups special?
- Can "hiding" a subgroup be made more natural?

Algebras

- An algebra is a set A together with operations $f_i: A^{n_i} \to A$ for $i \in I$, Written $\mathbb{A} = \langle A; \{f_i\}_{i \in I} \rangle$.
- Subalgebras don't form a meaningful partition of A, it's not clear how to define "hiding" a subalgebra.
- A congruence of $\mathbb A$ is a compatible equivalence relation. Equivalently, a congruence is the kernel of a homomorphism $\varphi:\mathbb A\to\mathbb B$.
- How does $f: A \to X$ hide a congruence θ of \mathbb{A} ?

Hidden Kernel Problem (v1)

Input: A, $f: A \rightarrow X$ hiding some congruence (as a blackbox)

Output: the congruence θ of \mathbb{A} that f hides (as generators)

For $f: A \to X$, we say that f hides congruence θ of \mathbb{A} if

$$f(a) = f(b) \iff a \theta b.$$

This allows us to impose algebraic structure on X: \mathbb{A}/θ .

f is actually a homomorphism with kernel θ !

Hidden Kernel Problem

Input: algebras \mathbb{A} , \mathbb{B} , homomorphism $\varphi : \mathbb{A} \to \mathbb{B}$ (as a blackbox)

Output: generators of $ker(\varphi)$

THE HIDDEN KERNEL PROBLEM FOR POST'S LATTICE

Hidden Kernel Problem

Input: homomorphism

 $\varphi: \mathbb{A} \to \mathbb{B}$

Output: $ker(\varphi)$ (generators)

Simon's algorithm solves this for $\mathbb{A} = (\mathbb{Z}_2)^n$.

How about if $\mathbb{A} = \mathbb{B}^n$, where \mathbb{B} is a 2-element algebra?

How many such \mathbb{B} are there?

Theorem

There exists / doesn't exist a poly-time quantum solution for $HKP(\mathbb{B}^n)$, where

\mathbb{B}	Ops on $\{0,1\}$
\mathcal{AP}_0	x + y (known)
\mathcal{MPT}_0^∞	$x \wedge (y \vee z)$
\mathcal{MPT}_1^∞	$x \vee (y \wedge z)$
\mathcal{AP}	x + y + z
\mathcal{DM}	maj(x, y, z)
\wedge	$x \wedge y$, 0, 1
V	$x \vee y$, 0, 1
\mathcal{U}	¬ <i>x</i> , 0

- exists is inherited up,
- doesn't exist is inherited down.

Theorem

There exists / doesn't exist a poly-time classical solution for $HKP(\mathbb{B}^n)$, where

LADOTO LA LA LA
$\mathcal{MPT}_0^{\infty} x \wedge (y \vee z)$
$\mathcal{MPT}_1^{\infty} x \lor (y \land z)$
\mathcal{DM} maj (x, y, z)
\mathcal{A} $x \leftrightarrow y$, 0
\wedge $\times \wedge y$, 0, 1
\bigvee $x \lor y, 0, 1$
\mathcal{U} $\neg x$, 0

Observations

- exists is inherited up,
- · doesn't exist is inherited down.

The Hidden Subgroup Problem for Universal Algebras

Theorem

Let \mathbb{B} be a 2-element algebra and consider $HKP(\mathbb{B}^n)$.

- If MPT₀[∞], MPT₁[∞], or DM is contained in B then classical and quantum poly-time solutions exist.
- If AP ≤ B ≤ A then a quantum poly-time solution exists while no classical poly-time one does.
- If B is contained in \(\bar{\chi}, \bar{\chi}, or \\ \mathcal{U}, then no poly-time quantum or classical solutions exist.

Thank you for your attention.

