The Hidden Subgroup Problem for Universal Algebras

Matthew Moore*, Taylor Walenczyk
The University of Kansas
Department of Electrical Engineering and Computer Science

$$
\text { July } 8 \text { - 11, } 2020
$$

The Hidden Subgroup Problem for Universal Algebras

(1) Quantum Computation
(2) Hidden Subgroups, Hidden Kernels
(3) The Hidden Kernel Problem for Post's Lattice

Quantum Computation

Compared to classical computers, quantum computers are

- based on a different model of computation,
- very hard/maybe impossible to build,
- very hard to program and reason about.

Classical computers are

- based on well-studied model of computation,
- cheap/easy to build,
- "easy" to program and reason about,
- fast (approx. exponential growth in speed).

Why bother?

Physical constraints: we will probably never have

- clock speeds faster than the electron transition frequency $\left(\approx 10^{15} \mathrm{~Hz}\right)$,
- components smaller than the diameter of a hydrogen atom $\left(\approx 10^{-8} \mathrm{~cm}\right)$.

Classical computers will always struggle with exponential complexity.
Idea: exploit natural phenomena to aid in computation.

- Quantum phenomena are hard to exploit...

How about using classical phenomena? Maybe use an analog co-processor?

- Classical phenomena can be simulated in polynomial time and space.
- Speedup will be at most polynomial.
- Classical physics is too "easy" to be useful.

Consider a quantum system of n particles with spins 0 or 1 .

- Each particle is modelled by vector space $\mathfrak{B}=\mathbb{C}$-span $\{|0\rangle,|1\rangle\}$.
- Total system is modelled by 2^{n}-dimensional vector space,

$$
\mathfrak{B}^{\otimes n}=\mathbb{C} \text {-span }\left\{\left|s_{1} \cdots s_{k}\right\rangle \mid s_{i} \in\{0,1\}\right\} .
$$

- Possible states of the system are norm 1 vectors,

$$
\sum_{\cdots, s_{n} \in\{0,1\}} \lambda_{s_{1} \cdots s_{n}}\left|s_{1} \cdots s_{n}\right\rangle=|\alpha\rangle .
$$

- Probability of observing $\left|t_{1} \cdots t_{n}\right\rangle$ when $|\alpha\rangle$ is measured $=\left|\lambda_{t_{1} \cdots t_{n}}\right|^{2}$.
- Evolution over time is determined by action of $2^{n} \times 2^{n}$ unitary matrices.

Quantum systems represent exponentially difficult computational problems, in contrast to "easy" classical systems.

Hidden Subgroups, Hidden Kernels

Let \mathbb{G} be a group, X a set, and $f: G \rightarrow X$ a function.
f hides a subgroup $\mathbb{D} \leq \mathbb{G}$ if f is constant precisely on \mathbb{D}-cosets.

$$
\begin{aligned}
& f(a)=f(b) \\
& \Longleftrightarrow \\
& a D=b D
\end{aligned}
$$

The Hidden Subgroup Problem (HSP)

Input: $\mathbb{G}, f: G \rightarrow X$ hiding some subgroup as a blackbox Output: the subgroup \mathbb{D} that f hides (as generators)

Considerations

- Input size is $\lg (|G|)$.
- \mathbb{D} must be specified with poly $(\lg (|G|))$ information.
- Clearly in $\mathcal{O}(|G|)=\mathcal{O}\left(2^{\lg (|G|)}\right)$.
- Two kinds of complexity: circuit size, evaluations of f.

The Hidden Subgroup Problem (HSP)

Input: $\mathbb{G}, f: G \rightarrow X$ hiding some subgroup (as a blackbox):

$$
[f(a)=f(b) \Leftrightarrow a D=b D]
$$

Output: the subgroup \mathbb{D} that f hides (as generators)

Many famous problems are special cases of the HSP.

Problem	\mathbb{G}	Classical	Quantum
Simon's problem	\mathbb{Z}_{2}^{n}	$\Omega\left(2^{n}\right)$	$\mathcal{O}\left(n^{2}\right)$
Factoring	\mathbb{Z}	$\mathcal{O}\left(2^{K \lg (n)^{1 / 3} \lg \lg (n)^{2 / 3}}\right)$	$\mathcal{O}\left(n^{3}\right)$
Discrete log	$\mathbb{Z} \times \mathbb{Z}$	$\mathcal{O}\left(2^{K \lg (n)^{1 / 3} \lg \lg (n)^{2 / 3}}\right)$	$\mathcal{O}\left(n^{3}\right)$
Graph isomorphism	\mathbb{S}_{n}	$\mathcal{O}\left(2^{\lg (n)^{K}}\right)$	
Shortest vector	\mathbb{D}_{n}	$\mathcal{O}\left(2^{K n}\right)$	sub-exp

Polynomial-time quantum algorithms are known for

- abelian groups (Simon, Shor, Kitaev, et al),
- an irregular constellation of other groups.

Questions

- What makes abelian groups special?
- Can "hiding" a subgroup be made more natural?

Algebras

- An algebra is a set A together with operations $f_{i}: A^{n_{i}} \rightarrow A$ for $i \in I$, Written $\mathbb{A}=\left\langle A ;\left\{f_{i}\right\}_{i \in I}\right\rangle$.
- Subalgebras don't form a meaningful partition of A, it's not clear how to define "hiding" a subalgebra.
- A congruence of \mathbb{A} is a compatible equivalence relation. Equivalently, a congruence is the kernel of a homomorphism $\varphi: \mathbb{A} \rightarrow \mathbb{B}$.
- How does $f: A \rightarrow X$ hide a congruence θ of \mathbb{A} ?

Hidden Kernel Problem (v1)

Input: $\mathbb{A}, f: A \rightarrow X$ hiding some congruence (as a blackbox)
Output: the congruence θ of \mathbb{A} that f hides (as generators)

For $f: A \rightarrow X$, we say that f hides congruence θ of \mathbb{A} if

$$
f(a)=f(b) \quad \Longleftrightarrow \quad a \theta b
$$

This allows us to impose algebraic structure on $X: \mathbb{A} / \theta$.
f is actually a homomorphism with kernel θ !

Hidden Kernel Problem

Input: algebras \mathbb{A}, \mathbb{B}, homomorphism $\varphi: \mathbb{A} \rightarrow \mathbb{B}$ (as a blackbox)
Output: generators of $\operatorname{ker}(\varphi)$

The Hidden Kernel Problem for Post's Lattice

Hidden Kernel Problem

Input: homomorphism

$$
\varphi: \mathbb{A} \rightarrow \mathbb{B}
$$

Output: $\operatorname{ker}(\varphi)$ (generators)

Simon's algorithm solves this for $\mathbb{A}=\left(\mathbb{Z}_{2}\right)^{n}$.

How about if $\mathbb{A}=\mathbb{B}^{n}$, where \mathbb{B} is a 2-element algebra?

How many such \mathbb{B} are there?

Theorem
There exists / doesn't exist a poly-time quantum solution for $\operatorname{HKP}\left(\mathbb{B}^{n}\right)$, where

\mathbb{B}	Ops on $\{0,1\}$
$\mathcal{A} \mathcal{P}_{0}$	$x+y($ known $)$
$\mathcal{M} \mathcal{P}_{0}^{\infty}$	$x \wedge(y \vee z)$
$\mathcal{M} \mathcal{P}_{1}^{\infty}$	$x \vee(y \wedge z)$
$\mathcal{A P}$	$x+y+z$
$\mathcal{D M}$	$\operatorname{maj}(x, y, z)$
Λ	$x \wedge y, 0,1$
\bigvee	$x \vee y, 0,1$
\mathcal{U}	$\neg x, 0$

Observations

- exists is inherited up,
- doesn't exist is inherited down.

Theorem

There exists / doesn't exist a poly-time classical solution for HKP $\left(\mathbb{B}^{n}\right)$, where

\mathbb{B}	Ops on $\{0,1\}$
$\mathcal{M P}_{0}^{\infty}$	$x \wedge(y \vee z)$
$\mathcal{M} \mathcal{P} \mathcal{T}_{1}^{\infty}$	$x \vee(y \wedge z)$
$\mathcal{D M}$	$\operatorname{maj}(x, y, z)$
\mathcal{A}	$x \leftrightarrow y, 0$
\bigwedge	$x \wedge y, 0,1$
$\widehat{\bigvee}$	$x \vee y, 0,1$
\mathcal{U}	$\neg x, 0$

Observations

- exists is inherited up,
- doesn't exist is inherited down.

The Hidden Subgroup Problem for Universal Algebras

Theorem

Let \mathbb{B} be a 2-element algebra and consider $\operatorname{HKP}\left(\mathbb{B}^{n}\right)$.

- If $\mathcal{M P}^{\infty}{ }_{0}^{\infty}, \mathcal{M P}_{1}^{\infty}$, or $\mathcal{D M}$ is contained in \mathbb{B} then classical and quantum poly-time solutions exist.
- If $\mathcal{A P} \preceq \mathbb{B} \preceq \mathcal{A}$ then a quantum poly-time solution exists while no classical poly-time one does.
- If \mathbb{B} is contained in $\bigwedge, ~ \bigvee$, or \mathcal{U}, then no poly-time quantum or classical solutions exist.

Thank you for your attention.

