The Hidden Subgroup Problem for Universal Algebras

Matthew Moore

The University of Kansas Department of Electrical Engineering and Computer Science

March 16, 2021

1 Quantum Computation

2 Hidden Subgroups, Hidden Kernels

3 The Hidden Kernel Problem for Post's Lattice

QUANTUM COMPUTATION

Compared to classical computers, quantum computers are

- based on a different model of computation,
- very hard/maybe impossible to build at scale,
- very hard to program and reason about.

Classical computers are

- based on well-studied model of computation,
- cheap/easy to build,
- "easy" to program and reason about,
- fast (approx. exponential growth in speed).

Why bother?

Physical constraints: we will probably never have

- clock speeds faster than the electron transition frequency ($\approx 10^{15}$ Hz),
- components smaller than the diameter of a hydrogen atom ($\approx 10^{-8}~{\rm cm}).$

Even in the distant future, classical computers will continue to struggle with problems of exponential complexity.

Idea: exploit natural phenomena to aid in computation.

• Quantum phenomena are hard to exploit...

How about using classical phenomena? Maybe use an analog co-processor?

- Classical phenomena can be simulated in polynomial time and space.
- Speedup will be at most polynomial.
- Classical physics is too "easy" to be useful.

Consider a quantum system of n particles with spins 0 or 1.

- Each particle is modelled by vector space $\mathfrak{B} = \mathbb{C}$ -span $\{|0\rangle, |1\rangle\}$.
- Total system is modelled by 2ⁿ-dimensional vector space,

$$\mathfrak{B}^{\otimes n} = \mathbb{C} ext{-span}\left\{ \ket{s_1 \cdots s_n} \mid s_i \in \{0, 1\} \right\}.$$

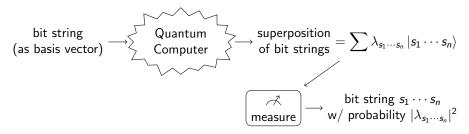
• Possible states of the system are norm 1 vectors,

$$\sum_{s_1,\ldots,s_n\in\{0,1\}}\lambda_{s_1\cdots s_n}\ket{s_1\cdots s_n}=\ket{\alpha}.$$

- Probability of observing $|t_1 \cdots t_n\rangle$ when $|\alpha\rangle$ is measured $= |\lambda_{t_1 \cdots t_n}|^2$.
- Evolution over time is determined by action of $2^n \times 2^n$ unitary matrices.

Quantum systems represent exponentially difficult computational problems, in contrast to "easy" classical systems.

- deterministic: equal inputs give equal outputs
- need not be reversible
- represented by a boolean circuit (for fixed length input)

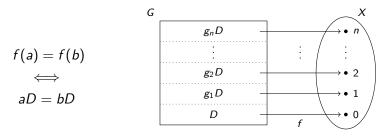


- probabilistic, likely need to run multiple times
- must be reversible (before measurement)
- represented by a quantum circuit (for fixed length input)

HIDDEN SUBGROUPS, HIDDEN KERNELS

Let \mathbb{G} be a group, X a set, and $f : G \to X$ a <u>function</u>.

f hides a subgroup $\mathbb{D} \leq \mathbb{G}$ if f is constant precisely on \mathbb{D} -cosets.



The Hidden Subgroup Problem (HSP)

Input: \mathbb{G} , $f: G \to X$ hiding some subgroup as a blackbox

Output: the subgroup \mathbb{D} that f hides (as generators)

Considerations

- Input size is lg(|G|).
- D must be specified with poly(lg(|G|)) information.

- Clearly in $\mathcal{O}(|G|) = \mathcal{O}(2^{\lg(|G|)})$.
- Two kinds of complexity: circuit size, evaluations of *f*.

The Hidden Subgroup Problem (HSP)

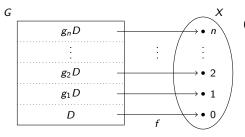
Output: the subgroup \mathbb{D} that f hides (as generators)

Many famous problems are special cases of the HSP.

Problem	\mathbb{G}	Classical	Quantum
Simon's problem	\mathbb{Z}_2^n	$\Omega(2^n)$	$\mathcal{O}(n^2)$
Factoring	\mathbb{Z}	$\mathcal{O}(2^{K \lg(n)^{1/3} \lg \lg(n)^{2/3}})$	$\mathcal{O}(n^3)$
Discrete log	$\mathbb{Z} imes \mathbb{Z}$	$\mathcal{O}(2^{K \lg(n)^{1/3} \lg \lg(n)^{2/3}})$	$\mathcal{O}(n^3)$
Shortest vector	\mathbb{D}_n	$\mathcal{O}(2^{Kn})$	$pprox \mathcal{O}(8^{\sqrt{n}})$
Graph isomorphism	S _n	$\mathcal{O}(2^{\lg(n)^{\kappa}})$	

Polynomial-time quantum algorithms are known for

- abelian groups (Simon, Shor, Kitaev, et al),
- an irregular constellation of other groups.



Questions

- What makes abelian groups special?
- Can "hiding" a subgroup be made more natural?

Algebras

- An algebra is a set A together with operations $f_i : A^{n_i} \to A$ for $i \in I$, Written $\mathbb{A} = \langle A; \{f_i\}_{i \in I} \rangle$.
- Subalgebras don't form a meaningful partition of *A*, it's not clear how to define "hiding" a subalgebra.
- A congruence of \mathbb{A} is a compatible equivalence relation. Equivalently, a congruence is the kernel of a homomorphism $\varphi : \mathbb{A} \to \mathbb{B}$.
- How does $f : A \to X$ hide a congruence θ of \mathbb{A} ?

Hidden Kernel Problem (v1)

Input: \mathbb{A} , $f : A \to X$ hiding some congruence (as a blackbox) Output: the congruence θ of \mathbb{A} that f hides (as generators)

For $f : A \to X$, we say that f hides congruence θ of \mathbb{A} if

$$f(a) = f(b) \quad \iff \quad a \ \theta \ b.$$

This allows us to impose algebraic structure on X: \mathbb{A}/θ .

f is actually a homomorphism with kernel θ !

Hidden Kernel Problem

Input: algebras \mathbb{A} , \mathbb{B} , homomorphism $\varphi : \mathbb{A} \to \mathbb{B}$ (as a blackbox) Output: generators of ker(φ)

The Hidden Kernel Problem for Post's Lattice

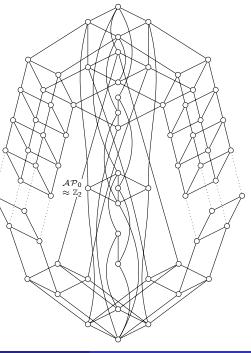
Hidden Kernel Problem

Input: homomorphism $\varphi : \mathbb{A} \to \mathbb{B}$ Output: ker(φ) (generators)

Simon's algorithm solves this for $\mathbb{A} = (\mathbb{Z}_2)^n$.

How about if $\mathbb{A} = \mathbb{B}^n$, where \mathbb{B} is a 2-element algebra?

How many such $\mathbb B$ are there?



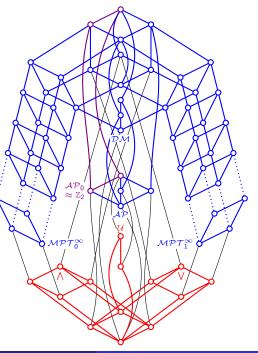
Theorem

There exists / doesn't exist a poly-time quantum solution for $HKP(\mathbb{B}^n)$, where

\mathbb{B}	Ops on $\{0,1\}$
\mathcal{AP}_0	x + y (known)
\mathcal{MPT}_0^∞	$x \wedge (y \vee z)$
\mathcal{MPT}_1^∞	$x \lor (y \land z)$
\mathcal{AP}	x + y + z
\mathcal{DM}	maj(x, y, z)
\wedge	$x \wedge y$, 0, 1
V	$x \lor y$, 0, 1
U	$\neg x$, 0

Observations

- exists is inherited up,
- doesn't exist is inherited down.



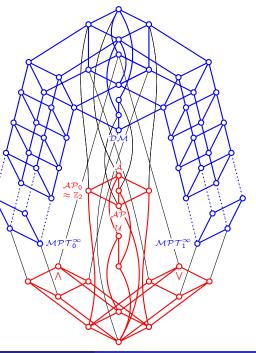
Theorem

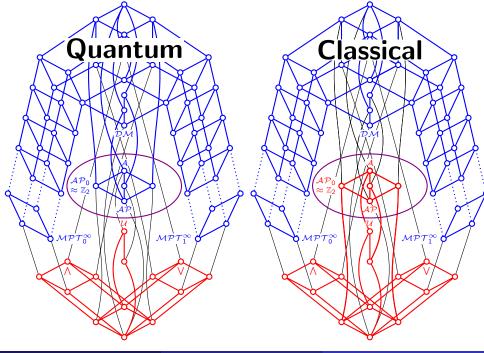
There exists / doesn't exist a poly-time classical solution for $HKP(\mathbb{B}^n)$, where

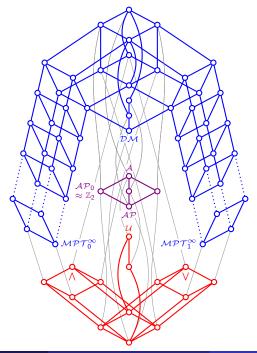
$\mathbb B$	Ops on $\{0,1\}$
\mathcal{MPT}_0^∞	$x \wedge (y \vee z)$
\mathcal{MPT}_1^∞	$x \lor (y \land z)$
\mathcal{DM}	maj(x, y, z)
${\cal A}$	$x\leftrightarrow y$, 0
\wedge	$x \wedge y$, 0, 1
V	$x \lor y$, 0, 1

Observations

- exists is inherited up,
- doesn't exist is inherited down.







The Hidden Subgroup Problem for Universal Algebras

Theorem

Let \mathbb{B} be a 2-element algebra and consider $HKP(\mathbb{B}^n)$.

- If MPT[∞]₀, MPT[∞]₁, or DM is contained in B then classical and quantum poly-time solutions exist.
- If AP ≤ B ≤ A then a quantum poly-time solution exists while no classical poly-time one does.
- If B is contained in ∧, ∨, or U, then no poly-time quantum or classical solutions exist.

Thank you for your attention.

