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Abstract – In theory, complementary sequences produce no 
sidelobes in the ideal scenario of zero-Doppler scattering 
and a distortionless transmitter. Since these conditions are 
not realistic in practice, a random frequency modulation 
(RFM) design approach was developed based on the notion 
of independent complementary subsets, where the FM 
nature mitigates some of the unavoidable transmitter 
distortion and subset independence facilitates incoherent 
sidelobe averaging as a supplement to complementary 
cancellation.  

While this complementary FM approach previously 
demonstrated greater resilience compared to theoretical 
codes (e.g. Golay), it did still only address zero-Doppler. 
Here, a generalization of that method is developed to enable 
complementary cancellation over a prescribed Doppler 
band. Simulation and open-air demonstration of these 
robust complementary FM waveforms validates that 
complementary sidelobe cancellation is preserved under 
Doppler effects.  
 
Keywords–complementary waveforms, noise radar, waveform 
diversity 

I. INTRODUCTION 

The concept of complementary sequences was initially 
proposed by Golay in 1949 [1] and later formally defined in 
1961 [2] as code pairs with out-of-phase autocorrelation 
coefficients that sum to zero. However, the connection from 
mathematical theory to physical experimentation has only 
recently been made [3,4] due to some practical limitations of 
complementary codes. The first of these stems from the now 
well-known sensitivity to Doppler, which causes a mismatch 
deviation from the cancellation condition [5]. Moreover, codes 
possess a sinc-shaped spectral roll-off that ultimately leads to 
significant transmitter distortion, thereby causing further 
deviation mismatch [6]. While some work has been done to 
address the Doppler limitation (e.g. [7,8]), contending with 
transmitter distortion necessitates transitioning to a more 
physically meaningful signal model than the theoretical code 
structure. Given its suitability for high-power transmitters, FM 
is a sensible choice. 

In [3,4] the random FM (RFM) concept of nonrepeating, yet 
physically realizable waveforms was applied in the context of 
complementary combining. Specifically, the particular signal 
construction denoted as polyphase-code FM (PCFM) permits 
the joint optimization of subsets of underlying codes that are 
mapped into physical FM waveforms, thus achieving constant 
amplitude (for amplifier saturation) and sufficient spectral 
containment (by implementation structure and parameter 
design). The pulse-compressed responses of these waveforms 

are pre-summed in receive processing to elicit complementary 
cancellation. Further, because each subset of PCFM-coded 
waveforms is unique, incoherent sidelobe averaging during 
slow-time processing provides additional suppression 
robustness in a manner that is Doppler-agnostic. 

We now extend this framework by explicitly accounting for 
Doppler-shifted scattering so that complementary cancellation 
can be achieved for larger Doppler shifts. Further, the 
conditions for proper phase transition within the PCFM 
structure, 𝛼𝑛 ∈ {−𝜋, 𝜋} , are now explicitly enforced. Range 
sidelobe minimization often expands the waveform spectral 
footprint. To contend with this, an explicit spectral containment 
constraint is incorporated to remain compliant with FCC 
regulations [9]. The resulting waveform subsets retain 
complementary cancellation over the prescribed slow-time 
Doppler, and are shown in simulation to remain spectrally 
compact after sidelobe minimization. 

II. WAVEFORM SIGNAL MODEL 

Consider a baseband, pulsed FM waveform defined on time 
support 𝑡 ∈ [0, 𝑇 ] having the form 

 𝑠(𝑡) = exp{𝑗𝜙(𝑡)} (1) 

in which 𝜙(𝑡) is the instantaneous phase function corresponding 
to instantaneous frequency 𝑓 (𝑡) = 1

2𝜋
𝜕𝜙(𝑡)

𝜕𝑡 . More specifically, 
the first-order PCFM waveform model has instantaneous phase 

𝜙(𝑡; 𝐱) = ∫ 𝑔(𝜏) ∗
𝑡

0
[∑ 𝛼𝑛𝛿(𝜏 − (𝑛 − 1)𝑇p)

𝑁
𝑛=1 ]𝑑𝜏 , (2) 

where 𝑔(𝑡) is a shaping filter of time support [0, 𝑇p], 𝛿(𝑡) is the 
impulse function, and vector 𝐱 = [𝛼1, … , 𝛼𝑁]

𝑇  contains the 
PCFM instantaneous frequency parameters. The integration 
stage in (2) can be expressed independent of the PCFM 
parameters, such that the 𝑛th quasi-basis function is 

 𝑏𝑛(𝑡) = ∫ 𝑔(𝜏 − (𝑛 − 1)𝑇p)𝑑𝜏
𝑡

0
 (3) 

and (2) simplifies to their weighted sum via [11] 

 𝜙(𝑡; 𝐱) = ∑ 𝛼𝑛𝑏𝑛(𝑡)𝑁
𝑛=1

 . (4) 

Moreover, the shaping filter is commonly chosen to be 
rectangular, such that (3) yields time-shifted linear ramps as 

 

𝑏𝑛(𝑡) =

⎩⎪
⎨
⎪⎧

    0,                         0 ≤ 𝑡 ≤ (𝑛 − 1)𝑇p
(𝑡−(𝑛−1)𝑇p)

𝑇p
,   (𝑛 − 1)𝑇p ≤ 𝑡 ≤ 𝑛𝑇p

    1,                            𝑛𝑇p ≤ 𝑡 ≤ 𝑁𝑇p

. (5) 
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To perform numerical optimization, the PCFM signal model 
is represented digitally as  

 𝐬 = exp{𝑗𝐁𝐱} , (6) 
with matrix 𝐁 ∈ ℝ𝑀×𝑁  containing a discretized version of 
𝑏𝑛(𝑡) in each column and M = KN the length of vector 𝐬 for 
“oversampling” factor K relative to 6-dB bandwidth (akin to 
LFM swept bandwidth). The time-bandwidth product (TB) of 
the waveform is approximately equal to N. Additional design 
freedom can be achieved via “overcoding”, in which a factor of 
L more quasi-basis functions (here more linear ramps) are used, 
or via “overphasing” which expands the permitted phase-
change by a factor of D [10]. 

Original first-order PCFM waveform model required the 
values in 𝐱 ∈ {−𝐷𝜋/𝐿, 𝐷𝜋/𝐿}  [6,10] to prevent excessive 
phase changes (and thus spectral expansion). Instead, consider 
the modified PCFM signal model 

 𝐬 = exp{𝑗(𝐷𝜋/𝐿)𝐁 cos(𝐱)} = exp{𝑗𝐁𝐱̃}, (7) 
where 𝐱̃ = (𝐷𝜋/𝐿) cos(𝐱)  achieves this condition without 
requiring a separate constraint. 

III. WAVEFORM OPTIMIZATION 

The waveform’s matched filter response (i.e. waveform 
autocorrelation)  

 𝑟(𝜏) = ∫ 𝑠(𝑡)𝑠∗(𝑡 − 𝜏)𝑑𝑡
∞

−∞
 (8) 

is the basis for range sidelobe assessment. A useful metric is the 
generalized integrated sidelobe level (GISL) [12] 

 
GISL =

(

∫ |𝑟(𝜏)|𝑝 
ΩSL

𝑑𝜏

∫ |𝑟(𝜏)|𝑝 
ΩML

𝑑𝜏)

2
𝑝
  (9) 

in which ΩML  corresponds to the autocorrelation mainlobe 
interval and ΩSL otherwise captures the interval of sidelobes. 
The GISL form therefore subsumes the well-known metrics of 
integrated sidelobe level (ISL) when 𝑝 = 2 and peak sidelobe 
level (PSL) as 𝑝 → ∞.  

A. Complementary FM 

Leveraging the PCFM signal structure [6] and subsequent 
gradient optimization [3,4], discretize the 𝑧th  waveform 𝐬𝑧 
parameterized by  𝐱𝑧 .  Pre-summing the 𝑍  waveform 
autocorrelations therefore yields a composite autocorrelation 
function in which the mainlobe persists and we wish to suppress 
the sidelobes to the degree possible by determining 𝐱𝑧	 
for 𝑧 = 0,… , 𝑍 − 1. 

 Begin by defining the zero-appended version of 𝐬𝑧 as 
 𝐬𝑧 = [𝐬𝑧

𝑇 𝟎1×(𝑀−1)]
𝑇  (10) 

with associated frequency representation  
 𝐬f ,𝑧 = 𝐀𝐬𝑧 , (11) 

where 𝐀 is a (2𝑀 − 1) × (2𝑀 − 1) discrete Fourier transform 
(DFT) matrix and 𝐀𝐻  is the inverse DFT. The 𝑧th waveform’s 
discretized autocorrelation function is thus 

 𝐫𝑧 = 𝐀𝐻 |𝐬f ,𝑧|
2 , (12) 

via the Fourier relationship between autocorrelation and power 
spectral density. The composite autocorrelation is then the 
combined subset, written as 

 𝐫 = ∑ 𝐫𝑧
𝑍−1
𝑧=0

= 𝐑𝟏𝑍×1 (13) 

for 𝐑 = [𝐫! … 𝐫"#$] and 𝟏  a Z-length vector of ones. To 
minimize the sidelobes in this composite response, consider the 
discretized representation of (9) [3] 

 
𝐽 =

‖𝐰SL ⊙ 𝐫‖𝑝
2

‖𝐰ML ⊙ 𝐫‖𝑝
2 (14) 

in which ‖∙‖𝑝  is the 𝑝 -norm, and 𝐰SL  and 𝐰ML  are binary 
valued selection vectors corresponding to ΩSL and ΩML in (9), 
respectively. Minimization of (14) jointly for the subset of 𝐱𝑧 
vectors produces a subset of Z PCFM waveforms.  

The discrete and parameterized signal model permits 
numerical optimization of each waveform subset. The gradient 
operator with respect to the 𝑧th  waveform parameters 𝐱𝑧  for 
𝑧 = 0,… , 𝑍 − 1 is 

 
∇𝐱𝑧

= [
𝜕

𝜕𝛼1,𝑧
… 𝜕

𝜕𝛼𝑁 ,𝑧]

𝑇
. (15) 

Applying this gradient to (14) then yields [3] 
 

∇𝐱̃𝑧𝐽 = 4𝐽𝐁𝑇 ℑ {𝐬𝑧
∗ ⊙ 𝐀𝐻

[𝐬f ,𝑧 ⊙

     𝐀 ([
𝐰SL

‖𝐰SL ⊙𝐫‖𝑝
𝑝 − 𝐰ML

‖𝐰ML ⊙𝐫‖𝑝
𝑝] ⊙ |𝐫|𝑝−2 ⊙ 𝐫)]}  

(16) 

where 
  𝐁 = [𝐁𝑇 𝟎𝑁×𝑀−1]

𝑇   (17) 

to align dimensionalities with (10). Here ℑ{∙}  extracts the 
imaginary part of the argument and 𝟎 is a zeros matrix. Since 
(14) is highly non-convex, the values in the Z vectors 𝐱%  are 
updated iteratively to reach the local minima (uniqueness across 
independently initialized subsets is achieved by this non-
convexity). Note that relative to [3] the gradient must be altered 
to reflect the inclusion of (7), which results in 

 ∇𝐱𝑧
= −(𝐷π/L) sin(𝐱𝑧)⊙∇𝐱̃𝑧 . (18) 

The iterative update of the 𝑧th waveform’s parameters is thus 
 𝐱𝑧,𝑖+1 = 𝐱𝑧,𝑖 + 𝜇𝑧,𝑖𝐩𝑧,𝑖 , (19) 

where 𝐩𝑧,𝑖 is a descent direction for the 𝑧th waveform at the 𝑖th 
iteration, and 𝜇𝑧,𝑖  is the step size selected such that 𝐱𝑧,𝑖+1  is 
ensured to reduce (14) via a line search along direction 𝐩𝑧,𝑖. The 
choice of step size and direction involves a balance between 
computational complexity and convergence speed [14]. 

B. Doppler-Generalized (DG) Complementary FM 

The sidelobe suppression of complementary codes is known 
to degrade significantly in the presence of slow-time Doppler. 
In [3], complementary FM waveforms were shown to degrade      
more gracefully. Here we take that robustness a step further.  



 

Generalize (13) to account for Doppler via 
 𝐫𝜔 = ∑ 𝐫𝑧𝑒𝑗𝑧𝜔𝑍−1

𝑧=0
= 𝐑𝐮 (20) 

for 𝜔 ∈ {−𝜋/𝑍, 𝜋/𝑍}  representing the normalized Doppler 
space after pre-summing on receive. Then concatenate the 
collection of complementary responses for a discretization into 
𝑈 unique normalized Doppler frequencies as 

 𝐑Ω = 𝐑𝐔 = [𝐫ω0
… 𝐫ω𝑈−1] . (21) 

Consequently, an altered version of (14) that collectively 
captures the Z waveforms and U Dopplers can be written as  

 
𝐽Ω =

‖𝐖SL ⊙ 𝐑Ω‖𝑝
2

‖𝐖ML ⊙ 𝐑Ω‖𝑝
2 

(22) 

for ‖∙‖𝑝 now an element-wise matrix p-norm and 
 𝐖SL = 𝐰SL𝟏𝑈×1

𝑇 ;   𝐖ML = 𝐰ML𝟏𝑈×1
𝑇  (23) 

to expand the selection vectors to match the dimensionality of 
(21). The gradient of (22) then becomes 

∇𝐱̃𝑧
𝐽Ω = 4𝐽Ω𝐁𝑇

ℑ {𝐬𝑧
∗ ⊙ 𝐀𝐻

[𝐬f ,𝑧 ⊙ ℜ {𝐀 ([
𝐖SL

‖𝐖SL ⊙𝐑Ω‖𝑝
𝑝 −

𝐖ML
‖𝐖ML ⊙𝐑Ω‖𝑝

𝑝] ⊙ |𝐑Ω|𝑝−2 ⊙ 𝐑Ω) 𝑒−𝑗𝛚𝑧
}]}  

(24) 

for 𝛚 a 𝑈 × 1 vector of normalized Doppler values and with 
ℜ{∙} extracting the real part of the argument. When 𝑈 = 1, the 
DG complementary FM design is identical to that in (14). 
Selecting values in 𝛚 that align with expected (or determined) 
Doppler shifts within an illuminated scene therefore represents 
a generalization of complementary operation.  

C. Augmented Lagrangian  

It is known that a Gaussian spectral density has a Fourier 
relationship with a Gaussian autocorrelation, where the latter 
achieves extremely low sidelobes in practice [13]. However, 
this spectral density has a somewhat gradual roll-off that 
necessitates a high degree of “over-sampling” for optimization 
and receive processing, which may be undesirable (note this 
roll-off is still far more contained than the sinc roll-off of phase 
codes). Since optimization to suppress sidelobes can tend 
toward this Gaussian condition, it can be useful to impose a 
spectral containment constraint.  

The selection of 𝐰ML provides an implicit degree of spectral 
containment because the mainlobe width is inversely 
proportional to the signal bandwidth [16,17]. Also consider the 
explicit spectral constraint 

 
‖𝐰f ⊙ 1

𝑍 ∑ |𝐬f ,𝑧|
2𝑍−1

𝑧=0 ‖2

2
= 𝛾  (25) 

for 𝐰f  a binary-valued spectrum selection vector with ones in 
the stopband and zeros in the passband. The parameter 𝛾 ∈
[0,1] represents a normalized stopband energy which acts as a 
permittable limit for that region. Now define a constraint 
function to represent the difference between the energy in 𝐰f  
and 𝛾  via 

 𝑔 = ‖𝐰f ⊙ 1
𝑍 ∑ |𝐬f ,𝑧|

2𝑍−1
𝑧=0 ‖2

2
− 𝛾  (26) 

with the constraint satisfied when 𝑔 < 0. 

To enforce this inequality spectral constraint, the augmented 
Lagrangian function [15] is posed as 

 ℒ = 𝐽 + (𝜆 +
𝜇
2

𝑔)𝑔+ (27) 

for 𝜆 the Lagrange multiplier and 𝜇 a penalty parameter that 
takes on a large value when the constraint is not satisfied. The 
function (∙)+ = max{0, ∙}  extracts the positive part of the 
argument, and results such that iff 𝑔 > 0, the penalty parameter 
𝜇 increases to subsequently place more emphasis on addressing 
the constraint violation. The resulting gradient of (27) is 

 ∇𝐱𝑧
ℒ = ∇𝐱𝑧

𝐽 + (𝜆 + 𝜇𝑔)+∇𝐱𝑧
𝑔 (28) 

where 
 ∇𝐱̃𝑧

𝑔 = 4𝐁̅𝑇 ℑ{𝐬𝑧
∗ ⊙ 𝐀𝐻 (𝐰f ⊙ 𝐬f ,𝑧)} . (29) 

Minimization within this Lagrangian gradient descent 
framework serves to produce DG complementary FM 
waveforms with prescribed spectral containment. 

IV. SIMULATION OF COMP-FM AND DG-COMP-FM 

A collection of Q=250 subsets of Z=4 complementary 
waveforms (total of C=1000 waveforms) were optimized using 
the approaches above. Both RFM and LFM initializations were 
considered for a 6-dB bandwidth of 50 MHz and pulse width of 
1.28µs (TB=64). The PCFM structure of (7) was parameterized 
with N=128 terms (L=2 overcoding, D=2 overphasing). Each 
waveform was oversampled by K=4 so that the discretized 
waveform length was M=256. Each waveform subset was 
optimized using “minf_lbfgs,” a quasi-Newton iterative descent 
method in the Tensorlab toolbox [18,19] within an Augmented 
Lagrangian optimization wrapper. The Lagrange multiplier 𝜆 
and penalty parameter 𝜇  were updated 10 times per subset 
throughout the optimization process to maintain the spectral 
constraint. Each subset was optimized for 𝑝 = 6 to tend toward 
a PSL-like solution (i.e. flat) in the regions designated by 𝐰SL. 

First consider the optimized waveforms resulting from LFM 
initialization. To provide some diversity, each initial LFM was 
perturbed by a small (~10#&) random time varying phase to 
help the subsets reach unique local minima. The resulting 
coherent and RMS autocorrelations (after complementary 
combining) are shown in Fig. 1. The perturbed LFM 
initializations are shown in black, where there is no benefit to 
pre-summing since the waveform is repeated.  Optimizing 
according to (14) yields the responses in blue, where there is 
around 91 dB of complementary sidelobe cancellation (CSC) 
via the 4-waveform subsets along with an additional 
10 log$!(250) = 24	 dB of incoherent sidelobe cancellation 
(ISC) due to the independent subsets. In contrast, optimizing 
according to (24) for the entire effective Doppler interval (𝛚 ∈
{0, 𝜋/𝑍}  after pre-summing) yields the results in orange, 
achieving roughly 48 dB of CSC and the same 24 dB of ISC, a 
great improvement over LFM but giving up 43 dB relative to 
the original complementary FM as a trade for broader Doppler 
utility.  

The RFM initialization was accomplished by least-squares 
mapping from pseudo-random optimized waveforms [20] based 
on a super-Gaussian template with shaping parameter of 7 [21], 



 

thereby providing a spectrum commensurate with LFM yet with 
greater randomized time/frequency characteristics. Now the 
initial waveforms do benefit from ISC because they are random 
(per Fig. 2). Of course, the quasi-rectangular spectral template 
does correspond to near-in shoulder lobes. Subset-wise 
complementary optimization yields an RMS improvement of 
around 66 dB in PSL, while the Doppler generalized form only 
achieves about 33 dB PSL improvement in exchange for 
expanded Doppler utility.  

 
Fig. 1. Coherent (solid) and RMS (dashed) composite autocorrelation of 
C=1000 waveforms after pre-summing by Z=4 (LFM Initialization) 

 
Fig. 2. Coherent (solid) and RMS (dashed) composite autocorrelation of 
C=1000 waveforms after pre-summing by Z=4 (RFM Initialization) 

Of course, Figs. 1 and 2 do not tell the whole story from the 
perspective of generalizing over Doppler. In Fig. 3 we observe 
that the DG complementary FM gradient from (24) realizes a 
nearly flat response across much of the Doppler interval. 
Compare this result to the original complementary FM 
approach that provides excellent cancellation at zero-Doppler 
but exceeds the new approach for normalized Doppler of 0.05. 
Moreover, the LFM initialization is found to provide markedly 
better Doppler robustness relative to the RFM initialization 
(about 15 dB). 
     Figs. 4 and 5 show the mean power spectra of the different 
optimization approaches for perturbed LFM and RFM, 
respectively. Each initialization results in an optimized 
waveform subset with an aggregate power spectrum 

approaching a Gaussian, which is more apparent in the 
passband. In either case, complementary FM subsets result in 
an aggregate PSD with a very smooth passband (indicating a 
nearly perfect match to a Gaussian shape), while DG 
complementary FM subsets instead focus design degrees of 
freedom to maintain Doppler robustness.  

 
Fig.  3. Mean PSL (across the Q =250 subsets) of composite autocorrelations 
vs. normalized Doppler 

  
Fig.  4. The mean PSD of (individual) initial perturbed LFM waveforms, and 
the PSD of waveforms after optimization of (14) and (22) 

 

Fig.  5. The mean PSD of (individual) initial RFM waveforms, and the PSD of 
waveforms after optimization of (14) and (22) 



 

V. EXPERIMENTAL  RESULTS 

     The same C=1000 waveforms were transmitted in an open-
air environment, at a center frequency of 3.4 GHz and at a PRF 
of 8 kHz, which is reduced by a factor of Z=4 to an effective 
PRF of 2 kHz after pre-summing. The pulses are match filtered 
in range followed by pre-summing, and a -40 dB Taylor 
window is applied across slow-time prior to Doppler 
processing. Each set of waveforms is concatenated into a 

Fig. 6. Open-air range-Doppler response for initial RFM waveforms

 

Fig. 7. Open-air range-Doppler response for RFM-initialized complementary 
FM waveforms 

 
Fig. 8. Open-air range-Doppler response for RFM-initialized DG 
complementary FM waveforms 

single coherent processing interval (CPI) so that the observed 
scene is nearly identical from case to case. 
     The range-Doppler map in Fig. 6 results from the initial sets 
of RFM waveforms, which acts as a baseline for the optimized 
subsets. Due to the CPI being pulse-agile, the unique range 
sidelobes resulting from the high-power direct-path clutter 
spreads along the Doppler axis, an effect known as range-
sidelobe modulation (RSM) [22]. When the optimized 
complementary FM subsets (initialized by RFM) are pre-
summed, the direct path RSM is greatly reduced in Fig. 7, which 
uncovers otherwise obfuscated movers. Likewise, in Fig. 8 DG 
complementary FM reduces direct path RSM, though to a lesser 
degree relative to complementary FM because degrees of 
freedom are allocated over a larger Doppler space. 
     While there are movers in the scene, their range-Doppler 
sidelobes fall below the noise-limited dynamic range and thus 
do not demonstrate the Doppler induced degradation associated 
with complementary FM.  For the sake of demonstration, an 
artificial Doppler shift is applied (akin to a moving platform) to 
shift the direct path clutter to a non-zero Doppler to show the 
degradation of complementary FM. Of course, moving 
platforms also invoke Doppler bandwidth along the clutter ridge 
that would degrade complementarity, which cannot be 
corrected with a simple transformation. 

 

Fig. 9. Open-air range-Doppler response for RFM-initialized complementary 
FM waveforms, with artificial Doppler shift 

Fig. 10. Open-air range-Doppler response for RFM-initialized DG 
complementary FM waveforms, with artificial Doppler shift. 



 

     In Fig. 9 we see that the complementary sidelobe 
cancellation has degraded as anticipated relative to Fig. 3, to a 
level nearly identical to Fig. 6. Alternatively, Fig. 10 
demonstrates that DG complementary FM fares well despite a 
significant Doppler shift, resulting in a range-Doppler map 
almost identical to that in Fig. 8. 

VI. CONCLUSIONS 

     Complementary FM has been generalized to achieve robust 
sidelobe cancellation in the presence of large Doppler.    
The resulting composite autocorrelation of each subset of 
PCFM waveforms maintains modest sidelobe cancellation for 
very low Dopplers (relative to standard complementary FM) 
which is preserved in the presence of slow-time Doppler shifts. 
Simulated analysis shows that complementary sidelobe 
cancellation is possible across the entire Doppler spectrum 
within the effective (pre-summed) Doppler interval. Open air 
demonstration further validates that Doppler generalized 
complementary FM waveforms remain transmitter-amenable 
and retain sidelobe cancellation despite Doppler effects.  
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