
 

 

This work was supported by the Office of Naval Research under Contract #N00014-23-C-1053. DISTRIBUTION STATEMENT A. Approved for public release. 

Analysis of Spectrally Efficient  

Random FM Radar Waveforms 
 

Jonathan W. Owen, Christian C. Jones, Patrick M. McCormick, David G. Felton, 

Matthew B. Heintzelman, Jennifer E. Quirk, Shannon D. Blunt 
Radar Systems Laboratory, University of Kansas 

 

 Abstract— Random FM (RFM) waveforms have recently been 

demonstrated to achieve desirable power spectrum characteristics 

commensurate with low pulse compression sidelobes. Separately, 

the limitations of correlation-based processing were assessed by 

determining the optimum null-constrained power spectrum that 

minimizes correlation sidelobe levels. RFM waveforms that are 

spectrally shaped to approximate the optimum spectrum 

consequently exhibit near-optimum range sidelobe levels given 

sufficient degrees of freedom. In this context, an RFM design 

variant denoted Spectrally Weighted Frequency Template Error 

(SWiFTE) is evaluated relative to other modern designs. 

Performance analysis is assessed in terms of spectral containment, 

correlation sidelobe levels, and optimization convergence speeds. 

Index Terms—waveform diversity, pulse compression, random 

frequency modulation (RFM), spectrum sharing 

I. INTRODUCTION 

Growing RF congestion represents a transition from the era 

of noise-limited legacy radar to pervasive interference-limited 

operation. Nonrepeating random FM (RFM) waveforms [1] 

provide inherent design freedom and flexibility that make them 

readily amenable to spectrum shaping, which can incorporate 

dynamic notches to mitigate interference with proximate RF 

users [2,3]. Moreover, their FM structure is compatible with 

high-power transmitters due to a constant amplitude envelope 

and continuous phase attributes. Because RFM waveforms 

possess a thumbtack ambiguity function (recalling that energy 

is conserved), individual pulses cannot attain quite the degree 

of low range sidelobe performance as an optimized chirp-like 

structure for a set time-bandwidth product [4]. However, slow-

time combining across P unique RFM waveforms realizes 

10log10(P) incoherent averaging suppression of sidelobes [1]. 

The power spectral density (PSD) and autocorrelation are a 

Fourier transform pair; therefore, waveforms designed to 

conform to a PSD template can be directly optimized for both 

autocorrelation and spectral properties. To gain insight about 

the behavior of notched power spectra, [5] determined the 

global optimum PSD that minimizes integrated sidelobe level 

(ISL) or peak sidelobe level (PSL) with spectral null constraints 

for a given autocorrelation mainlobe resolution. As the 

autocorrelation mainlobe width is increased, the sidelobe floor 

is correspondingly reduced, establishing a fundamental trade-

space between range resolution and correlation error. However, 

the optimum PSD template cannot be precisely attained with 

time-limited waveforms.  

A variety of spectrally notched RFM waveforms have been 

developed (e.g. [6-11]) but have not been commonly evaluated 

 
 

relative to standard radar performance metrics. The tradeoff 

between optimality, convergence speed, and computational cost 

is critical when considering real-time implementation.  

For instance, pseudo-random optimized FM (PRO-FM) 

waveforms combined with supplementary spectral nulling were 

found to suitably meet the criterion for real-time radar spectrum 

sharing [3]. Even so, alternative strategies merit evaluation. 

Here the frequency template-based waveform designs 

explored in [6-11] are analyzed when designed according to the 

null-constrained spectrum template for ISL minimization from 

[5]. An alternative waveform scheme denoted Spectrally 

Weighted Frequency Template Error (SWiFTE) is proposed 

that exhibits well-rounded metric performance. Resultant 

waveforms are examined in terms of percent energy spectral 

containment, ISL, PSL, and optimization convergence speeds. 

II. WAVEFORM DESIGNS & METRIC ANALYSIS 

The waveform designs from [6-11] are evaluated herein, 

including PRO-FM [6, 7], frequency template error (FTE) [8], 

logarithmic-domain FTE (Log-FTE) [8], and temporal template 

error (TTE) [9, 10]. The zero-order reconstruction of 

waveforms (ZOROW) algorithm is a waveform modifier that 

rapidly deepens spectral notches, though the desired spectrum 

shape may be adversely altered [11]. The SWIFTE objective 

function is described, which modifies FTE with a weighting to 

emphasize error in user-specified spectral regions. 

Each discretized waveform design requires a user-defined 

desired power spectrum 𝐝f. For consistent comparison, all 

waveform designs herein use the optimum spectrum 𝐝̂f from [5] 

that minimizes autocorrelation sidelobe levels for a specified 

mainlobe resolution while maintaining spectral null constraints. 

This template 𝐝̂f is found from the convex objective function 

min
𝐝f

‖𝐞 − 𝐀𝐻𝐝f‖𝓅
𝓅

                                                   

s. t.  𝑑f,𝑚 ≤ 𝛾𝑚   for 𝑚 ∈ Λ                                  

      0 ≤  𝑑f,𝑚   for 𝑚 = 0, 1, … , 𝑀 − 1

(1) 

where 𝑚 = 0, 1, … , 𝑀 − 1 indicates discrete frequency, 𝐞 is the 

desired autocorrelation response (a unit impulse), 𝐀 is the 

𝑀 × 𝑀 discrete Fourier transform matrix, 𝛾𝑚 is the constrained 

maximum value for the associated 𝑑f,𝑚 when 𝑚 is in the subset 

Λ (i.e. null constraints), and selection of 𝓅 = 2 minimizes ISL 

whereas 𝓅 → ∞ minimizes PSL. The operator ‖∙‖𝓅
  is the  

vector 𝓅-norm, with ‖∙‖𝓅
𝓅

 exponentiated.   Different degrees of 

mainlobe resolution are achievable by replacing 𝑀̅ rows of 𝐀 

(corresponding to autocorrelation mainlobe roll-off) with zeros. 

Here 𝛾𝑚 = 10−3 (or 30 dB depth), 𝓅 = 2, and 𝑀̅ = 2 are used. 



 

 

 

The optimization routines for waveform designs [6-11] are 

shown in Table I and associated gradients are in Table II. 

Relevant variables from Tables I & II are described in Table III. 

Note that PRO-FM does not have an explicit objective function 

and instead performs 𝑄 alternating time-frequency projections.  

TTE minimizes an objective function but requires a final 

constant envelope projection and truncation upon convergence. 

All function minimizations are performed with limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [12] using the 

“minf_lbfgs” function from the TensorLab toolkit [13]. 

Operators include: ∠{•} extracts the phase argument, ⊙ is the 

Hadamard product, log𝑏(x) takes the base-b logarithm, and 

sinc(x) = sin(𝜋x)/𝜋x for x ≠ 0; sinc(x) = 1 otherwise. 

The temporal power envelopes are held constant as  

𝐮 = 𝟏𝑁×1 to maintain FM attributes. In [14] it was noted that 

the Nyquist theorem is dual, so the number of evaluated 

frequency samples must be 𝑀 ≥ 2𝑁 − 1. For this analysis, 

𝑀 = 2𝑁 − 1 is selected. 

The FTE, Log-FTE, SWiFTE, and ZOROW designs 

incorporate “quasi-basis” matrix 𝐁 into the signal exponent, 

allowing for phase structure implementation [15, 16] including 

polyphase coded FM (PCFM), higher-order PCFM (HO-

PCFM), and constant envelope orthogonal frequency division 

multiplexing (CE-OFDM). Here the quasi-basis is set to an 

identity matrix 𝐁 = 𝐈 to directly optimize phase, otherwise 

known as angle modulation since spectral containment 

implicitly limits the amount of sample-wise phase change [17]. 

The PRO-FM and TTE designs cannot be optimized with a 

quasi-basis due to projection stages. The optimized parameters 

𝐱 are cast into 𝐱̃ = 𝜋 cos(𝐱) to implicitly constrain 𝐱̃ ∈ [−𝜋, 𝜋). 

The emphasis vector 𝐰error applied in the SWiFTE design 

may be arbitrarily chosen, although the selected option is 

𝐰error = {
𝐝f

−𝛼  for 𝑚 ∉ Λ

𝐝f
−1 for 𝑚 ∈ Λ

 (2) 

where Λ are frequency regions containing spectral nulls, and 𝛼 

otherwise allows for tuning to minimize error in high-power or 

low-power spectral regions. It is recommended to maintain  

𝛼 ∈ [0,1] for numerical stability during optimization. Unless 

otherwise specified, 𝛼 = 1 for remaining analysis. To reiterate, 

here 𝐝f is fixed to be the optimum 𝐝̂f from (1). 

Table I: Optimization Routines & Objective Functions 

PRO-FM 𝐬̇(𝑞+1) = 𝐀̃𝐻{𝐝f
1/2

⊙ exp(𝑗∠𝐀̃𝐬(𝑞))} 

𝐬(𝑞+1) = 𝐮1/2  ⊙ exp(𝑗∠𝐬̇(𝑞+1)) 

FTE min
𝐱

‖(𝐀̃𝐬) ⊙ (𝐀̃𝐬)
∗

− 𝐝f‖2

2
 

where 𝐬 = 𝑒𝑗𝜋𝐁 cos(𝐱) 

Log-FTE min
𝐱

‖log𝑏[(𝐀̃𝐬) ⊙ (𝐀̃𝐬)
∗
] − log𝑏[𝐝f]‖

2

2
 

where 𝐬 = 𝑒𝑗𝜋𝐁 cos(𝐱) 

SWiFTE min
𝐱

‖𝐰error ⊙ [(𝐀̃𝐬) ⊙ (𝐀̃𝐬)
∗

− 𝐝f]‖
2

2
 

where 𝐬 = 𝑒𝑗𝜋𝐁 cos(𝐱) 

TTE min
𝛟f

‖𝐬̅ ⊙ 𝐬̅∗ − [𝐮𝑇  𝟎1×𝑁]𝑇‖2
2 

where 𝐬̅ = 𝐀𝐻(𝐝f
1/2

⊙ 𝑒𝑗𝛟f) 

Final Projection: 𝐬 = 𝐮1/2  ⊙ e𝑗∠{𝐀̃𝐻(𝐝f
1/2

⊙𝑒𝑗𝛟f)}
 

ZOROW 
min

𝐱
‖𝐰Λ

 ⊙ (𝐓𝑇 sinc (
𝐦 − ⌊𝑀/2⌋

𝑀
) ⊙ 𝐀̃𝐬)‖

2

2

 

where 𝐬 = 𝑒𝑗𝜋𝐁 cos(𝐱) 

Table II: Objective Function Gradients 

FTE ∇𝐱 𝐽 = −4𝜋 sin(𝐱) ⊙ 

𝐁𝑇𝔍 {𝐬∗⨀ [𝐀̃𝐻 ((𝐀̃𝐬) ⊙ (𝐀̃𝐬)
∗

− 𝐝f) ⊙ 𝐀̃𝐬]} 

Log-FTE ∇𝐱 𝐽 =
−4𝜋

ln(𝑏)
sin(𝐱) ⊙ 

𝐁𝑇𝔍 {𝐬∗⨀ [𝐀̃𝐻 (log𝑏 ((𝐀̃𝐬) ⊙ (𝐀̃𝐬)
∗
) − logb(𝐝f))

⊘ (𝐀̃𝐬)
∗
]} 

SWiFTE ∇𝐱 𝐽 = −4𝜋 sin(𝐱) ⊙ 𝐁𝑇𝔍 {𝐬∗⨀ [𝐀̃𝐻 (𝐰error ⊙ 𝐰error

⊙ ((𝐀̃𝐬) ⊙ (𝐀̃𝐬)
∗

− 𝐝f)

⊙ 𝐀̃𝐬)]} 

TTE ∇𝛟f
 𝐽 = 4 𝔍 {(𝐝f

1/2
⊙ 𝑒𝑗𝛟f)

∗

⊙ 𝐀̃(𝐬̅

⊙ (𝐬̅ ⊙ 𝐬̅∗ − [𝐮𝑇  𝟎1×𝑁]𝑇))} 

ZOROW ∇𝐱 𝐽 = −4𝜋 sin(𝐱) ⊙ 

𝐁𝑇𝔍 {𝐀̃𝐻 (𝐰Λ
 ⊙ 𝐓𝑇 sinc (

𝐦 − ⌊𝑀/2⌋

𝑀
) ⊙ 𝐀̃𝐬)} 

In Table II, ⊘ performs an element-wise division, 𝔍 extracts 

the imaginary values, and ⌊∙⌋ is the floor operator. 

Table III: Waveform Parameters 

Parameter Dimensions Description 

𝐬 𝑁 × 1 Radar waveform 

𝐬̇ 𝑀 × 1 Intermediate variable (PRO-FM) 

𝐬̅ 𝑀 × 1 Intermediate variable (TTE) 

𝐮 𝑁 × 1 Desired temporal power envelope 

template (typically constant) 

𝐝f 𝑀 × 1 Desired frequency power spectrum 

template 

𝐀 𝑀 × 𝑀 Discrete Fourier transform matrix 

𝐀̃ 𝑀 × 𝑁 Truncated discrete Fourier transform 

matrix 

𝐓 𝑀 × 𝑀 FFT-shift transformation matrix 

(𝐓𝑇 performs the inverse shift) 

𝑚 1 × 1 The 𝑚𝑡ℎ discrete frequency index, 

where 𝑚 = 0, 1, … , 𝑀 − 1 

𝐦 𝑀 × 1 Set of discrete frequency indices, 

𝐦 = [0 1 ⋯ 𝑀 − 1] 
𝛟f 𝑀 × 1 Optimized parameters (see Table I);  

TTE spectrum phasor 

𝐱 𝐾 × 1 Optimized parameters (see Table I); 

then cast to 𝐱̃ = 𝜋 cos(𝐱) ∈ [−𝜋, 𝜋) 

𝐁 𝑁 × 𝐾 Arbitrary quasi-basis function matrix, 

e.g. Identity, PCFM,  

HO-PCFM, CE-OFDM 

𝐰Λ
  𝑀 × 1 Spectrum notch mask  

𝐰Λ
 = {

0   for 𝑚 ∉ Λ
1   for 𝑚 ∈ Λ

  

𝐰error 𝑀 × 1 Error emphasis weights  

𝐰error = {
𝐝f

−𝛼 for 𝑚 ∉ Λ

𝐝f
−1 for 𝑚 ∈ Λ

  



 

 

 

 
Fig. 1: Mean power spectra 

1

𝑃
∑ |𝐀̃𝐬𝑝|

2

∀𝑝  (indicating spectral containment) of 

waveform types; for 𝑃 = 10,000 pulses, 𝑁 = 1000 samples. 

 

Fig. 2: RMS autocorrelation √
1

𝑃
∑ |𝐫𝑝|

2

∀𝑝  (indicating per-pulse range sidelobe 

performance) of waveform types; for 𝑃 = 10,000 pulses, 𝑁 = 1000 samples. 

 
Fig. 3: Mean autocorrelation 

1

𝑃
∑ 𝐫𝑝∀𝑝  (indicating combined range sidelobe 

performance) of waveform types; for 𝑃 = 10,000 pulses, 𝑁 = 1000 samples. 

 

For the designated waveform types, 𝑃 = 10,000 pulses 

with 𝑁 = 1000 samples each are formed. All waveform 

optimizations are performed until full algorithm convergence. 

Because both Log-FTE and SWiFTE increase error emphasis in 

deep spectral notch regions (which can cause overfitting), the 

desired spectrum template is loaded as 𝐝f = 𝐝̂f + 𝛿𝟏𝑁×1 where 

𝛿 = 10−4 slightly deemphasizes the notched regions Λ.  

The ZOROW modifier is applied only to waveforms that 

innately exhibit less spectral containment, specifically FTE and 

PRO-FM. The mean power spectra of optimized waveform sets 

are shown in Fig. 1, while the root-mean-squared (RMS) and 

mean autocorrelations are illustrated in Figs. 2 and 3, 

respectively. The number of frequency samples is chosen as 

𝑀 = 2𝑁 − 1, which conveniently is the signal autocorrelation 

length. The global minimum PSD 𝐝̂f or autocorrelation  

𝐝̂ = 𝐀𝐻𝐝̂f is illustrated in Figs. 1-3 for comparison but cannot 

be precisely achieved with time-finite waveforms. 

It is well known that a deterministic signal autocorrelation 

𝐫 = 𝐬 ⋆ 𝐬 and power spectrum 𝐫f = |𝐀̃𝐬|
2
 are Fourier transform 

pairs, such that 𝐫 = 𝐀𝐻|𝐀̃𝐬|
2
. Due to linearity of the Fourier 

transform operator, a pair likewise exists between the mean 

autocorrelation and the mean power spectrum across 𝑃 pulses: 

1

𝑃
∑ 𝐫𝑝

∀𝑝

= 𝐀𝐻 (
1

𝑃
∑|𝐀̃𝐬𝑝|

2

∀𝑝

) . (3) 

Noting that each waveform spectrum is shaped to the optimum 

template 𝐝̂f, then waveform sets that adhere closest to 𝐝̂f in the 

mean power spectrum will implicitly exhibit minimized 

autocorrelation sidelobes after coherent integration. The RMS 

autocorrelation indicates typical per-pulse sidelobe 

performance, expressed as √
1

𝑃
∑ |𝐫𝑝|

2
∀𝑝 . 

Metrics applied to the waveform sets include percent energy 

spectral containment, ISL, PSL, and optimization convergence 

speeds. Spectral containment is measured by the percentage of 

signal energy remaining in the spectral null regions. The notch 

locations are indicated by 𝐰Λ
  as defined in Table III.  

The percent energy is defined as 

% Energy =
∑ 𝐰Λ

𝑇|𝐀̃𝐬𝑝|
2

∀𝑝

∑ 𝟏𝑀×1
𝑇 |𝐀̃𝐬𝑝|

2
∀𝑝

 . (4) 

The autocorrelation sidelobes levels are measured in terms of 

ISL and PSL, applied to both the RMS autocorrelation and the 

mean autocorrelation (with either represented by 𝐫̃). The 

integrated sidelobe level metric is defined as 

ISL =
‖𝐰sl ⊙ 𝐫̃‖2

2

𝟏𝑀×1
𝑇 𝐰sl

  , (5) 

where 𝐰sl
  selects the autocorrelation sidelobes with 1’s  

(and removes the autocorrelation mainlobe with 0’s). The peak 

sidelobe level metric is similarly represented as 

PSL = ‖𝐰sl ⊙ 𝐫̃‖∞
2  , (6) 

where ‖∙‖∞
  determines the maximum value. 

Both Log-FTE and SWiFTE achieve the specified spectral 

containment, while TTE is 3.8 dB shallower. The typical 

containment achieved by FTE and PRO-FM are orders of 

magnitude shallower by comparison, but subsequent 

application of ZOROW then realizes similar performance. 

However, the spectral shape after ZOROW demonstrates a 

rectangular mask (due to less rounded edges) that implies a sinc 

structure in the mean autocorrelation sidelobes, seen in Fig. 3. 



 

 

 

The RMS autocorrelation metrics exemplify the expected 

per-pulse performance. FTE and PRO-FM perform best for 

both RMS sidelobe metrics, which is anticipated due to 

shallower spectral containment. Upon applying ZOROW, they 

achieve similar ISL, but FTE exhibits 3 dB higher PSL than 

PRO-FM. The innately contained waveforms - Log-FTE, 

SWiFTE, and TTE - have quite different RMS autocorrelations 

despite comparable power spectra. Variations are due to the 

degree of spectrum match. Log-FTE exhibits the uppermost 

per-pulse sidelobe levels whereas SWiFTE achieves 2.5 dB 

less. Similarly, TTE and SWiFTE have nearly identical RMS 

PSL, but TTE achieves lower RMS ISL (due to slightly 

shallower spectral containment). 

The mean autocorrelation metrics are relatively similar to 

the RMS metrics; however, incoherent sidelobe integration 

unveils structure in relation to the mean power spectrum. It was 

previously mentioned that a sinc structure appears in the mean 

autocorrelation when ZOROW is applied due to the ensuant 

rectangular mean spectrum shape, increasing both PSL and ISL. 

The zoomed inset of Fig. 3 shows mainlobe resolution 

broadening, where TTE is the narrowest of the batch. Log-FTE 

forms a slightly thinner mainlobe than SWiFTE, while  

PRO-FM and FTE are comparable. The peak sidelobe reduction 

of TTE over other methods (>12 dB) implies a closer match to 

the template 𝐝̂f. Again, TTE cannot be optimized with a quasi-

basis. 

Although distinct objective functions exist for each 

waveform type, the number of iterations prior to convergence 

provides practical insight. Because PRO-FM does not have an 

explicit objective function, it is instead evaluated according to 

the FTE metric. The waveform designs under consideration 

attempt to minimize an objective function 𝐽 to match a desired 

spectrum template 𝐝f. Consequently, the convergence speeds 

are dependent on the spectrum template and initialization. Here, 

the mean iterative cost function values are represented for those 

waveforms generated in Figs. 1-3, shown in Fig. 4.  

The L-BFGS method is considered fully converged when the 

objective function decreases by less than 0.01 dB between 

successive iterations. The number of iterations prior to 

convergence are summarized in Table IV. Notably, the PRO-

FM algorithm rapidly converges before a shallow plateau (due 

to the rapid but inexact convergence of alternating projections 

[6, 7]), while Log-FTE and SWiFTE converge more steadily.  

 
Fig. 4: Objective function value 𝐽 versus iteration for respective waveform 

designs (see Table I). PRO-FM is evaluated with the FTE metric. Due to distinct 

objective functions, analysis is limited to relative convergence speeds. 

 

Additional insight can be drawn by considering waveforms 

having a spectral notch in the center of the occupied bandwidth. 

Within the normalized frequency range of (−0.2, −0.1), an 

intentionally asymmetric null is introduced for metric 

comparison. The optimal template 𝐝̂f is determined for a non-

contiguous spectrum and the waveforms in Table I are 

optimized with the updated notch regions Λ. The mean power 

spectra of the optimized waveform sets are shown in Fig. 5, 

while the RMS and mean autocorrelations are illustrated in 

Figs. 6 and 7. The updated global minimum PSD 𝐝̂f or 

autocorrelation 𝐝̂ = 𝐀𝐻𝐝̂f are illustrated in Figs. 5-7 for 

comparison but cannot be precisely achieved with time-limited 

waveforms. The optimum PSD 𝐝̂f for various null locations is 

examined in [5], and the waveform analysis presented here is 

generalizable for other spectrum null regions. 

When a central spectrum notch is present, the optimum 

integrated sidelobe levels are degraded as one would expect. 

The spectral containment exhibits performance akin to the 

contiguous spectrum case. The RMS PSL is higher for all cases, 

recalling that the template 𝐝̂f is optimized for ISL here (not 

PSL). However, the RMS ISL performances are rather 

unchanged. The mean autocorrelations of the notched spectrum 

demonstrate near equivalent PSL performance for all 

waveforms, with only minor ISL performance deviations.  

In the mean, the optimum sidelobe levels are reached such that 

additional coherent integration would result in only minor 

improvement in the correlation tails. 

Table IV: Waveform Performance Metrics (Contiguous Bandwidth) 
 

 % Energy RMS ISL (dB) RMS PSL (dB) Mean ISL (dB) Mean PSL (dB) Iterations 

FTE+ZOROW 1.12 ∙ 10−4 −41.05 −35.84 −61.59 −38.90 - 

PRO-FM+ZOROW 4.20 ∙ 10−5 −41.05 −38.81 −73.70 −50.17 - 

Log-FTE 1.41 ∙ 10−4 −35.75 −34.55 −74.70 −51.86 455 

SWiFTE 1.40 ∙ 10−4 −37.70 −36.05 −77.10 −57.18 353 

TTE 3.39 ∙ 10−4 −39.42 −36.40 −79.53 −69.08 159 

PRO-FM 2.95 ∙ 10−3 −42.40 −39.12 −79.88 −56.91 85 

FTE 2.45 ∙ 10−2 −47.50 −43.12 −79.68 −51.97 97 

 



 

 

 

 
Fig. 5: Mean power spectra 

1

𝑃
∑ |𝐀̃𝐬𝑝|

2
∀𝑝  of waveform types; for 𝑃 = 10,000 

pulses, 𝑁 = 1000 samples. 

 

Fig. 6: RMS autocorrelation √
1

𝑃
∑ |𝐫𝑝|

2
∀𝑝  of waveform types; for 𝑃 = 10,000 

pulses, 𝑁 = 1000 samples. 

III. ASPECTS OF SWIFTE 

With the SWiFTE waveform design now introduced, the 

error weighting vector 𝐰error is tuned relative to the variable 𝛼. 

Recalling the weight definition in (2), 𝛼 allows for tuning to 

minimize error in high-power or low-power spectral regions, 

with a recommended setting of 𝛼 ∈ [0,1]. The notched regions 

subsumed in Λ are maintained by the piecewise emphasis vector 

definition from (2). 

 
Fig. 7: Mean autocorrelation 

1

𝑃
∑ 𝐫𝑝∀𝑝  of waveform types; for 𝑃 = 10,000 

pulses, 𝑁 = 1000 samples. 

 

The SWiFTE waveforms are matched to the template  

𝐝f = 𝐝̂f + 𝛿𝟏𝑁×1 where 𝛿 = 10−4 for a contiguous power 

spectrum (as in Figs. 1-3). The tuning parameter is varied for 

𝛼 = 0.0, 0.25, 0.5, 0.75, and 1.0 where 𝑃 = 10,000 pulses 

with 𝑁 = 1000 samples each. The mean power spectra of the 

optimized waveform sets are shown in Fig. 8, while the RMS 

and mean autocorrelations are illustrated in Figs. 9 and 10. 
Implementation of 𝛼 = 0 implies a standard FTE metric in the 

passband, while 𝛼 = 1 implies scaled error weighting akin to 

Log-FTE. 

For the error weights when 𝛼 = 0, the ensuing waveform 

set demonstrates overall lower RMS sidelobes but higher mean 

sidelobes. At the other extreme when  𝛼 = 1, the waveform set 

demonstrates overall higher RMS sidelobes but lower mean 

sidelobes. Because all waveforms have finite time-bandwidth 

degrees-of-freedom, the allocation of said degrees must be 

distributed to the high-power spectral regions (causing 

degraded match in low-power regions) or distributed uniformly 

over the spectrum. High-power region match is important for 

smaller aggregate time-bandwidth products (P×TB), while low-

power region matching is important otherwise. Of interesting 

note, as 𝛼 increases to achieve a uniform match, the minimum 

sinc sidelobe in the mean autocorrelation consequently 

decreases. When 𝛼 = 0, a degree of sinc sidelobe structure 

appears even in the RMS autocorrelation near the mainlobe. 

Table V: Waveform Performance Metrics (Non-contiguous Bandwidth) 
 

 % Energy RMS ISL (dB) RMS PSL (dB) Mean ISL (dB) Mean PSL (dB) Iterations 

FTE+ZOROW 6.80 ∙ 10−4 -38.50 -29.63 -54.70 -30.83 - 

PRO-FM+ZOROW 2.89 ∙ 10−4 -39.36 -31.44 -56.69 -32.12 - 

Log-FTE 3.08 ∙ 10−4 -34.67 -27.87 -56.20 -28.96 494 

SWiFTE 2.80 ∙ 10−4 -36.27 -31.25 -58.55 -32.45 362 

TTE 9.15 ∙ 10−4 -38.33 -33.99 -59.33 -34.09 152 

PRO-FM 4.88 ∙ 10−3 -41.42 -33.60 -58.71 -33.94 79 

FTE 3.79 ∙ 10−2 -47.22 -36.02 -62.37 -36.18 99 

 



 

 

 

 
Fig. 8: Mean power spectra 
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Fig. 9: RMS autocorrelation √
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Fig. 10: Mean autocorrelation 
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VI. CONCLUSIONS 

Tradeoffs have been demonstrated between autocorrelation 

sidelobe level, mainlobe resolution, and spectral containment in 

consideration of fixed time-bandwidth degrees-of-freedom. 

Performance analysis of spectrally efficient RFM waveforms 

has revealed important design criterion via power spectrum 

matching. The impact of transmitter distortion on diverse 

waveform designs requires further analysis. 
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