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Abstract—The sensitivity impact of range straddling in the form 

of mismatch loss is well known. What is less appreciated, 

however, is the effect upon dynamic range, particularly for 

receive filtering that seeks to minimize range sidelobes. For FM-

based waveforms, which are readily implementable in a high-

power radar system, it is shown that least-squares (LS) 

mismatched filtering (MMF) realizes a penalty in sidelobe 

suppression when range straddling occurs. This degradation can 

be partially compensated through modification of the LS MMF 

implementation. Alternatively, adaptive pulse compression 

(APC), appropriately modified for application to FM waveforms, 

demonstrates robustness to both straddling and eclipsing effects. 

Simulated and experimentally measured results are provided to 

demonstrate the efficacy of these filtering approaches. 

I. INTRODUCTION 

For a given radar waveform, the “goodness” of the 

associated pulse compression receive filter is determined by 

metrics such as peak sidelobe level (PSL), integrated sidelobe 

level (ISL), and mismatch loss. Mismatch loss is generally 

defined as the mainlobe peak of a mismatched filter (MMF) 

relative to the mainlobe peak of the matched filter for the same 

noise power output from each. The MMF presumably provides 

greater sidelobe suppression as the trade-off for mismatch loss.   

Range straddling arises when the received, sampled replica 

of the transmitted radar waveform does not perfectly coincide 

with the sampled version of the waveform used to construct the 

receive filter [1]. It is well known that this form of mismatch 

loss, which even occurs for the matched filter, is reduced by 

increasing the sampling rate for both the received signal and 

the filter (see, for example, [2]). Alternatively [3] addresses the 

problem of range straddling by incorporating all analog and 

digital system filters into a composite analog response for 

subsequent design of a compensating filter. 

For  polyphase codes (see Chap. 6 of [4]), notwithstanding 

the difficulty in generating them as physical waveforms with 

high fidelity, the chip transitions represent a source of 

potentially significant mismatch loss due to straddling.  

However, for FM-based waveforms, which are far more 

commonly used with high-power systems, their inherently 

continuous nature translates into a rather small loss from 

straddling with only modest “over-sampling” required (relative 

to the 3 dB bandwidth) [2]. For these reasons we limit our 

consideration to FM waveforms (also noting that polyphase 

codes can be implemented as FM waveforms via [2] and 

optimized as such [5]).   

Optimized mismatched filtering, where the filter is 

typically obtained via Least Squares (LS) [6] or possibly via Lp 

norm minimization [7,8], can achieve sidelobe levels much 

lower than the matched filter (depending on the waveform) 

while incurring a rather small mismatch loss.  Being non-

adaptive, the LS MMF seeks to minimize the sidelobe response 

at all delay shifts included in the signal model as it is unknown 

a priori which, if any, relative delays require lower sidelobes 

(since the range profile is unknown). Oversampling (with 

respect to waveform 3 dB bandwidth) can also be performed 

for the LS MMF [2] by employing “beam spoiling” to prevent 

an increase in sidelobes that arise in conjunction with range 

super-resolution [9] and by diagonal loading to set the 

acceptable level of mismatch loss [2].  However, as shown in 

the subsequent section, the achievable sidelobe performance of 

the LS MMF is also affected by straddling which acts as a 

model mismatch effect. As a result, the theoretical and 

practical sidelobe level performance realized by LS MMF can 

differ by orders of magnitude for some FM waveforms.   

It is possible to at least partially compensate for this model 

mismatch effect without the need for further oversampling 

through a straightforward modification to the LS filter 

implementation. However, to regain nearly all of the sensitivity 

lost by LS MMF under the straddling condition necessitates 

receive adaptivity in the range domain. The adaptive pulse 

compression (APC) algorithm [10] has been shown to provide 

this capability for polyphase codes and here, following small 

modifications to account for the structural difference and the 

need for oversampling, is demonstrated to do so for FM 

waveforms as well.   

II. LS MISMATCHED FILTERING OF FM WAVEFORMS 

Let the transmitted radar waveform be denoted as s(t) with 

pulsewidth T.  Define the receive sampling period as 

( )
s

T T
T

K BT N
  ,                                  (1) 

where BT is the waveform time-bandwidth product. The pulse 

rise-time and fall-time are assumed negligible and bandwidth 

implies the 3 dB bandwidth, where K indicates the degree of 

“over-sampling” relative to 3 dB bandwidth (with 3 < K < 5 

found to work well for the filtering schemes considered here).  

The value N = K(BT) is therefore the number of samples in a 

discretized representation of the waveform, which is denoted as 

the vector s = [s1  s2    sN]
T
.    

The LS formulation from [6] uses s to form the matrix of 

dimension ((M +1)N ‒1)  MN as 
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with MN the length of the LS MMF and M typically on the 

order of 2 to 4. Applying the traditional LS approach from [6] 

and modifying for FM waveforms as described in [2] yields the 

filter 

 
1

H H
m



 h A A I A e ,                       (3) 

where   is a diagonal loading factor, I  is a MN  MN identity 

matrix, 
me  is the length (M +1)N ‒1 elementary vector with a 1 

in the mth element and zero elsewhere, and ()
H
 denotes the 

complex conjugate transpose.  The matrix A  is the same as the 

matrix A  except with some number of rows above and below 

the mth row replaced with zeros to provide the beam-spoiling 

described earlier.  The precise number of zeroed rows in A  to 

achieve the nominal resolution of the matched filter is 

dependent on the waveform and the value of K.  Here the 

number of rows is set such that mismatch loss is minimized.  

Figure 1 illustrates the matched filter and LS MMF 

responses (using M = 4) for a linear frequency-modulated 

(LFM) waveform generated via the polyphase-coded FM 

(PCFM) framework in [5] with time-bandwidth product of 64.  

The waveform and filters are sampled at K = 5 times the 3 dB 

bandwidth.  Both filter responses are based on the idealized 

scenario in which no range straddling occurs, where the 

matched filter achieves a PSL of ‒13.8 dB and the LS MMF a 

PSL of ‒66.5 dB, an improvement of nearly 53 dB.  Note, 

however, that the MMF realizes small spurious peaks (around 

the ‒70 dB level) which could be problematic for a subsequent 

detection stage in a high dynamic range scenario.  

Figure 2 shows the matched filter and LS MMF responses 

(M = 4) for the optimized (PCFM) waveform denoted as 

‘performance diversity’ from [5] with time-bandwidth product 

of 64. The waveform and filters again use K = 5. Both filter 

responses are likewise based on the idealized scenario of no 

range straddling. For this optimized FM waveform the matched 

filter achieving a PSL of ‒40.2 dB and the LS MMF a PSL of  

‒77.3 dB, an improvement of nearly 37 dB.  Compared to the 

LFM case, the outermost spurious peaks for the MMF are now 

more rounded while those occurring near the edges of the 

matched filter response are pushed down an additional 10 dB 

to around the ‒80 dB level. 

Where Fig. 2 depicts the filter responses for ideal sampling, 

now consider Fig. 3 in which the sampling of the received 

waveform (assuming reflection from a point scatterer) is offset 

in delay by 0.5TS, representing the “worst case” range 

straddling.  Here it is observed that, while the matched filter 

PSL increases by less than 2 dB, the LS MMF sidelobes have 

increased by approximately 25 dB.  Though the associated PSL 

value of ‒50.0 dB for the MMF is still 11.8 dB better than that 

of the matched filter, it is clear that the MMF sensitivity to 

range straddling is rather significant.  Of course, the spurious 

peaks observed in Figs. 1 and 2 have now disappeared. 

 

Fig. 1. MF and LS MMF (M = 4, K = 5) responses for LFM waveform 

 

 
Fig. 2. MF and LS MMF (M = 4, K = 5) responses for ‘performance diversity’ 

optimized FM waveform [5] 

 

 
Fig. 3. MF and LS MMF (M = 4, K = 5) responses for ‘performance diversity’ 

optimized FM waveform [5] for worst-case range straddling 



To provide a more comprehensive evaluation of straddling 

effects on the LS MMF for FM waveforms, Table I provides 

the PSL values of LS MMF responses for each of the five 

optimized FM waveforms from [5] with K = 3 or 5 for the 

cases of no straddling and worst-case straddling.  Aside from 

the ‘PSL-only’ waveform (where the name implies the 

optimization metric used) the MMF responses results in more 

than 20 dB PSL degradation for the K = 3 sampling for worst-

case straddling relative to the ideal condition. A similar trend is 

observed for K = 5.  

 

TABLE I.  STRADDLING EFFECTS ON PSL FOR LS MMF FOR        

OPTIMIZED FM WAVEFORMS FROM [5] 

 

PSL with no 

straddling (dB) 

 PSL with 

straddling (dB) 

Waveform K = 3 K = 5  K = 3 K = 5 

LFM ‒67.0 ‒66.5  ‒46.3 ‒50.8 

ISL-only ‒68.4 ‒74.2  ‒46.4 ‒52.9 

PSL-only ‒41.2 ‒41.8  ‒39.8 ‒46.5 

FTE-only ‒67.9 ‒69.0  ‒42.3 ‒49.5 

Perf. Div. ‒74.8 ‒77.3  ‒49.7 ‒54.8 

 

The degradation of LS MMF sidelobes due to range 

straddling can be partially mitigated by performing a simple 

averaging procedure.  Segment the sampling period TS into L 

equal sub-sampling delay offsets denoted by S/T L  for 

0, 1, 2, , 1L  .  Using the original continuous version of 

the waveform s(t), now L discretized versions can be obtained 

denoted as ,Ns , where each is generated by introducing the 

relative delay offset of S/T L  to s(t) prior to discretizing. 

Using each of these L discretized versions of the waveform, 

an associated LS MMF can be formed using (2) and (3) to 

obtain the set of filters h  for 0, 1, 2, , 1L  .  Clearly 

these filters will be nearly identical to one another since the 

discretized waveforms ,Ns  are also nearly identical.  

However, because the goal is to achieve ever lower sidelobe 

levels these small differences play an important role.  While we 

cannot drive the sidelobes to the level achieved in the idealistic 

straddling-free condition, up to a few additional dB of sidelobe 

reduction can be achieved by simply averaging over the set of 

filters as 

1

0

1 L

L





 h h .                                     (4) 

Again using the ‘performance diversity’ waveform [5] as an 

example, Fig. 4 illustrates the MMF response using (3) which 

corresponds to L = 1 and the response from using (4) with L = 

5. It is observed that roughly 4 dB PSL improvement is 

obtained using this MMF filter averaging procedure.  While by 

no means a revolutionary improvement, this modification 

requires no additional implementation cost aside from the off-

line design process. Likewise for the other waveforms 

discussed above, an improvement of 2 to 6 dB in PSL is 

realized.  

PSL improves monotonically as L is increased, though the 

degree of improvement diminishes at each increase in L.  This 

averaging also has the effect of flattening the spurious peaks 

observed in Figs. 1 and 2 when no straddling occurs.  Overall, 

the averaging in (4) has the effect of compressing the 

difference in PSL between the best-case delay and worst-case 

straddling condition.  For example, for the same ‘performance 

diversity’ waveform [5] using M = 4 and K = 5, the MMF from 

(3) realizes PSL values that vary over the delay offset interval 

[0, TS] by ‒74 < PSL < ‒ 50 dB, a 24 dB variation.  When L = 

5 is used for averaging as in (4), the possible PSL values are 

compressed to ‒69 < PSL < ‒ 54 dB (a 15 dB variation) and 

the spurious peaks are smeared out thus preventing their false 

detection as seemingly small targets.  If L = 20 were used the 

top end (worst case) lowers 1 dB more to ‒ 55 dB with no 

change to the low end PSL. 

 

 
Fig. 4. LS MMF worst-case straddling responses for ‘performance diversity’ 

optimized FM waveform [5] for L = 1 and L = 5 from (4) 

III. ADAPTIVE PULSE COMPRESSION OF FM WAVEFORMS 

The adaptive pulse compression (APC) algorithm was 

developed in [10] based on an iterative implementation of 

minimum mean-square error (MMSE) estimation that 

essentially operates like a form of adaptive beamforming in the 

range domain. Where the matched filter and LS MMF are 

static, APC involves the determination of a specific filter for 

the estimation of each range cell (or range/Doppler cell 

[11,12]) in which the adaptivity of the filters is driven in a 

bootstrapping manner by an initial estimate of the range (or 

range/Doppler) profile obtained by the matched filter or MMF. 

The original APC algorithm [10] was derived under the 

implicit assumption of using polyphase codes.  Given that FM-

based waveforms have much broader utility in practice as they 

are more amenable to high-power transmitters and provide 

better spectral containment, it is worthwhile to consider how 

APC can be applied to such waveforms.  The key difference 

lies in the mathematical representation whereby a code is 

usually defined by the set of chip phase values (which is a far 

under-sampled representation according to Nyquist, by the 

way) while an FM waveform can be discretized as discussed in 

Section II.  While the latter is still under-sampled with respect 



to Nyquist (since a time-limited pulse has theoretically infinite 

bandwidth), the good spectral roll-off generally indicative of 

FM waveforms means “over-sampling” with respect to 3 dB 

bandwidth will maintain sufficient fidelity for APC. 

Define the received signal at the radar generated by emitted 

waveform s(t) as 

( ) ( ) ( ) ( )y t s t x t u t   ,                             (5) 

where x(t) is the illuminated range profile, u(t) is additive 

noise, and   is convolution. Like the LS formulation, a 

discretized version can then be represented as 

( ) ( ) ( )Ty n n u n x s ,                            (6) 

for s  the length-N  sampled version of s(t). Collecting N 

contiguous samples of (6) into the vector y(n), the matched 

filter estimate can be written as 

MFˆ ( ) ( )Hx n n s y .                              (7) 

It has been found that for FM waveforms the APC 

algorithm is more robust to straddling effects when 

implemented using the decimated version of fast adaptive pulse 

compression (FAPC) [13], with the decimation factor equal to 

the waveform 3 dB over-sampling K.  Further, forgoing the 

updating mechanism based on Woodbury’s identity described 

in [10] avoids the resulting matrix ill-conditioning effects 

discussed in [10,14] as well as the need for subsequent 

measures to remediate them.  As such, quantization effects 

become the limiting factor on achievable dynamic range. 

Application of the MMSE formulation in [13] along with 

inclusion of the unity gain constraint from [15] yields the cost 

function  
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for k = 1, 2, …, K , where ( )k nw , ( )k ny , and ks  are length-

/N K  polyphase-decomposed versions of ( )nw , ( )ny , and s , 

respectively. The kth sub-filter results in the familiar MVDR-

like form 
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in which kR  is the kth decimated / /N K N K  noise 

covariance matrix and ( )k nC  is the kth decimated structured 

signal correlation matrix defined as 

1

, ,

1

( ) ( )
N

H
k k k

N

n n  


 


 

 C s s .              (10) 

The term 
2ˆ( ) | ( ) |n x n   in (10) is the power in the nth range 

cell estimated via prior matched filtering such as in (7), LS 

MMF, or a previous stage of APC, with 

( 1 ) 1

,

1 ( 1) ( 1)
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for the down-sampled delay factor 
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and     the floor operation. 

As an additional modification for application to FM 

waveforms, the K ‒ 1 range indices on either side of the current 

range index n in (10) are, for the purpose of computing w(n), 

set to 

( ) 0n k                                    (13) 

for k = 1, 2, … , K ‒ 1. This “beamspoiling” procedure has the 

effect of preventing the adaptive filter from forcing a range 

super-resolution condition [9] that can result in mismatch loss.  

This approach is essentially the same as that employed for the 

LS MMF in [2] for application to FM waveforms. 

It is also necessary to address pulse eclipsing such as via 

the approach described in [16] or [17] to prevent a collapsing 

of the range window at successive adaptive stages.  Denoting 

the non-eclipsed range cell indices as the interval 𝑛 =
0, 1,⋯ ,𝑄 − 1, the kth decimated APC filter for each of the 

1,2, , 1q N   “early” eclipsed samples is 
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and the kth decimated filter for each of the 1,2, , 1q N   

“late” eclipsed samples is  
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(15) 

where ,k qs  and ,k qs  have the delay-shift structure of (11).  

The terms ,|| || / || ||N q Ns s  and ,|| || / || ||N q Ns s  in (14) and (15) 

prevent over-compensation by the unity gain constraint. The 

correlation matrices 
( )

(0)
n

kC  and 
( )

( 1)
n

k QC  are similar to the 

formulations when n = 0 and n = Q – 1, the only difference 

being the range indices that are zeroed for “beamspoiling”.  



Where the LS MMF realizes an overall increase in sidelobe 

levels due to range straddling, this APC filter for a given range 

cell estimate imposes nulls at the relative delay offsets of large 

scatterers.  Such nulls are less affected by straddling mismatch 

because the null width is generally sufficient to still null the 

interfering scatterer despite the small mismatch. 

IV. SIMULATION RESULTS 

Since the LS MMF has been shown to improve the 

sensitivity of the filter response, with respect to sidelobe level, 

the LS MMF is here used to initialize the APC algorithm. In 

the following, the ‘performance diversity’ waveform [5] is 

used with K = 5. The APC algorithm performs two adaptive 

stages following the MMF initialization. Stated SNR values 

refer to post coherent integration. 

The first two simulations consist of a large target with 80 

dB SNR and a small target with SNR of 15 dB.  The two 

targets are separated by 5 range cells (25 samples using K = 5).  

The range interval is comprised of 200 range cells (1000 

samples).  Figure 5 depicts the MF (black), Avg. MMF (blue), 

and APC (red) responses when no range straddling is present. 

The sidelobes are relatively low but only the Avg. MMF and 

APC are able to completely suppress them so that both targets 

are visible.   

 

 
Fig. 5. LS MMF and APC responses for ‘performance diversity’ waveform 

[5] for two target scenario without straddling  

 
Now consider the impact of range straddling.  Figure 6 

presents the same two-target scenario, albeit with both targets 

now offset in delay to realize worst-case range straddling.  

Similar to what was observed in Figs. 3 and 4 the Avg. MMF, 

while somewhat better than the original MMF, can no longer 

uncover the small target due to mismatch induced sidelobes.  

However, the APC algorithm as modified here for application 

to FM waveforms has no difficult discerning the small target. 
 

 

Fig. 6. LS MMF and APC responses for ‘performance diversity’ waveform 

[5] for two target scenario with straddling 

 

Finally, consider a scenario involving numerous targets, 

both inside the observation window and in the pulse eclipsed 

regions, with disparate power levels. Here 20 targets are 

randomly distributed in range with SNR randomly assigned 

according to a uniform distribution on the interval [15, 80] dB.  

To demonstrate a stressing case, all received target responses 

are sampled at the worst-case straddling delay offset. Figure 7 

shows the resulting MF, Avg. MMF, and APC responses. The 

MMF once again out-performs the MF, though the straddling 

effect clearly limits the MMF sidelobe suppression. Further, 

the eclipsed targets represent a different form of model 

mismatch for the MMF that produces additional degradation 

(specifically note the large eclipsed targets beyond range index 

200). In contrast, APC suppresses the straddle-mismatch 

induced sidelobes as well as the eclipsed sidelobes. Note that 

APC would experience SNR loss for the eclipsed targets 

(relative to full power of the target echo) which is to be 

expected since the full power for these targets is not received 

since they are eclipsed. 
 

Fig. 7. LS MMF and APC responses for ‘performance diversity’ waveform 
[5] for random target scenario with straddling 



V. EXPERIMENTAL RESULTS 

To verify the performance observed in simulation, 

experimental measurements were taken using the quasi-

monostatic test setup shown in Fig. 8, with the field of view 

depicted in Fig. 9 (test setup location indicated by the star at 

the bottom of the figure). A standard LFM waveform was 

used along with the ‘performance diversity’ waveform from 

[5].  Both waveforms have a time-bandwidth product of ~64 

and occupy 80 MHz bandwidth. The center frequency was 2.3 

GHz and the transmit power was 24 dBm. 

 

 
Fig. 8.  Test setup for experimental measurements 

 

 
Fig. 9.  Annotated field of view for measured results 

 

Figures 10 and 11 show the different filtering techniques 

applied to the LFM waveform measurements and normalized 

by the direct path response. The pulse compressed response 

resulting from the direct path provides the means to illustrate 

the effectiveness of the two mismatched filter (MMF) 

approaches and APC for sidelobe suppression. The MMF 

approach from (3) reveals roughly 10 dB improvement over 

the matched filter (MF), with about 1 dB further improvement 

by the averaged MMF from (4). The sidelobes preceding the 

direct path response are reduced by an additional 20 dB via 

the APC formulation above, with more modest enhancement 

thereafter in range. 

 

 
Fig. 10.  Pulse compressed response using LFM waveform 

 

 

 
Fig. 11.  Pulse compressed response using LFM waveform (close up) 

 

 



Figures 12 and 13 show the different filtering techniques 

applied to the measurements resulting from emission of the 

‘performance diversity’ waveform from [5] and likewise 

normalized by the direct path response. This optimized 

waveform provides much lower sidelobes to begin with for the 

MF and thus less overall improvement is possible. That said, 

examining the sidelobes preceding the direct path response, 

the MMF from (3) still yields about 10 dB sensitivity 

enhancement, with the average MMF from (4) and APC 

providing an additional 10 dB improvement. 

 

 

 
Fig. 12.  Pulse compressed response using optimized FM waveform from [5] 

 

 

 
Fig. 13.  Pulse compressed response using optimized FM waveform 

from [5] (close up) 

VI. CONCLUSIONS 

Optimal mismatched filtering via Least-Squares and 
Adaptive Pulse Compression have been devised for arbitrary 
FM waveforms, for which the issues of waveform/filter 
sampling rate, straddling effects, and possible super-resolution 
must be addressed. It is demonstrated using both simulated and 
experimentally measured results that the MMF, averaged 
MMF, and APC methods all surpass the sensitivity provided by 
the matched filter, with the averaged MMF and APC being 
specifically derived to provide robustness to these practical 
effects.  
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