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Abstract

The ReIterative Super-Resolution (RISR) was developed based on an iterative imple-

mentation of the Minimum Mean Squared Error (MMSE) estimator. Here, a novel

approach to direction of arrival estimation, partially constrained beamforming is intro-

duced by building from existing work on the RISR algorithm. First, RISR is rederived

with the addition of a unity gain constraint, with the result denoted as Gain Constrained

RISR (GC-RISR), though this formulation exhibits some loss in resolution. However,

by taking advantage of the similar structure of RISR and GC-RISR, they can be com-

bined using a geometric weighting term α to form a partially constrained version of

RISR, which we denote as PC-RISR.

Simulations are used to characterize PC-RISR’s performance, where it is shown that

the geometric weighting term can be used to control the speed of convergence. It is also

demonstrated that this weighting term enables increased super-resolution capability

compared to RISR, improves robustness to low sample support for super-resolving

signals with low SNR, and the ability to detect signals with an SNR as low as -10dB

given higher sample support.
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Chapter 1

Direction of Arrival (DOA) Estimation

This chapter includes a brief introduction to the field of Direction of Arrival Estimation and estab-

lishes several figures of merit that will be used throughout to compare the performance of various

algorithms.

1.1 Overview of DOA

Direction Of Arrival (DOA) estimation refers to the problem of discerning the direction from

which some field or wave impinges on an array of sensors. It has a wide variety of applications

in everything from seismology to speech processing. In medical imaging technologies such as

magnetoencephalography (MEG) and electroencephalography (EEG), sensors placed around the

skull capture electric and magnetic waves emitted from the brain and work backwards to an image.

In radar applications, large arrays are used to locate and differentiate objects, such as aircraft or

weather systems. DOA estimation can also be applied to matter waves, such as sound waves, using

an array of microphones. For example, audio engineers can employ DOA estimation as a means to

achieve proper equalization or isolate echoes. In fact, there are as many potential applications of

DOA estimation as there are varieties of sensors and waves, and in some cases DOA estimation can

actually be equivalent to frequency analysis, which opens up another whole domain of applications

[14, pp.6-12] [19].
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1.2 Figures of Merit

When discussing DOA estimation there are number of metrics used to compare the performance

of different techniques and an assortment of conditions that may impose limitations on some es-

timation methods. Perhaps the most common figure of merit is the resolution a given algorithm

provides paired with some particular array. Resolution, in the most general sense, describes the

minimum angular separation between two signals such that they can still be separated as distinct

signals. Unfortunately, this is a rather ambiguous measure because there is no generally acceptable

rule for determining if two signals are separate. Consider Figure 1.1, in which two spatial power

estimates are shown. In the right plot, it is difficult to say for certain if there is one signal or two

because there is a null, but it is not very deep. In the left, the null is sufficiently deep, but it is

difficult to determine if the left lobe is the mainlobe of a weaker signal, or just a sidelobe of the

signal on the right.

A common convention to facilitate comparison of different beamforming methods is to decide

that closely spaced signals are separable if there is a 3 dB null between them. This convention

has its limitations, particularly when peaks are sharper than those shown in the previous example,

but while imperfect it is a generally accepted basis by which to evaluate the performance of DOA

estimation algorithms.

Another commonly used figure of merit is dynamic range. Signals are most easily separated

when they have the same strength, though, this is often not the case. What if one signal is much

smaller than the other? Will it still be possible to discern the smaller signal, or will it get buried in

the sidelobes of the larger (see Figure 1.1)? Dynamic range measures the maximum signal power

difference at which signals can successfully separated.

Stationarity, sample support and convergence speed are all closely related as well. If the re-

ceived signal does not exhibit adequate stationarity it can be difficult to obtain enough samples

to realize a good estimate, thus suggesting the need for operation at low sample support. Of

course, most DOA estimation methods require a large sample support, with their performance of-

ten evaluated in the asymptotic sample support regime [14]. The vast majority of DOA estimation
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Figure 1.1: Two spatial power estimates that demonstrate the ambiguity involved with deciding if
signals are separable. Insufficient null depth (right) and difficulty distinguishing main lobes from
sidelobes (left) are two common problems.

techniques require the estimation of sample covariance matrix (SCM)

Finally, the array manifolds must be taken into account. The array manifold (explained in

detail in Chapter 2) is a function of the array’s geometry that characterizes its response to a signal

from any direction. Virtually all DOA estimation techniques can be used with uniform linear arrays

(ULA), so ULA’s are often used to evaluate the performance of beamformers because they facilitate

comparison. However, there are many applications, such as in the case of conformal arrays, when

algorithms that can be used with arbitrary or unknown array manifolds have a distinct advantage.
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Chapter 2

Phased Arrays and Beamforming

2.1 Introduction to Phased Arrays

DOA estimation necessarily involves being able to point the antenna or array in an arbitrary di-

rection. Naturally, it is possible to perform DOA estimation by physically rotating the whole

array over a range of angles while recording the received power — that is the approach used with

parabolic dishes. However, using a phased array has notable advantages, and is becoming a more

and more common solution. Unlike a parabolic dish, which is typically just one antenna, an ar-

ray is composed of multiple elements, sometimes as many as thousands. If the received signal

changes slowly with respect for the amount of time it takes the signal to travel across the array,

then because there is some separation between elements there will also be some time difference

between elements. Given some basic information about the impinging wave and the geometry

of the antennas’ configuration, it is possible to determine the direction from which the wavefront

originated. Figure 2.1 illustrates how the wavefront of a signal reaches the elements of a phased

array at different times. Considering Figure 2.1, one can imagine how changing the direction of

arrival would likewise change the time it takes the wave the travel between elements.

Figure 2.1 depicts a uniform linear array (ULA). In an ideal ULA, all of the antenna elements

are identical, equally spaced, and isotropic, meaning the gain in any direction around an individual
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Figure 2.1: A wave impinging on a ULA. The time it takes the wave to travel between elements is
a function the angle it originates from.

Figure 2.2: Simple trigonometry can be used to find the distance the wave travels between ele-
ments.
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Figure 2.3: An isotropic antenna (left) and a non-isotropic antenna (right).

element is the same [14, p.37]. Furthermore, the spacing between each element is optimally half

of a wavelength to maximize resolution without incurring grating lobes. Real, non-ideal ULA’s

have similar, nearly equally spaced, nearly isotropic elements. Fig 2.3 depicts the beampattern of

an isotropic antenna element.

There are two more important assumptions that are often implicit with ULAs. The far field

assumption, which states that incident fields originated sufficiently far away that they can be ap-

proximated by plane waves, and the narrow band assumption. Simply stated, invoking the narrow

band assumption means assuming that the signal changes slowly with respect to the length of time

it takes the signal to travel across the array. The narrowband assumption allows us to treat the time

difference between elements as a phase difference, and greatly simplifies the problem of DOA es-

timation. If the narrowband assumption is not met, the array geometry can still be used to back out

the direction of arrival, but it becomes considerably more complicated. Stated mathematically, the

narrowband assumption can be expressed as

BT � 1, (2.1)

where B is the incident signal’s bandwidth and T is the time it takes the signal to travel across the

array [14, p. 34].
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Figure 2.4: The same spatial power spectrum estimated with an N ×N steering vector matrix
(left) and an N× 20N steering vector matrix (right). Sufficient sampling of the array manifold is
necessary to see fine features.

2.2 Array Manifolds and Steering Vectors

The array manifold is the response across the array from the continuum of directions from which

an incident signal could arrive. It can be approximated using steering vectors, each of which is a

column vector corresponding to one specific incident angle. A steering vector is associated with

a specific angle and contains one entry for each antenna describing the phase difference between

elements for a signal arriving from that angle. By collecting steering vectors for many incident

angles together to form a steering vector matrix, it is possible to created a spatially sampled version

of the array manifold which can be used to estimate the DOAs. Steering vector matrices need to be

sufficiently sampled in spatial angle (with respect to the spatial resolution dictated by the number

of antenna elements) so that there are enough points to distinguish between adjacent peaks. Figure

2.4 shows why sampling is necessary for accurate DOA estimation.

Consider the simplest case, in which a wave impinges on a ULA from the boresite direction,

the angle perpendicular to the array, here denoted as 0 degrees. In this case, (invoking the far field

assumption) the phase will be the same across all array elements, yielding the steering vector
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Figure 2.5: A wavefront impinging across a phased array. Note the phase difference at each ele-
ment.

s(0◦) =
[

1 1 · · · 1

]ᵀ
, (2.2)

where ᵀ is the transpose operator. Next, consider the endfire scenario, in which the wave comes

from the side, as shown in Figure 2.5. Because the elements are spaced a half wavelength apart,

the phase changes by 180◦ between each element. Accordingly, if there are N antenna elements,

the steering vector would be

s(90◦) =
[

e j(0)π e j(1)π · · · e j(N−1)π

]ᵀ
. (2.3)

The geometry of the array can be used to find the steering vector for any spatial angle φ . Using

Figure 2.2 and some simple trigonometry, it is easy to see that the wave will travel a distance of

d = (λ/2)sinφ between each element. The associated phase shift θ is then (d/λ )(2π), or

θ = π sinφ , (2.4)

which is often referred to as the electrical angle. The electrical angle and the spatial angle are

directly related, but the electrical angle subsumes the wavelength and allows ULAs to be treated
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more generally. Accordingly, we can describe any general steering vector for a ULA as

s(θ) =
[

e j(0)θ e j(1)θ · · · e j(N−1)θ

]ᵀ
. (2.5)

This particular description of steering vectors, in which the entries’ exponents progress linearly, is

called the Vandermonde form [14, pp. 37].

For an N element array, each length N steering vector, as a function of discretized electrical

angle, is collection into the steering vector matrix. For M discrete angles, this matrix is expressed

as

S =

[
s(0) s(θ) s(2θ) · · · s((M−1)θ)

]
. (2.6)

2.3 Standard (Non-Adaptive) Beamforming

Suppose a signal is incident on the array at some angle θ . What is received at the array is the

original signal multiplied by the associated steering vector, plus a vector of noise v(`)

y(`) = x(`)s(θ)+v(`). (2.7)

Pre-multiplying the received signal from (2.7) by sH(θ), which is the standard (non-adaptive)

beamformer for electrical angle θ , then yields

sH(θ)y(`) = sH(θ)s(θ)x(`)+ sH(θ)v(`)

= Nx(`)+ sH(θ)v(`),
(2.8)

where H is the Hermitian operator, or complex conjugate transpose. The imaginary components

of the first term all sum to zero, resulting in coherent integration of the signal, while the noise,

assuming it has random phase, would be largely unaffected.

For a signal from direction θo, s(θ)Hy(`) is maximized when θ = θo, and drops off as θ
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Figure 2.6: Spatial power estimate using the standard beamformer of single source at 0◦.

becomes dissimilar to θo. Using the Hermitian of the steering vector matrix to coherently integrate

up the signal is the principle behind matched filtering. Each of the M vectors in S is applied to the

received signal and the result is a spatial spectrum that shows how correlated each of the steering

vectors is to the received signal. The result is called the spatial complex amplitude estimate

p(θ , `) = SHy(`). (2.9)

Figure 2.6 shows an example of what a matched filter power spectrum looks like for a single

source at 0◦. Note that in addition to a fairly wide main lobe, there are also many sidelobes that

contain much less power, but are still significant. One can imagine that if several signals were

spaced closely, it would be difficult to determine their number.

Matched filtering, also known as the standard beamformer is the most basic type of beamform-

ing.

When the standard beamformer is employed, each lobe will have a fixed beamwidth equal to

360◦/N in electrical angle. When two signals are separated by an angle of at least one beamwidth,

i.e. when their mainlobes no longer overlap, they are generally separable using the standard beam-
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Figure 2.7: Using phase delays to steer a wavefront away from the array at an angle

Figure 2.8: The beamwidth of the standard beamformer is determined solely by the number of
antenna elements. Here N = 10 elements corresponds to a beamwidth of 36◦.

former (though there are many factors such as signal correlation and SNR that can make signals

inseparable even when their mainlobes do not overlap). 360◦/N is known as the Rayleigh res-

olution or the nominal resolution. If a method that can separate signals that are closer than the

Rayleigh resolution it is considered to achieve super-resolution [14, pp. 48].
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Chapter 3

Super-resolution and Adaptive Signal

Processing

3.1 Definition of Super-resolution and Applications

As shown in Chapter 2, the standard beamformer has limited resolution, which can be especially

problematic when the number of antenna elements at one’s disposal is small. Recall that the

Rayleigh Resolution for N antenna elements in a ULA is

Rayleigh Resolution =
360◦

N
=

2π

N
. (3.1)

Depending on the degree of resolution one hopes to achieve many antenna elements my be nec-

essary. Furthermore, if signals are correlated, or if they have different power levels, then even

at the Rayleigh resolution separability cannot be guaranteed. The standard beamformer does not

suffice for some applications that require high resolution, which leads to the development of super-

resolution techniques that can separate signals spaced closer than the Rayleigh resolution.

Super-resolution is a blanket term for any algorithm or formulation that results in an estimate

providing more resolution than the standard beamformer does. Algorithms can be characterized

by the degree of resolution they achieve relative to the Rayleigh resolution. For example, if an
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algorithm can separate signals at half the nominal resolution, it is said to have a super-resolution

factor of two. Unfortunately, even in terms of super-resolution factor, it can be difficult to compare

super-resolution techniques fairly because, as discussed in Chapter 1, there are many factors such

as resilience to signal correlation and supported array structures that cannot be easily compared.

Some algorithms require ULAs be used, but others can be used with any known array. Finally,

some perform better in low SNR regimes than others do. The net effect is that it is difficult to

design a fair test for comparing super-resolution the context of a specific application.

Super-resolution algorithms are applicable in most settings that sensor arrays are used, such as

radar, cellular communications systems, medical imaging, speech processing, audio engineering,

and astronomical studies. The only real limitation to where super-resolution techniques can be used

is computing power. Some super-resolution DOA techniques require significant computational

complexity, which means some may not be an option if power is limited, memory is limited, or if

computation needs to be performed in real time.

3.2 Introduction to Adaptive Signal Processing

The reason that many super-resolution techniques require so much computing power is because

they all rely on adaptive signal processing techniques. Recall that the standard beamformer in

Chapter 2 was based solely on the geometry of the array. No statistical information about the re-

ceived signal is considered. In adaptive signal processing, the received signal is used in addition

to the array geometry to provide an improved estimate of DOA, resulting in super-resolution. It is

termed adaptive because the resulting filter is a function of the received signal. For standard beam-

forming, little computation was needed aside from applying the matched filter, while in adaptive

beamforming the received signal must constantly be analyzed and updates must be made any time

the statistical properties of the signal change. As a result, a higher computational cost is incurred,

though resolution is enhanced. It should be noted that there is tremendous variety among adaptive

signal processing techniques, and that some are remarkably computationally efficient, while others
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cannot be run in real time even on modern super computers. Broadly speaking, techniques that

involve finding the expectation of a random variable tend to have high computational cost than

those that only operate on one snapshot of data at a time.

3.2.1 Degrees of Freedom

An important concept in adaptive signal processing is degrees of freedom. Degrees of freedom

allow adaptive algorithms to place nulls or amplify signals in a certain directions and they have a

large influence on how well DOA estimation can be performed. The number of available degrees of

freedom is dictated by the number of independent data channels (e.g. number of antenna elements).

For an array with N = 10 elements, there are likewise 10 degrees of freedom. One degree of

freedom is used to focus on a specific direction of interest, which leaves 9 degrees of freedom to

to suppress other signals so that the direction of interest can be estimated accurately. Degrees of

freedom are also used up when constraints are applied. In the next section we will apply a gain

constraint to a DOA estimation algorithm, resulting is a loss of one degree of freedom. In these

ways, degrees of freedom are helpful for understanding how array size and the number of signals

present factor into the problem of DOA estimation.

3.3 Example: Capon Beamformer

The Capon beamformer, also known as the Minimum Variance Distortionless Response (MVDR)

beamformer, is a common adaptive beamformers and a good introduction to how the statistical

properties of the received signal can be used to improve upon the standard beamformer [14, pp.440-

442]. Consider estimating the complex magnitude in a direction θ at time index ` as

x̂(`,θ) = wH(θ)y(`), (3.2)
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where y(`) is the received signal and w(θ) is a spatial filter for the direction θ . The received signal

model is

y(`) =
K

∑
k=1

xk(`)s(θk)+n(`), (3.3)

where there are K incident signals and n(`) is a vector of additive noise.

Recall from Figure 2.6 that the standard beamformer produced many sidelobes. To suppress

sidelobes, one can minimize the squared magnitude of x̂(`,θ), which can be written as the cost

function

J = E[
∣∣x̂(`,θ)∣∣2]. (3.4)

This cost function is desirable because it is quadratic, which means that it only has one mini-

mum, so by using the gradient to search for extrema one is guaranteed to find the global minima.

To avoid the trivial solution of w = 0 a constraint is needed. If wH(θ)s(θ) = g is enforced, then

by combining (3.2) and (3.3) it is possible to show that

x̂(`,θ) =
K

∑
k=1

g(xk)+w(θk)
Hn(`) (3.5)

Since it is simply an arbitrary scaling factor any value of g is valid, with g = 1 yielding the mini-

mum variance distortionless response (MVDR) formulation. The constraint then becomes

wH(θ)s(θ) = 1. (3.6)

With the cost function and constraint defined, a Lagrange multiplier must be used to apply the

constraint to the cost function, resulting in an unconstrained function for optimization. Adding a

gain constraint reduces the available degrees of freedom by one, but is necessary to avoid the trivial

solution. With the constraint incorporated, the cost function becomes

Jconst = E[
∣∣x̂(`,θ)∣∣2]+ℜ[λ ∗(wH(θ)s(θ)−1)]. (3.7)
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The first term can be simplified some by omitting the indices and rewriting it as

E[|x̂|2] =E[(wHy)H(wHy)]

=E[(wHy)(xHw)]

=wHE[yyH]w

=wHRw,

(3.8)

where R is the covariance matrix of the received signal. The cost function can then be rewritten as

Jconst = wHRw+R[λ ∗(wHs−1)]. (3.9)

With the constraint incorporated directly into the cost function, the optimal filter can now be found

by taking the gradient of the cost function with respect to wH and solving the resulting dual prob-

lem. Taking the gradient results in

5Jconst = Rw+λ
∗s(θ)≡ 0. (3.10)

From this result it is clear that

w =−λ
∗R−1s, (3.11)

but λ ∗ still needs to be specified using the constraint, which can be accomplished by substituting

(3.11) into (3.6) and solving for λ ∗ as follows:

[wHs]∗ = [1]∗

sHw = 1

−λ
∗sHR−1s = 1

λ
∗ =

−1
sHR−1s

(3.12)

Finally, λ can be inserted back into the Capon beamformer filter of (3.11) to obtain
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Figure 3.1: Comparison of the spatial power distribution estimate of two 30 dB signals at±10◦ for
the Capon beamformer (left) and standard beamformer (right). The Capon beamformer achieves
super-resolution because it successfully separates signals 20◦ apart, much less than the Rayleigh
resolution of 36◦.

w =
R−1s

sHR−1s
. (3.13)

One can determine the spatial power spectrum for this filter. It was shown in (3.8) that the

power
∣∣x̂(n)∣∣2 is equal to wHRw. If the solution for w is inserted here, the result is

pcapon(`,θ) =

(
R−1s(θ)

sH(θ)R−1s(θ)

)
R

(
R−1s(θ)

sH(θ)R−1s(θ)

)

=
1

sH(θ)R−1s(θ)
.

(3.14)

Figure 3.1 is a comparison of the same signal’s spatial power distribution estimated with both the

standard beamformer and the Capon beamformer. Clearly, the Capon beamformer is superior to the

standard beamformer in this setting. It performs better because it is using the sample covariance

matrix R to leverage information from the data that simple beamforming does not take into account.

Thus the Capon beamformer’s performance is dependent on the accuracy of the estimate of R.

When there are sufficient samples to form an SCM, then the performance will be nearly optimal,
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Figure 3.2: Two 20 dB signals are at ±10◦. The Capon beamformer’s is sensative to sample
support.

but in sample starved environments, like when the signal does not remain stationary for very long,

its utility will be limited. Figure 3.2 shows how sample support impacts the estimated power

spectrum.

Many adaptive beamforming techniques employ a sample covariance matrix like the Capon

beamformer because it is an effective way to exploit extra information contained in the data. How-

ever, as can be seen in Figure 3.2, having limited sample support affects the spatial power distribu-

tion estimate. Such approaches have limited utility in low sample support environments, but in the

next chapter a more robust method is introduced that can achieve super-resolution using as few as

a single spatial snapshot.

3.4 Multiple Signal Classification (MUSIC)

The Multiple Signal Classification (MUSIC) algorithm is perhaps one of the most popular super-

resolution algorithms. Its implementation is relatively straightforward and it has excellent perfor-
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mance. In fact, its ease of implementation and performance have helped it to become a benchmark

against which other super-resolution algorithms are compared. Here we introduce MUSIC in its

simplest form, and later we discuss some improvements to MUSIC [14, p.1158].

MUSIC’s models signals as

y(`) = x(`)+n(`) (3.15)

where y(`) is the M× 1 received signal vector at time index `, x(`) is a superposition of P < M

signals and their steering vectors, and n(`) is additive noise. The vector x(`) can be described by

x(`) =
P

∑
i=1

ai(`)s(θi) (3.16)

where ai are the P signals’ amplitudes and θi is the angle associated with ai. If we assume that the

signal and noise are independent then the received signal sample covariance matrix (SCM) can be

written as

Ryy = Rxx +Rnn. (3.17)

Assuming white noise, Rnn =σ2
n I. Similarly, Rxx can be expressed as Rxx =∑

P
i=1 E[|ai|2]s(θi)sH(θi).

Note that while Ryy is full rank because of the noise, Rxx is only rank P. Then taking the eigende-

composition of the right side

Ryy = V(Λx +Λn)VH, (3.18)

where V is a unitary eigenvector matrix and Λx and Λn are diagonal eigenvalue matrices for Rxx

and Ryy respectively. Deconstructing each term further reveals that

Ryy =
P

∑
i=1

λx,ivivH
i +

M

∑
i=1

σ
2
n vivH

i . (3.19)

Taking care to keep track of the summation indices, (3.19) can be modified further to show that
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Ryy =
P

∑
i=1

(λx,i +σ
2
n )vivH

i +
M

∑
i=P+1

σ
2
n vivH

i . (3.20)

Thus Ryy can be expressed as the sum of two orthogonal subspaces. The first is called the sig-

nal+noise subspace and the term is called the noise-only subspace. These subspaces are guar-

anteed to be orthogonal to one another because the columns of a unitary matrix are orthogonal.

Furthermore, it can also be shown using (3.16) - (3.20) that the steering vectors associated with

the incident signal span the same subspace as the eigenvectors corresponding to the signal+noise

subspace.

MUSIC then employs a clever trick to locate signals. If we take the inner product of an eigen-

vector from the noise subspace with a steering vector, the result will be zero if steering vector

belongs to the signals subspace and nonzero if it belongs to the noise subspace. It follows then,

that if we can determine which eigenvalues belong to the noise subspace, then we can determine

the steering vectors that belong to the signal subspace. It is often possible to distinguish between

the noise subspace and signal subspace by taking an eigendecomposition and observing the eigen-

values’ distribution. As can be seen in Figure 3.3, when eigenvalues are arranged in order of

magnitude it is sometimes very easy to determine which eigenvalues belong to which subspace.

However, there are also conditions (such as low SNR) in which it is difficult to determine pre-

cisely where the signal subspace ends and the noise subspace begins. Popular methods include the

Akaike Information Criterion and Bayesian Information Criterion [20] but neither will be discussed

in depth here.

Once the order of each subspace has been determined, form

Q(φ) =
M

∑
k=P+1

∣∣∣sH(φ)vk

∣∣∣2 . (3.21)

Because of orthogonality, Q(φ) will have a very small value anywhere that a signal is present, and

a large value anywhere that a signal does not exist. Finally, A pseudo-spectrum estimate can then

be obtained by inverting Q(φ). Figure 3.4 shows a MUSIC pseudo-spectrum estimate of two 20
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Figure 3.3: The signal subspace and noise subspace can be determined by arranging the eigen-
vectors of the received signal covariance matrix in descending order. In this instance, the signal
subspace has an order of 2, and the noise subspace has an order of 8.
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Figure 3.4: MUSIC pseudo-spectrum estimate of two 20 dB signals at ±9◦ (1/4 nominal resolu-
tion). Note that MUSIC does not provide an estimate of signal power.

dB signals at ±9◦ (1/4 of Rayleigh resolution). The reason that MUSIC’s estimate is referred to as

a pseudo-spectrum instead of a spectrum like the previous Capon beamformer’s is because MUSIC

does not provide an estimate of the signals’ powers, but rather just an estimate of their DOA. If

an estimate of the power is desired, a separate power estimation technique must be applied after

estimating the DOA with MUSIC.

3.5 Other Versions of MUSIC

The version of MUSIC introduced here is among the more basic versions of MUSIC. Many other

versions of MUSIC have been developed that increase its precision and robustness, including cyclic

MUSIC and root-MUSIC. As its name implies, root-MUSIC uses root finding to locate sources.

Unlike MUSIC, it does not produce a spectrum, but instead outputs a vector containing DOA
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estimates. Root-MUSIC is considerably more robust than MUSIC and does not require any peak

detection logic, which makes it a popular choice. Estimation of Signal Parameters via Rotational

Invariance Techniques (ESPRIT) [22] is another eigenspace DOA alogorithm similar to MUSIC

that itself has several versions [14, pp.1170].
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Chapter 4

Reiterative Super-resolution Algorithm

4.1 Motivation for RISR

The next beamformer that will be treated, ReIterative Super-Resolution (RISR), is an algorithm.

Unlike the Capon beamformer which is a one step optimization, RISR is a comprised of a set of

calculations that have to be repeated several times before a solution is reached.

There are a number of characteristics that make RISR unique, but it is perhaps most noteworthy

for its robustness. RISR can be implemented with any known array manifold, takes unknown array

modeling errors into account, and can operate on as few as just one snapshot of data, which allows

it to be used on signals that do not exhibit prolonged stationarity.

RISR’s derivation includes two unique features that give it its robustness. First, instead of

employing a sample covariance matrix like that used in the Capon beamformer, RISR uses a spatial

covariance matrix formed from the correlation between antennas elements. Because correlation is

calculated between elements instead of between time samples, RISR can operate on as few as one

snapshot.

Second, its formulation includes a calibration error covariance matrix that helps account for

imprecision in the antenna elements’ gain and phase. Typically, the calibration error covariance

matrix can be determined from the manufacturing tolerances of the array itself, so there is no need
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to estimate it from the data [30] [29].

4.2 Data Model

The data model that RISR employs is

y(`) = (Sx(`))� z+v(`), (4.1)

where y(`) is an N×1 vector of received signal values at time index `, with one entry corresponding

to each antenna element. S is an N×M matrix of steering vectors, and x(`) is an M× 1 spatial

complex magnitude vector, in which each entry contains the true signal from the mth direction.

z is a column vector of complex values that incorporates the unknown modeling errors and �

represents element wise multiplication, otherwise known as the Hadamard product. Finally, v(`)

is additive noise, which is often modeled as additive white Gaussian noise but could have any

distribution. Note that neither S or z are functions of the time index `. They are the same for all

snapshots, because the array geometry is assumed not to change as a function of time.

Each entry in z is a complex number that describes the gain and phase error of a particular

antenna element and can be mathematically specified as

zn = [1+∆a,n]e j∆φ ,n (4.2)

where ∆a,n and ∆φ ,n are some amplitude and phase deviation, both with arbitrary distributions.

Assuming that all of the antennas are from the same distribution, zm will have some variance

σ2
z . The deviation of each element is presumed to be independent, so the calibration error can be

modeled as noise by making the approximation

y(`) = ((Sx(`))� z+v(`)

≈ Sx(`)+v(`)+vz.

(4.3)
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In the coming sections, it will be necessary to find the covariance matrix for vz, so we will do

that here in advance. Working from (4.3), it is simple to show that

Sx(`)� z = Sx(`)+vz

vz = Sx(`)� z−Sx(`)

vz = Sx(`)� (z−1).

(4.4)

From the definition of a covariance matrix, the covariance matrix for vz will be

Rz = E[vzvH
z ]

= E[(z−1)� (Sx(`))(Sx(`))H� (z−1)H]

= E[Z̃(Sx(`))(Sx(`))HZ̃H]

(4.5)

where

Z̃ =



z0−1 0 · · · 0

0 z1−1 · · · 0
...

... . . . ...

0 0 · · · zN−1−1


. (4.6)

Using the two assumptions that modeling errors are uncorrelated to each other and to the source

signal, (4.5) will simplify to

Rz = σ
2
z IN×N� (SPSH). (4.7)

4.3 Derivation of RISR

Using the data model developed in the previous section (see (4.3)), RISR attempts to find some

N×M filter bank W that will estimate x(`) from the snapshot y(`). Denoting the estimate of x(`)

as x̂(`) and omitting the time index,
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x̂ = WHy. (4.8)

RISR finds W that minimizes the mean squared error between x and x̂. Using expectation to

approximate the mean, the cost function can be written as

J = E
[
|x− x̂|2

]
. (4.9)

Inserting the previous definition of x̂ from (4.8), the cost function becomes

J = E
[∣∣∣x−WHy

∣∣∣2]
= E

[
(x−WHy)(x−WHy)H

]
= E

[
(x−WHy)(xH−yHW)

]
.

(4.10)

The next step is to perform optimization by minimizing the cost function. The gradient is taken

with respect to WH and the result set equal to zero

5J = E
[
−yxH

]
+E

[
yyH
]

W≡ 0. (4.11)

Note that because the cost function is quadratic, the gradient is guaranteed to locate the global

minimum. Recalling the data model given in (4.3), substitute in for y. Assuming that v and vz are

both zero mean causes some of the expectations to drop out, resulting in

5J =−SE
[
xxH
]
+E

[
(Sx+v+vz)(xHSH +vH +vH

z )
]

W = 0. (4.12)

From here, define P as the spatial power distribution matrix, an M×M diagonal matrix containing

E[x2
m] as its entries. To emphasize that it is a diagnoal matrix, it can be written as P = E[xxH]�

IM×M. Using this new notation,

5J =−SP+
(

SPSH +E[vvH +vzvH
z ]
)

W = 0. (4.13)
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To simplify notation further, denote the covariance matrix of v and vz as R and Rz, respectively.

−SP+[SPSH +R+Rz]W = 0. (4.14)

Finally, solve for W to get the final filter solution

W = (SPSH +R+Rz)
−1SP. (4.15)

4.3.1 Reiteration

An astute observer will realize that an estimate of the spatial power distribution x is needed in

order to calculate W. However, the reason for finding W is so that x can be estimated. How can

this be? It is because RISR is an iterative solution in which W and x are used in turn to estimate

one another. The steps for this iterative process are will be explained here.

In order to calculate the filter bank W, an initial estimate of the spatial power distribution

matrix P0 is necessary, and to calculate P0, some initial estimate x̂0 is needed. To get the initial

estimate of x̂, the standard beamformer introduced in Chapter 2 is used. Find the initial estimate

of the spatial complex magnitude as

x̂0 = SHy. (4.16)

With this result, P0 can be calculated, and then the first solution for the filter bank, W1.

Next the data model in (4.3) can be used to return back to the beginning and obtain a new

estimate of the spatial complex magnitude distribution,

x̂1 = WH
1 y. (4.17)

From this point, iteration can be continued until either (1) the change in x̂i from one iteration to

the next becomes smaller than some predetermined threshold, or (2) a chosen number of iterations
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is completed. The basic pattern is

1. Use x̂i−1 to find Pi−1.

2. Find Wi with Pi−1.

3. Obtain x̂i by using Wi

4. Repeat

4.3.2 Incorporating Noncoherent Integration

The derivation given above is for a single spatial snapshot, however it is also possible to use

multiple snapshots to boost RISR’s performance even further, provided that the samples are taken

over a period where the signal is stationary. The data model in (4.8) must be updated to incorporate

L time samples. The new data model is

X̂ = W̄HY. (4.18)

In the equation above, X̂ = [x̂(`) x̂(`+ 1) · · · x̂(`+ L− 1)] is an M× L matrix that holds

an estimate of the spatial complex magnitude distribution for each time sample. Y is a similarly

constructed N×L matrix containing the received signal at each of the N antennas at each of the L

time samples. Accordingly, an average spatial power distribution can now be calculated as

P̄ = [(1/L)
L−1

∑
τ=0

x̂(`+ τ)x̂H(`+ τ)]� IM×M. (4.19)

By inserting these new definitions of X̂, Y, and P̂ into the algorithm developed in the previous

section, RISR will be modified to use multiple snapshots to estimate the average filter bank Ŵ,

resulting in improved DOA estimates.

Both RISR and SCM based approaches like the Capon beamformer perform better with more

snapshots, but the way in which those snapshots are used is subtly different. For SCM approaches,
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providing many samples allows for truer approximation of the SCM matrix, which results in a

better DOA esimate. In RISR’s case, more samples allows for noncoherent integration of the

actual estimates themselves, which helps to suppress noise and improve performance.

4.3.3 Guide to Implementation

Implementation of the RISR algorithm is summarized below. Initialization is performed once L

spatial snapshots have been collected and arranged in a matrix Y.

1. Initialize:

• Find initial estimate of complex amplitude distribution:

X̂0 = SHY

• Find initial estimate of average spatial power distribution:

P̄0 = [(1/L)
L−1

∑
τ=0

x̂0(`+ τ)x̂H
0 (`+ τ)]� IM×M

• By assumption or measurement, obtain noise only covariance matrix R

• Based on array tolerances, obtain the model error variance σ2
z

2. Iterate: for i = 1,2, ...

• Calculate the RISR filter bank:

W̄i = [SP̄i−1SH +σ
2
z IM×M� (SP̄i−1SH)]−1SP̄i−1

• Update estimate of spatial complex amplitudes:

X̂i = W̄H
i Y
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• Update estimate of spatial power distribution:

P̄i = [(1/L)
L−1

∑
τ=0

x̂i(`+ τ)x̂H
i (`+ τ)]� IM×M

3. Once iteration is completed, the RISR spatial magnitude distribution can be obtained as

xm =
√

P̄mm.

4. The number of sources and their magnitude can be estimated from the peaks in the RISR

spectrum.

4.4 Performance Characteristics

In this section we will outline the basic performance of RISR, with particular attention given to

convergence characteristics, resolution, and dynamic range, all with respect to SNR. How RISR’s

behavior is affected by sample support and calibration errors will be discussed, but not in exhaus-

tive detail, as it is well documented elsewhere and not of significant importance in the development

of PC-RISR in the next chapter [29] [30].

4.4.1 Convergence

As outlined in the previous section, RISR requires an initial estimate of the spatial power spectrum

before iteration can begin. A matched filter is used to provide this estimate, so initially the RISR

spectrum begins from the matched filter beamformer result. At each iteration, RISR attempts to

suppress any part of the spectrum that appears not to be a signal, which results in the formation of

deep nulls and sharp peaks. Typically RISR will reach convergence in roughly 10 iterations, but it

may be slightly slower or faster depending on how many signals are present and how closely they

are spaced. Generally, more signals spaced nearby require more iterations to separate than fewer

signals placed far apart.
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Figure 4.1: The convergence of RISR illustrated at several steps along the way. Two 20 dB signals
are incident at ±10◦.

Figure 4.1 shows how RISR’s estimate converges through each iteration. Note that RISR is not

iterating over time samples. It is iterating back upon its own estimate in a recursive fashion. This

is an important distinction because it is one of the factors that enables RISR to operate on very low

sample support.

4.4.2 Super-Resolution

Resolution is of primary importance to all super-resolution algorithms, as it is a measure of their

ability to separate closely spaced signals. As discussed in the introduction, codifying when two

signals are separable is difficult because it can be affected by SNR, signal correlation, number of

signals, array manifold, and other factors, making comparing any two methods in a fair manner

difficult.

With that said, RISR operates well only at relatively high SNR values on the order of 20 dB
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to 30 dB, so comparisons will be made in that regime. Root-MUSIC is a common benchmark, so

RISR’s results will be compared to root-MUSIC’s to provide context for comparison.

Results in this section are obtained using Monte Carlo simulations in which two uncorrelated

signals are incident on the array, with the first on the bore site and the second a predetermined

positive angular distance away from the bore site. The number of antennas and snapshots used

are N = 10 and L = 10, respectively, a spatial sampling factor of 20 (M = 20N) is used, and σ2
z

is chosen to be 1.5× 10−3, corresponding roughly to 1% gain and phase errors in the array, and

additive noise is modeled as complex additive white Gaussian noise. After running RISR for 10

iterations all data below the noise floor (0 dB) is thrown out (set to 0 dB) and peak detection is

performed. If precisely two peaks are found and both lie within half of a beamwidth (180◦/N)

of their true direction, that trial is deemed a successful separation. Note that no null depth re-

quirement is enforced because RISR’s spectrum will only contain lobes a single point wide once

full convergence is reached. For each permutation, 500 trials are run and the results compiled to

produce the following plots.

Root-MUSIC is implemented using forward backward averaging and the Bayesian Information

Criterion (BIC) is used to find an estimate of the model order[20][1][16]. Since root-MUSIC does

not produce a spectrum like RISR does, but rather just a vector of estimated direction, we just

check to ensure that both angles fall within a half a beamwidth of their true directions.

Figure 4.2 shows the probability that RISR successfully separates two signals as a function

of how (angularly) far apart they are. The result is that RISR performs about as well as root-

MUSIC at high SNR, but not as well at low SNR. Note that both RISR and root-MUSIC manage

to separate signals spaced about 5◦ apart. The Rayleigh resolution is 36◦, so this corresponds to a

super-resolution factor of roughly 7. However, when the SNR gets down to about 15 dB, both root-

MUSIC and RISR degrade. It seems that RISR will not be useful when the SNR is much below 20

dB, but Root-MUSIC is still viable, though an appreciable amount of its ability to super-resolve is

lost.
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Figure 4.2: Comparison of resolution for RISR and root-MUSIC at various SNR shown with the
Rayleigh resolution. Signals have random phase and are uncorrelated, N = 10 antennas and L = 10
snapshots are used.
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Figure 4.3: A comparison of RISR’s and root-MUSIC’s dynamic range for several separation
values. The larger of two signals is held at 30 dB, N = 10 antenna elements, L = 10 snapshots, and
signals are uncorrelated. Performance is comparable for RISR and root-MUSIC.

4.4.3 Dynamic Range

When examining super-resolution factor, both signals were specified to have the same power. In

this section, we hold one of the signals constant while varying the second in order to characterize

RISR’s dynamic range.

In the results given in Figure 4.3 two sources are incident on the array. The SNR of the first

signal is 30 dB and the SNR of the second signal is varied to find the limit at which the two

signals can be successfully separated. Signals are simulated 1000 times at each of various degrees

of separation in order to collect reliable statistics. The simulations used to obtain Figure 4.4 are

identical except that the first signal is fixed at 20 dB instead of 30 dB.

What we find is that RISR’s dynamic range is comparable to root-MUSIC at high SNR, but

it degrades when the SNR is lowered. Root-MUSIC’s performance degrades more slowly, with

each of the curves leaning over further to the right as SNR drops, whereas RISR remains almost

as steep as at high SNR, but all the traces shift to the right. The reason that RISR’s performance
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Figure 4.4: A comparison of RISR’s and root-MUSIC’s dynamic range for several separation
values. The larger two signals is held at 20 dB, N = 10 antenna elements, L = 10 snapshots, and
signals are uncorrelated. Performance is no longer comparable.

is affected more than root-MUSIC’s when the SNR is reduced is because, as shown in Figure 4.2,

RISR cannot perform at as low an SNR as root-MUSIC can.

4.4.4 Correlated Signals

Correlated signals, such as those that result from multipath, are commonly encountered in practice,

so understanding how correlation affects DOA estimation is important. RISR produces slightly

different results for highly correlated signals, but is indeed quite robust. A performance limit can

be found by examining the worst case scenario - perfect correlation. As shown in Figure 4.5, RISR

is barely affected by signals that are correlated and out of phase, but some resolution is lost when

signals are correlated and in phase. Realistically, signals will never be perfectly correlated, nor are

they likely ever to be perfectly in phase even when highly correlated, so Fig 4.5 likely represents a

lower limit on performance.

4.4.5 Sample Support

One of the defining characteristics of RISR is that it requires only one spatial snapshot. Most

DOA estimation techniques require estimating a sample covariance matrix, which requires at least
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Figure 4.5: The probability of separation as a function of signal separation for the uncorrelated,
correlated and in phase, and correlated and out of phase scenarios. SNR is fixed at 30 dB.

as many samples as antenna elements, and to obtain a good estimate many more samples are

needed. In contrast, RISR can provide a good estimate with relatively few snapshots. Figure

4.6 is a single anecdotal result showing the convergence of RISR for various degrees of sample

support. Figure 4.7 shows how sample support affects the ability of RISR to separate signals at

fixed SNR as a function of their separation distance, and Fig 4.8 shows how sample support affects

the probability of separation as function of SNR with signal separation fixed at a fraction of the

Rayleigh Resolution.

What we can learn from these figures is that there is significant improvement for the first

few snapshots beyond one, but there is very little left to be gained beyond about N snapshots.

Furthermore, the performance difference is exaggerated at lower SNRs.

4.4.6 Calibration Error

RISR’s robustness to calibration error will only be covered briefly as it is documented elsewhere

[30]. RISR is robust to calibration error because of the way the calibration error variance term σ2
z

is incorporated into the signal model given in 4.3. Calibration error can be especially troublesome
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Figure 4.6: An anecdotal case showing how the estimate RISR produces can be affected by changes
in sample support. 20 dB uncorrelated signals are present at ±10◦, N = 10 elements and L = 10
snapshots are used.

Figure 4.7: RISR’s probability of separation as a function of signal separation, with SNR fixed at
15 dB (left) and 30 dB (right) for various degrees of sample support L.
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Figure 4.8: RISR’s probability of separation as a function of SNR, with signal separation fixed at
1/2 (left) and 1/8 (right) of the Rayleigh resolution.
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Figure 4.9: Spurious peaks caused by calibration error at a high SNR of 50dB.

because unlike noise which has an additive effect, calibration error has a multiplicative effect that

can result in spurious peaks. This multiplicative effect can be seen in the signal model in (4.3).

Typically having a high SNR can only improve the performance of a system, but if calibration

errors are present, they actually become more disruptive as SNR increases because of their mul-

tiplicative effect. Figure 4.9 shows an example of the spurious peaks that result from calibration

error.

Chapter 5 will be focused primarily on the low SNR regime where calibration errors do not

have as large of an effect. For that reason, we deem it reasonable to omit a detailed treatment of

calibration error’s effects on RISR.

4.4.7 Computational Cost

The computational cost of RISR for one iteration is O(MN2) for L < 2N and O(MNL) otherwise,

where N is the number of antennas, M is the discretization in angle relative to the number of
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antenna elements, typically a multiple of N on the order of 20, and L is the number of snapshots

used [30].

For comparison, the computational cost of MUSIC is O(LN2), which is noticeably less than

that of RISR. Furthermore, RISR requires multiple iterations, so the actual computational cost

will be about 10 times higher than the value given above. We have shown that it is possible to

implement RISR in real time for modest array size, though large arrays remain limited to offline

processing.
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Chapter 5

Partially Constrained RISR (PC-RISR)

5.1 Genesis of PC-RISR

In this chapter the Partially Constrained Reiterative Super-resolution (PC-RISR) algorithm is de-

rived and characterized. As its name implies, PC-RISR is a modification of the original RISR.

By adding a constraint and a variable α to control the degree to which that constraint is enforced,

PC-RISR can be made even more robust and than its forerunner.

The building blocks of PC-RISR are the original RISR algorithm, a gain constrained version

of RISR (GC-RISR), and a geometric weighting factor α . Before constructing PC-RISR we will

derive GC-RISR and briefly examine its performance. We find that GC-RISR successfully elim-

inates spurious peaks, but results in some loss of super-resolution, producing a spatial spectrum

with wider rounded peaks.

If allowed to run for enough iterations (usually on the order of 20) RISR will reduce all sources

to a single point, and drive the entire remainder of the spectrum to the lowest value supported by

the processor being used. This can be desirable in some applications, such as radar where objects

in the far field can be closely approximated as point targets. However there are also applications

where sources should not be modeled as points, such as in medical imaging where sources are

distributed volumetrically.
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PC-RISR exhibits two operating regimes, one in which all sources are resolved to points as in

RISR, and one in which sources are modeled with some width. PC-RISR was originally conceived

as an attempt to model distributed sources by combining GC-RISR’s spectral shape with RISR’s

super-resolution to create an algorithm with an adjustable degree of resolution, so early focus was

on the latter regime, however it slowly became clear during the process of characterizing PC-RISR

that its real utility lies in modeling point sources. PC-RISR operating in the point solution regime

has been found to have super-resolution capability in excess of RISR and the ability to operate at

lower SNR values with lower sample support.

5.2 Derivation of Gain-Constrained RISR

A gain constraint can be applied to a reiterative minimum mean squared error (RMMSE) based

technique known as adaptive pulse compression (APC) in order to improve its performance in the

presence of calibration errors [28][33]. The same gain constraint can be applied to RISR since it is

also based on RMMSE. In RISR, the calibration errors translate into the spurious peaks shown in

Figure 4.9. RISR already has built in robustness to model errors because it incorporates a model

error noise term, but a gain constraint can be added for increased robustness.

The data model used in GC-RISR is identical to RISR’s, given in Equation 4.3. The sole dif-

ference in the derivation is that the cost function used in GC-RISR includes a Lagrange multiplier

used to enforce a unit gain constraint. To find the GC-RISR filter, minimize the cost function

J = E
[
|xm− x̂m|2

]
(5.1)

subject to the constraint

wH
msm = 1. (5.2)

where wm and sm are the filter and steering vector for the mth direction. Using a Lagrange multiplier
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to incorporate the constraint direction into the cost function gives

J = E
[
|xm− x̂m|2

]
+λ

∗(wH
msm−1). (5.3)

As before, take the gradient with respect to wH
m and set the result equal to zero. Because the cost

function is quadratic, the global minimum is the only extrema. The gradient of the first term,

E
[
|xm− x̂m|2

]
, will lead to the same result given in (4.14). The gradient of the second term will

simplify to λ ∗sm. The result is then

5J =−pmsm +[SPSH +R+Rz]wm +λ
∗sm ≡ 0. (5.4)

Solving this equation for wm yields a result similar to the filter for RISR

wm = (SPSH +R+Rz)
−1(pmsm−λ

∗sm). (5.5)

From here, the original constraint given in Equation 5.2 must be used to solve the dual for λ ∗ so

that wm can be fully specified. Multiplying both sides of (5.5) by sH
m gives

sH
mwm = pmsH

m(SPSH +R+Rz)
−1sm−λ

∗sH
m(SPSH +R+Rz)

−1sm. (5.6)

Solving for λ ∗ then yields

λ
∗ = pm−

1
sH

m(SPSH +R+Rz)−1sm
. (5.7)

Finally, insert (5.7) into (5.5) results in the mth gain constrained RISR (GC-RISR) filter

wGC,m =
(SPSH +R+Rz)

−1

sH
m(SPSH +R+Rz)−1sm

sm. (5.8)

This solution is quite similar to the result for unconstrained RISR. The difference is the normalizing

factor in the denominator. Apart from the filter, implementation of GC-RISR is otherwise identical
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Figure 5.1: Comparison of the estimate produced by RISR, GC-RISR, and the standard beam-
former. GC-RISR has more resolution than the standard beamformer, but less than RISR. Two 30
dB signals are present at ±10◦.

to that of RISR.

Figure 5.1 shows how an estimate produced with GC-RISR compares to one produced with

RISR and the standard beamformer. The most important difference is that the super-resolution

factor is reduced compared to RISR, but is still super-resolved. Another feature worth noting is

that GC-RISR naturally levels off at the noise floor, while RISR does not. A consequence is that

some detectors that work well for RISR may not be appropriate for GC-RISR.

5.3 Formulation of PC-RISR

Gain Constrained RISR was successful in adding robustness against model mismatch, but it also

resulted in sacrificing some of RISR’s super-resolution ability. Partially constrained RISR (PC-

RISR) is a compromise that lies somewhere between RISR and GC-RISR, and it is made possible

by how similar the filter construction for RISR and GC-RISR are. To simplify notation, denote
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D = (SPSH +R+Rz)
−1. The two filters then become

wGC,m =
1

sH
mD−1sm

D−1sm (5.9)

wRISR,m = pmD−1sm (5.10)

Note that both filters contain D−1 term, which means that the cost of computing (5.10) is

insignificant after computing (5.9). It is then possible to formulate the PC-RISR filter by combining

the RISR and GC-RISR filters geometrically using a weighting factor α .

wPC,m =

[(
1

sH
mD−1sm

)α

(pm)
1−α

]
D−1sm. (5.11)

The weighting factor can be chosen to bias the PC-RISR filter toward either the constrained or

unconstrained solution. It can have any value between 0 and 1, with 0 giving the same result as

RISR and 1 being identical to GC-RISR. In fact, it is possible to think of RISR and GC-RISR as

special cases of PC-RISR.

5.4 Guide to Implementing PC-RISR

Implementation of the PC-RISR algorithm is summarized below. With the exception of the filter

bank, it is identical to the that of RISR and GC-RISR given previously. Initialization is performed

once L spatial snapshots have been collected and arranged in a matrix Y.

1. Initialize:

• Find initial estimate of complex amplitude distribution:

X̂0 = SHY
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• Find initial estimate of average spatial power distribution:

P̄0 = [(1/L)
L−1

∑
τ=0

x̂0(l + τ)x̂H
0 (l + τ)]� IM×M

• By assumption or measurement, obtain noise only covariance matrix R

• Based on array tolerances, obtain the model error variance σ2
z

• Based on sample support and computational resources, choose 0≤ α ≤ 1

2. Iterate: for i = 1,2, ...

• Calculate the PC-RISR filter bank W̄i whose columns M columns are:

w̄PC,m,i =

[(
1

sH
mD−1sm

)α

(pm)
1−α

]
D−1sm

• Update estimate of spatial complex amplitudes:

X̂i = W̄H
i Y

• Update estimate of spatial power distribution:

P̄i = [(1/L)
L−1

∑
τ=0

x̂i(l + τ)x̂H
i (l + τ)]� IM×M

3. Once iteration is completed, the PC-RISR spatial magnitude distribution can be obtained as

xm =
√

P̄mm.

4. The number of sources and their magnitude can be estimated from the peaks in the RISR

spectrum.
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5.5 Performance Characteristics

In this section the performance of PC-RISR will be characterized via simulations and the results

compared to RISR, GC-RISR, and root-MUSIC. Special attention is given to convergence be-

cause it is more complicated than RISR and GC-RISR due to the incorporation of the geometric

weighting term α . It will be shown in our examination of PC-RISR’s resolution that it has good

performance at low SNR, so the focus in subsequent simulations will be on the low to middle SNR

regimes where PC-RISR is expected to have the most utility. As a direct result of the ability to

operate at low SNR, we will show that PC-RISR also has improved dynamic range. In addition,

PC-RISR’s performance will be analyzed for the cases of correlated signals and varied sample

support. Finally, computational cost will be discussed.

5.5.1 Convergence

The way in which PC-RISR converges is perhaps the most important difference between it and

previous versions of RISR, including GC-RISR. PC-RISR contains a geometric average weighting

factor α that allows for PC-RISR’s convergence to be controlled, creating a new dimension which

PC-RISR can be tuned in. Here we outline the effect α has on convergence speed.

First, we examine the convergence speed of PC-RISR as a function of α . The results in Figure

5.2 were obtained by generating simulated received data according to (4.3) and then running PC-

RISR on that data using various values for α and increasing the number of iterations until each

converged. To ensure all versions of PC-RISR would be able to detect the signals, they were set

at to an SNR of 30 dB (after coherent integration) and placed at ±10◦. Estimates were considered

to be converged when the mean squared error of subsequent spatial power estimates fell below

0.001. This process is repeated 10 times to find an average. The number of iterations at which

PC-RISR converges is very consistent for fixed α and signal separation, so even just 10 repetitions

is sufficient to generate reliable statistics. A ULA with N = 10 antenna elements is used with

L = 10 snapshots, magnitude and phase calibration errors of 1% are included, and σ2
z is chosen to
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Figure 5.2: Convergence speed of PC-RISR as function of α .

be 1.5×10−3.

As can been seen in Figure 5.2, the number of iterations required initially increases slowly and

nearly linearly with α , however as α approaches 0.4 the relationship quickly becomes exponential.

At first glance, Figure 5.2 may appear to be symmetric, but it is not. The right half is steeper near

α = 0.5 and quickly levels off as α increases. The plot is shown piece wise because convergence

could not be achieved at α = 0.5. It also needs to be stated that convergence speed will be affected

by SNR, the number of signals, and their spacing, so Figure 5.2 should be considered a rough

guideline.

The relationship between alpha and convergence speed is born out of the geometric mean

formed in (5.11). When alpha is close to either 0 or 1, RISR or GC-RISR quickly dominates

the other and a solution is reached in just a few iterations. Conversely, when α is close to 0.5, it

takes many more iterations to converge.

PC-RISR’s performance can be divided into two regimes based on α . The first regime, the

point solution regime, corresponds to α < 0.5 and will always reach a point solution if allowed to

converge completely. The second regime, corresponding to α > 0.5, will still be super-resolved
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Figure 5.3: An illustration of PC-RISR’s two regimes. If α < 0.5 a point solution is reached, if
α > 0.5 peaks are rounded and a natural noise floor exists

but will not converge to a point solution, and the spatial power estimate will in fact resemble that

of GC-RISR, albeit with sharper peaks and deeper nulls. Figure 5.3 shows an example of how the

same signal processed with α in each regime produces significantly different results.

Because each regime is so different, they are suited to different applications and require sep-

arate processes to ascertain the number and nature of the incident signals. As such, they merit

separate treatment. The general behavior of PC-RISR for several ranges of α are examined here

and each regime is discussed in detail in the following sections.

5.5.2 Point Solution Regime

At each iteration, PC-RISR with α < 0.5 tries to suppress the portions of the spatial spectrum

that it does not identify as a signal. Given enough iterations, all points except the signals will be

suppressed and the fully converged PC-RISR spectrum in the point solution regime will resemble
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Table 5.1: Summary of the utility and behavior of α in the point solution regime

Table 5.2: Summary of the utility and behavior of α in the constraint dominant regime
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Figure 5.4: PC-RISR in the point solution regime suppresses all parts of the spatial spectrum not
identified as a signal, leaving only points.

Figure 5.4. In fact, it could even be argued that the true output of PC-RISR’s point solution regime

is not a spatial spectrum estimate, but a list of points comprised of estimated DOA’s and associated

power estimates. In this respsect, PC-RISR bears similarity to root-MUSIC, which produces a

vector of DOA estimates (without power estimates). With that said, we will treat the result of

PC-RISR as a spatial power spectrum and all results presented (including the previous results) are

halted just before reaching a true point solution so that the estimate retains some shape.

It should also be noted that in the point solution regime, PC-RISR often does not require as

many iterations as Figure 5.2 suggests. If signals are spaced far apart (but still closer than the

Rayleigh resolution), SNR is high, or sample support is abundant, PC-RISR can often provide a

good estimate without fully converging. Figure 5.5 shows a case in which PC-RISR’s estimate

after 200 iterations provides no more information than it did after 100. There are many cases in

which fewer iteration are needed than suggested by Figure 5.2.

At high SNR (greather than about 15 dB), one finds that all versions of PC-RISR in the point

source regime converge to a similar solution. However if SNR is reduced, versions with a lower

value of α will detect only one signal instead of two, and if SNR is lowered even further they will
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Figure 5.5: PC-RISR often provides a good estimate even before fully converging. In this simula-
tion two 20 dB signals were presnt at 5◦ and −5◦.

suppress the signal. This is demonstrated in Figure 5.6.

On the other hand, for larger α the possibility of misinterpreting noise as a signal and amplify-

ing it increases. The probability of this phenomenon in inversely related to sample support. As an

example, for N = L spurious peaks becomes a concern for α > 0.4 and result in false detections

that limit the performance of α > 0.4. Figure 5.7 shows an example of the false peaks that can

occur when using α greater than 0.4 with low sample support. When sample support is plentiful,

noncoherent integration suppresses spurious peaks, resulting in the ability to use all values of α

without the concern of spurious peaks.

5.5.2.1 Limit of Low SNR Performance

The most obvious application of PC-RISR operating in the point solution regime is in low SNR

super-resolved DOA estimation. Raising α slows down the convergence of PC-RISR, which helps

it to detect signals that RISR misses. The simulation results given below characterize the ability

of PC-RISR to resolve signals at some fixed separation as a function of SNR, with the purpose of

probing the lower limit of PC-RISR’s ability to super-resolve. The question of how much super-

resolution PC-RISR can provide will be discussed in the next section.
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Figure 5.6: At low SNR lower values of α lose the ability to resolve both signals and can even
fail to detect a signal at all. Two uncorrelated signals at ±5◦ at an SNR of 30 dB (left) and 15 dB
(middle), and 10 dB (right) with N = 10 and L = 10.

Figure 5.7: 800 iterations are run at an SNR of 15 dB with α = 0.499 to illustrate how high values
of α can result in spurious peaks above the noise floor. Signals are at ±12◦ and N = L = 10.
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The following Monte Carlo results are obtained by performing 500 trials at each permutation of

SNR and α , with signal separation fixed. A ULA with N = 10 antenna elements and L = 10 time

samples were employed, signals are random and uncorrelated, and σ2
z is chosen to be 1.5×10−3.

Two signals of equal power are incident on the array, the first at φ1 = 0◦ (boresite) and the second

at some fixed angular distance φ2, which is some fraction of the Rayleigh resolution. For all values

of α 30 iterations are used, unless specified otherwise. Results from root-MUSIC are also included

as a benchmark. Root-MUSIC was implemented using forward-backward averaging to effectively

double its sample support, so it is essentially operating on twice as many samples as PC-RISR

[16]. Spatial smoothing was not used with root-MUSIC because signals are uncorrelated [34].

The detector used is rather simple. After iteration completes (which may not be the same as

full convergence for large α) all data below the noise floor (0 dB) is thrown away (set to 0 dB) and

peak detection is performed. If exactly two peaks are found within half a beamwidth of their true

locations, the signals are deemed separated. Otherwise that trial is deemed a failure.

Figure 5.8 shows the probability of separation as a function of SNR for signal separations

of 1/5, 1/2, and 9/10 the Rayleigh resolution. Here, a probability of separation of 0.9 will be

considered separable, though 0.5 is also commonly used as a basis for comparison. Using this

criterion and examining the plots given in Figure 5.8, we see that signals spaced further apart

can be resolved at a lower SNR than closely spaced signals. For signals at 1/5 of the Rayleigh

resolution, an SNR of about 15 dB is required. Half the Rayleigh resolution only requires an SNR

of about 7 dB, and for 9/10 of the Rayleigh resolution, which is barely super-resolved, an SNR

of only 5 dB is enough to separate signals with 90% probability. The reason that α = 0.45 for

300 iterations never reaches a probability of separation of one is because L = 10 is not sufficient

sample support to suppress spurious peaks for large α .

5.5.2.2 Super-Resolution Factor

In the last section we examined the lowest at which PC-RISR can super-resolve signals. In this

section, we examine how much super-resolution PC-RISR can provide at a given SNR. We charac-
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Figure 5.8: Probability of separation as a function of SNR with signal separation fixed, for several
values of α in the point solution regime. The number of antenna elements is N = 10 and the
number of snapshots is L = 10.
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terize the super-resolution factor that PC-RISR achieves by using Monte Carlo simulations where

the SNR is fixed and signal separation is allowed to vary. We find that, as with all super-resolution

algorithms, the degree of super-resolution that can be achieved tends downward with SNR, so re-

sults will be given at several SNR values. The results here are procured in the same manner as

outlined in the previous section, using the same values, with the sole difference being that SNR is

fixed while separation is varied.

What we observe from the results in Figure 5.9 is that at high SNR, while α = 0.4 gives the

best results, all versions of PC-RISR give comparable estimates. Here, we determine the super-

resolution factor with respect to a 90% chance of separation. Accordingly, PC-RISR’s maximum

super-resolution factor achieved at high SNR is about 7.2, which is appreciably better than root-

MUSIC’s 5.1 and RISR’s 4.5.

The reason that α = 0.45 fails to reach a 100% probability of separation in Figure 5.9 is be-

cause it occasionally fails to suppress spurious peaks above the noise floor, resulting in a failed

separation. Increasing sample support would solve this problem, and with enough samples support

optimal performance would be obtained using α close to 0.5. However, with L = 10, the values of

α that can be used without risking spurious peaks are limited.

When the SNR is 15 dB as in Figure 5.10, the performance of unconstrained RISR significantly

degrades. Root-MUSIC still functions well, but with limited sample support 15 dB is close to its

limit. Notice that α = 0.3 exhibits similar performance to root-MUSIC. There are a variety of

factors involved, but one will often find that PC-RISR with α set between 0.2 and 0.3 results in

similar performance to root-MUSIC. With the SNR reduced, PC-RISR (α = 0.4), RISR, and root-

MUSIC’s super-resolution factors are 5.1, 2.9, and 1, respectively. PC-RISR provides the same

degree of super-resolution at an SNR of 15 dB that root-MUSIC did at 20 dB.

In Figure 5.11 the SNR is lowered even further to 10 dB, which goes beyond unconstrained

RISR’s ability to detect a signal at all, so it no longer appears in the figure. Root-MUSIC and PC-

RISR’s performance is degraded somewhat, and α = 0.3 continues to be a rough approximation

of Root-MUSIC’s performance. At this SNR all of the low α versions of PC-RISR either fail to
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Figure 5.9: Probability of separation as a function of the two signals’ phase difference. False peaks
breaching the noise floor cause α = 0.45 not to reach 100% chance of separation.

Figure 5.10: Probability of separation as a function of the two signals phase difference. PC-RISR
with α set to 0.3 performs similarly to root-MUSIC.
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Figure 5.11: Probability of separation as a function of the two signals phase difference. At an SNR
of 10 dB RISR is no longer able to detect a signal, but PC-RISR can separate them.

detect the signal at all or cannot provide any super-resolution. PC-RISR’s super-resolution factor

remains at about 3, and root-MUSIC’s is reduced to 1.5.

If the SNR is pushed lower still, root-MUSIC fails to detect the signals, as do mid α range

versions of PC-RISR, but high α exhibits some very interesting behavior. Previously, α = 0.45

was better than α = 0.4, although not by very much, but now it is significantly better. While high

values of α require more sample support and carry a high computational cost because they require

more iterations (see Figure 5.2), they are also considerably more robust to low SNR. Using α = 0.4

results in a super-resolution factor of 1 (i.e. no super resolution), but α = 0.45 manages 1.5.

Pushing the SNR down to 3 dB, PC-RISR finally loses its ability to super-resolve. As will

be demonstrated later, PC-RISR’s performance can be pushed even further by increasing sample

support to unlock values of α close to 0.5.

Having characterized PC-RISR thus far, we felt that the simplistic detector we employed did

not do justice to PC-RISR for α > 0.4. While the simple solution would be to increase sample

support, more could also be done with the detector, so we will present one final set of results

that employ a different detector. The detector used for the following results is in some sense the
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Figure 5.12: Probability of separation as a function of the two signals phase difference. PC-RISR
with α = 0.45 has not converged after 30 iterations.

Figure 5.13: Probability of separation as a function of the two signals phase difference. At 3 dB
we are approaching PC-RISR’s limit of usefullness at this level of sample support.
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Figure 5.14: Using a more lenient detector, PC-RISR is able to separate signals with 100% proba-
bility down to an SNR of 6 dB

opposite of the detector used thus far. It merely checks to see if the two signals were properly

separated and found within some tolerance of where they are known to be, and pays no heed to

spurious peaks at all. As an example, the detector we have been using would label the estimate in

Figure 5.7 a failed separation because if the third peak were to be interpreted as a signal, it would

be an error. The detector used for Figure 5.15 and 5.14 would label it a successful separation

because PC-RISR did indeed succeed in separating the signals presented to it. In that sense, the

results in Figure 5.15 and 5.14 correspond to the limit of PC-RISR to actually separate the two

signals, with no thought given to being able to realistically differentiate them from false peaks, and

must not be conflated as achievable. With an optimum receiver the actual performance will most

likely lie between the results given for the strict detector in Figure 5.9 through 5.13, and the those

presented here for the lenient detector.

5.5.2.3 Dynamic Range

In the two previous sections PC-RISR’s super-resolution capability was explored both as a function

of SNR and signal separation, only the two signal scenario in which both signals have equal power

was examined. In this section we examine PC-RISR’s dynamic range by testing how PC-RISR
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Figure 5.15: The theoretical super-resolution limit of PC-RISR is at an SNR of 3 dB.

performs on nearby signals with disparate powers.

To obtain the results in Figure 5.16 Monte Carlo simulations were performed in which two

signals were presented for separation, the first at φ1 = 0◦ on the boresite and the second at some

fixed positive angular distance φ2 , which is some fraction of the Rayleigh resolution. The first

signal has its power fixed at 20 dB (after applying array gain and coherent integration to subsume

array size) and the second signal’s SNR is varied between 0 dB and 20 dB. We chose α = 0.4 and

used 30 iterations. For each permutation 500 trials are run and the results are averaged to obtain

the statistics shown. The results from root-MUSIC are also provided as a benchmark.

Comparing the two plots, it is clear that PC-RISR provides superior dynamic range. For signals

spaced at 1/3 of the Rayleigh resolution PC-RISR is able to discern signals even when one is an

entire order of magnitude larger than the other. The traces corresponding to closer signal spacing

also reveal something interesting. Root-MUSIC cannot separate signals spaced at 1/8, 1/7, or 1/6

of the Rayleight resolution even when they have equal power (the best case scenario), but PC-RISR

can.
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Figure 5.16: Comparison of PC-RISR and root-MUSIC’s dynamic range. The first signal is held
at 20 dB while the second signal’s power is varied.
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5.5.2.4 Correlated Signals

Signal correlation is a common problem because of the ubiquity of multipath propagation. In

this section we examine how PC-RISR performs when the incident signals are correlated. Two

primary cases are treated, the fully correlated-in-phase case and the fully correlated-out-of-phase

case. Because these two cases are fully correlated, we can safely assume that partially correlated

signals will lead to performance somewhere between what was found for the uncorrelated case in

previous sections and the two correlated cases treated here.

Simulated signals are correlated in time. That is, the phase at each time index `+ 1 is equal

to the phase at ` plus some fixed phase offset. A fixed offset of 180◦ and 0◦ is used to simulate

signals that are out-of-phase and in-phase, respectively.

Using a correlated received signal model, each of the previous simulations is repeated for both

the correlated-in-phase and correlate-out-of phase cases. Here, root-MUSIC is implemented using

both forward-backward averaging and spatial smoothing with two subarrays [16]. Without spatial

smoothing root-MUSIC cannot be used on correlated signals, but using spatial smoothing has

a side effect of lowering root-MUSIC’s resolution due to the need for subarraying [34]. While

PC-RISR’s performance is affected somewhat by signal correlation, no extra measures have to

be taken. As a result, the performance difference between PC-RISR and root-MUSIC is slightly

larger than in the uncorrelated case because root-MUSIC’s performance degrades as a side effect

of spatial smoothing while PC-RISR’s performance is mostly unaffected.

Observing Figure 5.17, it appears as though PC-RISR and root-MUSIC cannot separate signals

that are in-phase, but in the context of Figure 5.18 and Figure 5.19 it is clear that PC-RISR and

root-MUSIC both have lower resolution for in-phase signals than for uncorrelated or out-of-phase

signals.

The next set of results in Figure 5.20 - Figure 5.23 include the correlated in-phase and out-of-

phase cases of the Monte Carlo simulations used to produce Figure 5.8. They show the probability

of separation as a function of signal separation instead of SNR, which helps discern how much

super-resolution can be achieved at a given SNR.
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Figure 5.17: Comparison of the probability of separation as a function of SNR for the uncorrelated,
correlated in-phase, and correlated out-of-phase cases. Signal separation is fixed at 1/5 of the
Rayleigh resolution, N = 10 antenna elements, and L = 10 snapshots.
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Figure 5.18: Comparison of the probability of separation as a function of SNR for the uncorrelated,
correlated in-phase, and correlated out-of-phase cases. Signal separation is fixed at 1/2 of the
Rayleigh resolution, N = 10 antenna elements, and L = 10 snapshots.
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Figure 5.19: Comparison of the probability of separation as a function of SNR for the uncorrelated,
correlated in-phase, and correlated out-of-phase cases. Signal separation is fixed at 9/10 of the
Rayleigh resolution, N = 10 antenna elements, and L = 10 snapshots.
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Figure 5.20: Probability of separation as a function of signal separation for the uncorrelated, in-
phase, and out-of-phase cases. SNR is fixed at 20 dB, N = 10 antenna elements, and L = 10
snapshots.
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Figure 5.21: Probability of separation as a function of signal separation for the uncorrelated, in-
phase, and out-of-phase cases. SNR is fixed at 15 dB, N = 10 antenna elements, and L = 10
snapshots.
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Figure 5.22: Probability of separation as a function of signal separation for the uncorrelated, in-
phase, and out-of-phase cases. SNR is fixed at 10 dB, N = 10 antenna elements, and L = 10
snapshots.

70



Figure 5.23: Probability of separation as a function of signal separation for the uncorrelated, in-
phase, and out-of-phase cases. SNR is fixed at 5 dB, N = 10 antenna elements, and L = 10 snap-
shots.
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Figure 5.24: MUSIC has bias toward placing signals closer than they actually are, which can result
in failed detection when they are far apart.

These results, particularly Figure 5.20, confirm that PC-RISR and root-MUSIC both suffer

in terms of super-resolution factor when signals are in-phase, backing up our interpretation of

Figure 5.17. We also observe that root-MUSIC actually performs better on out-of-phase signals

than it does on uncorrelated signals, while PC-RISR’s best performance is for the uncorrelated

case. Finally, Figure 5.22 and Figure 5.23 show that PC-RISR becomes more susceptible to signal

correlation at lower SNR, with it being particularly affected by the out-of-phase case.

Root-MUSIC’s sudden drop off at high separation in Figures 5.20 - 5.22 can be explained by a

bias toward locating sources close together. This bias is stronger for signals that are further apart

or correlated, and the bias can become strong enough to pull root-MUSIC’s estimate outside of the

half beamwidth specified by the detector, resulting in failed detection. This tendency explains root-

MUSIC’s behavior in these figures. Root-MUSIC does not produce a spectrum, but it exhibits the

same behavior as MUSIC does, so we use MUSIC to illustrate this bias in Figure 5.24. Generally,

if sources are so far apart that MUSIC’s bias becomes problematic, they can be separated with

a simple matched filter beamformer. In practice MUSIC’s bias is not as problematic as these

simulation results might suggest.
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Lastly, we will consider the effects signal correlation has on PC-RISR’s dynamic range. As

found in previous simulations, correlated signals (especially in-phase signals) reduce PC-RISR’s

maximum degree of super-resolution, but do not significantly affect its performance at greater

separations. In particular, observe that at a separation of 1/8 the Rayleigh resolution, dynamic

range is adversely affected by signal correlation, but in contrast, at 1/2 beamwidth separation PC-

RISR is largely unaffected by signal correlation.

5.5.2.5 Sample Support

One of the merits of PC-RISR is that it can operate on as few as just one spatial snapshot. However,

providing PC-RISR with more snapshots can greatly improve its performance in two ways. For

fixed α , increased sample support moderately increases performance, but with increased sample

support it is also possible to use higher values of α , which improves performance even further.

Thus far, all simulations have used the same number of snapshots as antennas, but here we vary

sample support to examine how it influences the limit of super-resolution.

The results in Figure 5.26 are obtained by performing Monte Carlo simulations using N = 10

with the previous specifications for 500 trials at each permutation, where the SNR (after coherent

integration) was fixed at 10 dB and signal separation at half the Rayleigh resolution while the

number of snapshots was allowed to vary. Unlike in previous simulations, instead of using 30

iterations for all values of α , we ran enough iterations for convergence based on Figure 5.2.

In Figure 5.26 α = 0.1 and α = 0.2 never manage to separate the signals because 10 dB is below

their ability to operate. Root-MUSIC works well with enough sample support, but 10 dB is below

where root-MUSIC is typically applied. Figure 5.26 is meant to show how robust PC-RISR is to

low sample support, and that it can perform well at low SNR even without many samples. Figure

5.27 is the same as Figure 5.26, but with signal separation lowered to one-fifth of the Rayleigh

resolution and the SNR raised to 20 dB to put all of the algorithms on equal footing.

In these simulations the previously described detector which ignores data below the noise floor

is used. In a later section we will consider data below the noise floor, which enables operation at
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Figure 5.25: Dynamic range of PC-RISR for the uncorrelated, in-phase, and out-of-phase cases.
The larger signal is held at 20 dB, α = 0.4, N = 10 antenna elements, L = 10 snapshots, and 30
iterations are used.
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Figure 5.26: Probability of separation as a function of sample support for an SNR of 10 dB with
signals separated by half of the Rayleigh resolution. An N = 10 element array is used.

Figure 5.27: Probability of separation as a function of sample support for an SNR of 20 dB with
signals separated by half of the Rayleigh resolution. An N = 10 element array is used.
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Figure 5.28: The number of snapshots needed for various values of α in order to separate signals
at 0.2 the Rayleigh resolution for an SNR of 20 dB with the detector threshold at 0 dB (left) and
-50 dB (right).

even lower SNR values, but also drastically changes the effects of sample support. In preparation

for that, the next set of results explores how the importance of sample support changes when the

detectors threshold is lowered from 0 to -50 dB.

Perhaps the most important question that needs to be asked in this context is, for a given

value of α , how many snapshots are needed? Or asked in another way, with a fixed number of

snapshots, what is the highest value of α that can be used without incurring spurious peaks? This

question is answered in Figure 5.28 through Figure 5.30, which show the probability of being

able to separate two signals as a function of sample support with the threshold at 0 dB as used in

previous simulations, and at -50 dB to enable super resolution at even lower SNR values. Note

that the results for root-MUSIC are the same in both cases because root-MUSIC does not use the

threshold.

It is likely that in practice a different detector would be used or the threshold would be set at
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Figure 5.29: The number of snapshots needed for various values of α in order to separate signals
at 0.5 the Rayleigh resolution for an SNR of 20 dB with the detector threshold at 0 dB (left) and
-50 dB (right).

a different value. These results are for two rather extreme cases, so the performance of an actual

system will almost certainly fall somewhere between those given here.

5.5.3 Constraint Dominant Regime

Having largely characterized the point solution regime of PC-RISR, we will now treat the con-

straint dominant regime. Values of α above 0.5 will never reach a point solution no matter how

many iterations are run. Rather, they result in a spatial spectrum estimate that looks like that of

GC-RISRt stretched downward. Figure 5.31 shows a series of estimates produced with values of

α in the constraint dominant regime.

The original motivation for PC-RISR was actually not for super-resolution, but for model-

ing distributed sources — PC-RISR’s low SNR super-resolution capability, or the point solution

regime, was a later discovery. First GC-RISR was successful in increasing robustness to calibra-

tion error, but it sacrifices some of RISR’s super-resolution. We wanted to build a version of RISR
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Figure 5.30: The number of snapshots needed for various values of α in order to separate signals
at 0.9 the Rayleigh resolution for an SNR of 20 dB with the detector threshold at 0 dB (left) and
-50 dB (right).

Figure 5.31: The spatial power estimate for various α in the constraint dominant regime. Note that
lower values of α tend to underestimate the signal’s power.
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that would allow for tuning of the super-resolution factor, which is what the constraint dominant

regime of PC-RISR accomplishes. To date, we know of no other algorithms that have a tunable

degree of super-resolution.

One consequence of being the first algorithm to provide tunable resolution is that there are no

pre-existing benchmarks or measures by which to evaluate PC-RISR in the constraint dominant

regime, so we develop our own performance measures. We borrow some intuition from digital

filter design because an ideal filter in some sense closely mimics what we would expect of perfect

distributed source detection. We desire a flat response where the source exists (akin to the passband

of a filter), and the sharpest rolloff and the greatest possible suppression of sidelobes away from

the main lobe (analagous to a filter’s stopband). In filter design, 3 dB ripple is common a figure for

maximum passband ripple, and in detection settings a 3 dB null between peaks is often a criteria

for ruling that two separate signals are present. Based on this, distributed sources are presented to

PC-RISR for estimation and it is tuned to achieve maximum rolloff and sidelobe suppression such

that the estimate is does not drop more than 3 dB from its maximum anywhere within in the extent

of the distributed source.

Figure 5.32 shows an example where one estimate (in red) passes the test, and two (in blue)

do not. For this example, we conclude that α = 1.0 is the best of the three because it provides the

sharpest rolloff and lowest noise floor without identifying more than one source or modeling the

source as being narrower than it actually is.

Using this criteria, we design a Monte Carlo simulation similar to those used previously. Dis-

tributed sources are modeled as many (200) closely spaced point sources all having the same ran-

dom phase, and with the total signal power divided equally among all the contingent sources. The

SNR was fixed at 20 dB, a value high enough that detecting the signal would not be a concern, and

a spatial oversampling factor of M = 200 was used to guarantee sufficient granularity for checking

the 3 dB criterion near the edge of the sourse. The same 10 iterations were run for all values of α ,

since fewer iterations are need in the constraint dominant regime. As before, 500 trials were run

for each permutation of various values of α and the width of the distributed source. The results,
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Figure 5.32: An example demonstrating the figure of merit used for PC-RISR in the constraint
dominant regime. The red trace is deemed successful because the estimate does not fluctuate by
more than 3dB within the source width. Blue traces are classified as failures.

given in Figure 5.33 are arranged to show the probability of modeling the distributed source in a

way that meets our criteria as a function of α . The goal is to find the value of α that should be

chosen to achieve a desired probability of correct modeling for a given source size.

In order to minimize sidelobes and push the floor as low as possible, one should choose the

lowest value of α that achieves a suitable probability of proper modeling. Some general trends

that we can observe from Figure 5.33 are that as SNR rises a larger value of α is necessary to keep

peaks as wide as the source. As a consequence, PC-RISR can correctly model wider distributed

sources at lower SNR. At an SNR of 10 dB the limit is about 3/10 of the Rayleigh resolution. For

an SNR of 15 dB and 20 dB it is 0.2 and 0.15 times the Rayleigh resolution, respectively.

For an N = 10 element array and a signal with an SNR of 10 dB, that translates to modeling

sources with a a maximum angular width of about 12◦ in electrical angle. Whether or not this is

sufficient will depend on the application. In radar for example, it is unlikely that any target in the

far field will be that large. On the other hand, in an application such as brain imaging where the far

field assumption may not be valid and the sensors are very close to the sources, distributed sources

larger than PC-RISR can model may be common. In such cases, the standard beamformer is a
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Figure 5.33: The probability of correctly modeling a distributed source as a function of α for
several source widths
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reasonable alternative, though its rolloff will not be as sharp.

5.5.4 Array Size

PC-RISR is a non-linear combination of two non-linear algorithms, so it is indeed very reasonable

to question whether PC-RISR’s performance scales linearly. Ideally, it would be possible to gen-

erate statistics for many large and small array sizes, but the high computational cost of PC-RISR

makes this intractable, so instead we simply present anecdotal evidence. The following results

come from Monte Carlo trials similar to those used in previous sections, however in stead of 10,

N = 50 antennas and L = 50 snapshots are used, and to lower the cost of computation, only 200

trials are run for each permutation instead of 500.

In Figure 5.34 we can see that with all else held constant, PC-RISR achieves a greater level

of super-resolution for 50 antennas than it does for 10. For α = 0.40 and using the a probability

of 0.9 as a reference point, using 50 elements results in a super-resolution factor of 3.6 while

10 elements only achieves about 2.8. By contrast, root-MUSIC holds steady at about 4.4. The

discrepancy in PC-RISR’s super-resolution factor is an effect of its non-linearity. Without the

ability to thoroughly simulate a large number of antenna elements, we cannot tell if PC-RISR’s

performance will continue to improve with the addition of elements, but we can conclusively say

that 50 antennas performs better than 10 even after normalization. It is likely that PC-RISR’s

super-resolution factor improves as a function of the number of elements N at least up to 50, and

potentially beyond. Because of its non-linearity, it is possible that the margin by which PC-RISR

outperforms root-MUSIC will continue to grow as more elements are added, however that has not

been verified, and the high computational cost of PC-RISR makes using it with large arrays less

feasible than root-MUSIC.

5.5.5 Computational Cost

The computational cost of PC-RISR is closely related to that of RISR given in [30] and outlined

again in Chapter 4. Again referring back to the formulation of PC-RISR in 5.11, observe that both

82



Figure 5.34: Probability of separation as a function of spatial separation at an SNR of 5 dB for a
50 element array using 50 snapshots.
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the component from RISR and the one from GC-RISR contain the same matrix inverse, which

means the cost of computing PC-RISR’s filter is only trivially more than computing just RISR’s.

In fact, the only noteworthy difference is the two matrix multiplies required for the GC-RISR term.

The exponents are applied to real scalars, and the combining the two RISR and GC-RISR terms is

simply a multiplication of two real valued scalars.

wPC,m =

[(
1

sH
mD−1sm

)α

(pm)
1−α

]
D−1sm

As a result, the computation cost of PC-RISR for one iteration is of the same order as RISR,

O(MN2) for L < 2N and O(MNL) otherwise, where N is the number of antennas, M is the dis-

cretization of the spatial angle relative to N, and L is the number of snapshots used. Typically M is

a multiple of N on the order of 20 [30].

It is important to keep in mind that while the cost of a single iterations may be the same, PC-

RISR typically requires more iterations than RISR depending on the value of α chosen, though

for large values of α PC-RISR converges faster than RISR. In most cases the choice of α will be

dictated by a combination of the lowest expected SNR, signal separation, and sample support.

5.6 DOA Estimation for SNR < 0 dB

The detector used in simulations up to this point has been a very simple one. We check for peaks

above the noise floor, and if there are only two peaks and both are within half of a bandwidth of

their known location, we rule a successful separation. This detector operates under the assumption

that no information below the noise floor can be considered reliable, but PC-RISR’s excellent

performance near the noise floor begs the question, "Can it work below the noise floor?"

As it turns out, with a different detector (one that does not ignore data below the noise floor)

and enough sample support, PC-RISR is capable of operating at negative SNR values, however

doing so requires a large number of samples and many iterations, resulting in hefty computational

costs that make real time implementation less feasible than for the previous detector.
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Figure 5.35: The initial standard beamformer estimate and the resulting PC-RISR estimate that
results from it. Signals are at ±15◦ with -3 dB SNR.

The reason DOA estimation below the noise floor is possible is because of the way PC-RISR

non-coherently integrates time samples. The noise, which is random in both magnitude and phase,

when summed over many samples tends to drop because of cancellation, while the signal is con-

stantly present, so it does not get averaged out. The same effect can be observed even with a

standard beamformer, and indeed, that is PC-RISR’s initial estimate. Figure 5.35 demonstrates

how the initial estimate provided for PC-RISR changes as more samples are used, and how this

affects the reliability of the final estimate.

Figure 5.36 illustrates an important concept - that the estimate above the noise floor is robust

to low sample support, but the estimate below the noise floor is highly dependent on the number

of snapshots available. As a result, PC-RISR with the 0 dB threshold detector is extremely robust

to low sample support, but performance drops off at single digit SNR values because of the nature

of the detector. On the other hand, if the detector’s threshold is set lower or removed all together,

then suddenly sample support becomes imperative for avoiding false detections. Observe that in

Figure 5.36, both the left and right plots would have properly detected the single peak at 0◦ with

the previous detector, but without the threshold the left plot would result in many spurious peaks.

Figure 5.35 shows a single trial example of how high sample support can be used to make data
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Figure 5.36: Sample support has a large effect on the estimate below the noise floor, but not as
strong an influence on the estimate above the noise floor. An estimate with L = 5 (left) snapshots
is contrasted with a estimate produced with L = 50 snapshots (right) of a single 10 dB source at 0◦

and α = 0.45.

below the noise floor reliable enough to perform super-resolved signal separation.

Again, we employ Monte Carlo trials as a means of characterizing the performance of PC-

RISR when the detector’s threshold is adjusted. In the following results, the detector was modified

such that instead of ignoring all data below 0 dB, it now only ignores data below -50 dB. Similarly,

instead of using just L = 10 snapshots, L = 1000 were used to suppress spurious peaks via non-

coherent integration. All other parameters are the same as those used in previous Monte Carlo

simulations.

Figure 5.37 and Figure 5.38 show the probability of separation as a function of SNR, with signal

separation fixed at 0.5 and 0.9 times the Rayleigh resolution, respectively. Figure 5.39 shows the

probability of separation as a function of signal separation with SNR fixed at -5 dB.

Next we return to the important question of how many samples are required for a certain value

of al pha, but this time examine specifically the low SNR regime. Results were compiled from 200

trials per permutation while varying the number of snapshots and fixing the SNR at 0 dB and signal

separation at 1/5, 1/2, and 9/10 of the Rayleigh resolution. The same trial was repeated with both

the 0 dB threshold detector and the -50 dB threshold detector to show how the choice of detector

influences the degree to which sample support matters. It is also important to notice that for

Figures 5.28 - 5.30, the SNR is large, which makes using a 0 dB threshold distinctly advantageous.
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Figure 5.37: Probability of separation of two signals separated by 0.5 Rayleigh resolution. N = 10,
L = 1000, 300 iterations for all values of α .

Figure 5.38: Probability of separation of two signals separated by 0.9 Rayleigh resolution. N = 10,
L = 1000, 300 iterations for all values of α .
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Figure 5.39: Probability of separation as a function of signal separation. SNR = −5dB, N = 10,
L = 1000, 300 iterations for all values of α .

However, in figure 5.40 - 5.42 the SNR is 0 dB, which means the most of the points in the estimate

will be ignored with high probability, so a lower threshold has to be used even though it will result

in requiring more sample support. In practice the SNR of the incident signal will generally be

unknown, so the threshold should be set low unless weak signals are of no interest or some prior

knowledge about the SNR exists. Likewise detectors used in practice may use a value between

0 and -50 dB, or may not employ a floor at all, so these results should be interpreted as a loose

bounds on performance.

What we find is that for the 0 dB threshold detector is that at high SNR with closely spaced

signals, PC-RISR outperforms root-MUSIC for all values of α . As signals are spread further apart,

values of α greater than 0.4 require almost the same number of samples to suppress spurious peaks

as before, while low values of α and root-MUSIC can get by on fewer samples than previously.

For signals that are just barely super-resolved, root-MUSIC performs better in terms of sample

support than PC-RISR with high α , but PC-RISR with low α is the best.

If the SNR is reduced to 0 dB, the 0 dB threshold detector can no longer be used, but the -50 dB

threshold can be. We find that root-MUSIC requires signals to be at nearly the Rayleigh resolution

in order to separate them, and even then it requires almost 1000 samples. By contrast, PC-RISR
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Figure 5.40: The number of snapshots needed for various values of α in order to separate signals
at 0.2 the Rayleigh resolution for an SNR of 0 dB with the detector threshold at -50 dB.

Figure 5.41: The number of snapshots needed for various values of α in order to separate signals
at 0.5 the Rayleigh resolution for an SNR of 0 dB with the detector threshold at -50 dB.
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Figure 5.42: The number of snapshots needed for various values of α in order to separate signals
at 0.9 the Rayleigh resolution for an SNR of 0 dB with throw away thrhreshold at -50 dB.

can separate the same signals with 10 times fewer samples, and with the same number of samples

it can separate signals that are almost twice as close together.
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Chapter 6

Applications of PC-RISR to Detection

PC-RISR’s distinguishing feature is its ability to operate at low SNR, which begs the question of

detection. How small a signal can be detected, if we are not concerned with having to be able to

separate it from another signal?

It was shown in Chapter 5 (see Figure 5.26), that PC-RISR is robust to low sample support as

long as interest is only in signals above the noise floor. However, if a detector is employed that

does not ignore data below the noise floor, PC-RISR’s performance becomes highly dependant

on L. This behavior can be explained by the nature in which sample support affects PC-RISR’s

estimate. As demonstrated in Figure 6.1, the estimate below the noise floor is much more sensitive

to sample support than is the estimate above the noise floor. As a result, the single source detection

case in which we enforce that no false peaks appear within 50 dB of the noise floor becomes highly

sensitive to sample support, whereas if data below the noisefloor is ignored, PC-RISR achieves

nearly optimal performance with relatively few snapshots.

The spurious peaks that can occur when using PC-RISR are statistically related to the signal

SNR, α , and L. When the SNR is small, α is large, or L is limited, spurious peaks have a higher

probability of occurring. Conversely, they can be mitigated by reducing α or collecting more sam-

ples. It is important to understand the nature by which spurious peaks are suppressed. Improving

one or both of these parameters will not result in the spurious peaks becoming lower, but rather in
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Figure 6.1: Sample support has a large effect on the estimate below the noise floor, but not as
strong an influence on the estimate above the noisefloor. An estimate with L = 5 (left) snapshots is
contrasted with a estimate produced with L = 50 snapshots (right)

making them less likely to occur. As such the power of the average spurious peak is not greatly

affected by these three parameters.

Another Monte Carlo simulation is performed, but this time only one signal on the boresite (at

0◦) is incident on the array, and different detection logic is employed. In this case we desire to be

able to observe data below the noise floor, so the detector threshold is moved down to -50dB. To

be considered a successful detection, PC-RISR must produce only one peak above -50dB, and it

must be within half of a bandwidth (18◦ for N = 10) of the true DOA. The signal’s SNR was varied

between -25 dB and 5 dB and the number of snapshots was varied between 1 and 1000. Gain and

phase model mismatch of errors of 1% were included and PC-RISR’s model mismatch variance

term was set to 1.5× 10−3. As stated in previous results, for low SNR, low and mid values of α

result in low SNR signals being suppressed, so for this simulation only values of α greater than 0.4

give meaningful results. Based on Figure 5.2, a ample number of iterations to allow convergence

was chosen for each value of α . For each permutation 500 iterations are performed and the results

compiled to produce Figure 6.2.

These results are surprising because they show that with sufficient sample support PC-RISR

is capable of detecting signals not only very close to the noise floor, but several dB below it. In

the plot corresponding to L = 300, the trace for α = 0.49 begins early but never reaches 100%

probability of detection because sample support is still insufficient to mitigate the spurious peaks
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Figure 6.2: The probability of detection as a function of SNR for several values of α and L.
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associated with high values of α .

To gain further insight into the nature of the detection problem, another Monte Carlo simulation

was created that tabulates the probability of each kind of detection outcome, as described below:

1. The true signal is detected (false peaks may or may not be present);

2. False peak(s) are detected (true peak may or may not have been detected);

3. Both true signal and false peaks are detected (may or may not be ruled failed detection

depending on the detector used);

4. Only the true signal is detected (successful detection);

5. Only false peak(s) are detected;

6. No signals detected at all.

Here, we deem a trial a successful detection when solely the true signal was detected. It may

be possible to design a detector that can distinguish between false peaks and the true signal in

some cases, but we did not consider that possibility in this simulation. At each permutation in

the simulation 500 trials were run, and during each peak detection was performed following the

completion of PC-RISR. The true signal was presented at 0◦, so if a peak was found outside of

half a bandwidth from the boresite, or if it was more than 10 dB less than the true signal, it was

automatically ruled a false peak. The first peak to fall within a half bandwith of the boresite is

ruled the true signal, and any subsequent peaks with half a bandwidth are marked false peaks.

After each trial, the detection outcome is tabulated and recorded, and a the end of the 500 trials,

before proceeding to the next permutation, the probability of each of the six outcomes listed above

is calculated, as well as the average number of false peaks that occurred. The results are presented

in Figures 6.3 - 6.8.

One important conclusion that can be drawn from Figure 6.8 is that the number of spurious

peaks PC-RISR produces is a function only of L and α — it is independent of the SNR. Spurious
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Figure 6.3: The probability of each detection outcome at an SNR of 5dB
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Figure 6.4: The probability of each detection outcome at an SNR of 0dB
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Figure 6.5: The probability of each detection outcome at an SNR of -5dB
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Figure 6.6: The probability of each detection outcome at an SNR of -10dB
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Figure 6.7: The probability of each detection outcome at an SNR of -15dB
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Figure 6.8: The average number of spurious peaks produced by PC-RISR as function of sample
support L and geometric weighting α . The average number of spurious is independent of SNR.
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Figure 6.9: Histogram of true signal and spurious peak values over 500 trials at -5dB. α = 0.46
never results in a false alarm, but has many missed detections.

peaks are the result of noise and calibration error. Calibration error has a multiplicative effect, so

high SNR spurious peaks are associated with calibration error, and at low SNR they are associated

with noise.

Another good way to examine these results is by employing a histogram to approximate sta-

tistical distribution. In the following simulations, one signal was presented on the bore sight for

detection, and using the same logic as previously, each peak was ruled either the true signal or a

false peak and recorded, and the results used to create the histograms shown in Figure 6.9 - 6.12.

Note that for each trial there can be at most one true signal, but there may be several false peaks.

Observe from the results in Figure 6.9 - 6.12 that regardless of signal SNR, choice of α , and

number of samples, spurious peaks tend to have about the same power. Furthermore, the number of

spurious peaks drops off with increasing number of snapshots, and finally, lowering alpha reduces

the number of false peaks detected, but also lowers the probability of detecting the true peak.
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Figure 6.10: Histogram of true signal and spurious peak values over 500 trials at -5dB. There is
insufficient sample support to use α = 0.49.

Figure 6.11: Histogram of true signal and spurious peak values over 500 trials at -7dB.

Figure 6.12: Histogram of true signal and spurious peak values over 500 trials at 0 dB (left) and -5
dB (right). No false peaks are detected because α is not too high, but it also misses more peaks as
SNR is reduced.
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Chapter 7

Conclusions and Future Work

Using a variety of simulations to analyze PC-RISR from many different angles, it was shown

that there exists regimes in which it is superior to RISR and MUSIC in every respect except for

computational cost, though with a modest array size and limited sample support PC-RISR can still

be implemented in real time. In addition to providing superior super-resolution at high SNR, it

was shown that it can perform super-resolved DOA estimation at single digit SNR values even

with limited sample support. Furthermore, with sufficient sample support, it can function even at

negative SNR values. PC-RISR was shown to have extremely good dynamic range and applications

in detection were briefly explored.

The use of PC-RISR in the point solution regime (α < 0.5) to perform super-resolved DOA

estimation and detection was given through treatment, and the potential of using the constraint

dominant regime (α > 0.5) was explored to model angularly distributed sources. While the point

solution regime showed promising results, the constraint dominant regime’s tendency to underesti-

mate signal powers is not well understood, nor has a method for compensation yet been discovered,

leaving its usefulness an open question. Further insight into the constraint dominant regime is nec-

essary, but the highly non-linear nature of PC-RISR makes mathematical analysis difficult.

PC-RISR’s primary drawback is it’s computational cost. One of the only variables not analyzed

in detail here is the array size N. As mentioned above, using large N results in taking the inverse of
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a sizable matrix, which is a computational burden that prohibits the kind of thorough Monte Carlo

simulations used to characterize the influence of other variables. Partial simulations to date with

modest array sizes show that performance tends to increase slightly with the number of antennas,

however the high computation cost of PC-RISR makes performing simulations with larger arrays

challenging.

The inclusion of array modeling errors in PC-RISR’s signal model yields quite high fidelity

simulations, but PC-RISR still needs to be verified on real data. Simulations presented here all

assumed a uniform linear array and additive white Gaussian noise. How PC-RISR’s performance

is affected by other varieties of manifolds and colored noise has yet to be simulated or tested.
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