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Abstract
The solution of a sparse system of linear equations is ubiquitous in scientific applications. Iterative methods, such as the

preconditioned conjugate gradient (PCG) method and the generalized minimal residuals (GMRES) method, are normally

chosen over direct methods due to memory and computational complexity constraints. However, the efficiency of these

methods depends largely on the preconditioner utilized. The development of a preconditioner normally requires some

insight into the sparse linear system and the desired trade-off between generating the preconditioner and the reduction in

the number of iterations. Incomplete factorization is a popular black box method to generate these preconditioners.

However, it may fail for several reasons, including numerical issues that require searching for adequate scaling, shifting,

and fill-in while utilizing a difficult-to-parallelize algorithm. With a move toward heterogeneous computing, many sparse

applications find GPUs that are optimized for dense tensor applications like training neural networks being underutilized.

In this work, we demonstrate that a simple artificial neural network trained either at compile time or in parallel to the

running application on a GPU can provide an incomplete LLT factorization that can be used as a preconditioner. This

generated preconditioner is as good as or better than the ones found using multiple preconditioning techniques such as

scaling and shifting in terms of reduction in number of iterations. Moreover, the generated method also works and never

fails to produce a preconditioner that does not reduce the iteration count.
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1 Introduction

Scientific applications in many domains depend on the

solution of sparse linear systems. While traditional Gaus-

sian elimination-based methods (i.e., direct methods for

factorizing) offer the best numerical stability, iterative

methods dominate implementations in distributed-memory

systems and accelerators (i.e., GPUs). The reason is that

iterative methods require less memory and utilize

vectorized operations in many cases. A common iterative

method for symmetric positive definite (SPD) systems is

the preconditioned conjugate gradient (PCG) method [1, 2]

as it only relies on sparse matrix–vector multiplication

(SpMV) and sparse triangular solve (Stri). However, the

question of generating ‘‘good’’ preconditioners for a gen-

eric SPD system can be more of an art than a science.

Incomplete sparse factorization methods, e.g., incomplete

Cholesky, are black box methods that are typically used to

generate these preconditioners. These methods normally

require trying techniques such as scaling, shifting, and

identifying fill-in to achieve the desired reduction in iter-

ations. However, the algorithm of incomplete factorization

tends to be difficult to parallelize due to the low compu-

tational intensity, i.e., the ratio of the number of floating-

point operations to memory accesses [3]. In this work, we

explore the use of neural acceleration to generate a pre-

conditioner in order to automate this process for scientific

application users and better utilize the heterogeneous

computing environments common in high-performance

computing.
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Neural acceleration is the method of replacing key

computationally expensive kernels in code with very sim-

ple and cheap artificial neural networks [4, 5]. This is very

similar to simple surrogate models used in engineering.

The idea is aimed at modern workloads that execute on

heterogeneous systems. These systems commonly contain

GPU accelerators that are optimized for the dense tensor

computations utilized in training neural networks. These

neural networks are small enough to easily be trained and

executed during compile time or in parallel to the appli-

cation. In order to utilize neural acceleration, the coder

flags functions that are computationally expensive but may

not suffer from being approximated by a neural network.

Normally, a small amount of information is provided about

the function, such as expected inputs, outputs, and com-

putational flow. A cheap neural network is then trained on

the GPU. At the time of execution, the neural network can

be utilized on the GPU in place of the function call.

The use of neural acceleration for generating a precon-

ditioner is ideal as these preconditioners are normally an

approximation of the input sparse matrix and the compu-

tation of the preconditioner can be less than ideal due to

low computational intensity. Moreover, many techniques

are being developed for sparse computations of neural

networks on GPUs due to the growing importance of graph

neural networks [6]. However, the question exists if a

neural network could be utilized in this relatively simple

manner. In order to explore this, we first evaluate gener-

ating incomplete Cholesky (LLT ) preconditioners for SPD

systems for PCG based on the computational flow [7] (i.e.,

the structure of LLT ). We demonstrate the choices of

scaling, ordering, and overhead costs. We then extend this

to solving systems that may not be SPD with the general-

ized minimal residuals method (GMRES). We utilize what

we discover in the SPD case to generate incomplete LU and

approximate LLT (i.e., even though it may not be a can-

didate for Cholesky) to demonstrate its usefulness and a

case for the dimensionality of approximate models.

In particular, we explore a neural acceleration method

for generating an incomplete Cholesky factorization with

zero fill-in that performs as good as or better than a tuned

incomplete Cholesky factorization without the overhead of

trying different techniques. As such, our method works as a

black box for a wide range of sparse matrices and works for

our own test suite of sparse matrices while most traditional

methods fail in some cases. Moreover, we demonstrate that

this can also be useful in some nonsymmetric cases for

GMRES. Our contributions are as follows:

• A method to generate a high-quality preconditioner

with a given sparsity pattern using neural networks

(Sect. 3);

• A comparison of our method to other standard incom-

plete factorization methods that utilize a given sparsity

pattern (Sect. 5);

• An analysis of timing costs to justify the use of neural

acceleration (Sect. 6);

• A comparison of generating preconditioners for

GMRES (Sect. 7).

2 Background and related work

This section provides a background into sparse incomplete

factorization used as a preconditioner and the concept of

neural acceleration.

2.1 Sparse preconditioning

2.1.1 Traditional methods

Most traditional methods focus on providing a universal

robust method to generate a preconditioner for iteration

methods such as PCG [1] and GMRES [8]. The most

common of these is incomplete decomposition as it fits a

wide array of unstructured systems. We will cover the

background related to incomplete Cholesky factorization

(i.e., IChol) for PCG though many of the same options are

available in the nonsymmetric case or incomplete LU

factorization (ILU) for GMRES. There are two forms of

these incomplete methods, i.e., IChol(k) and

ICholðsÞ [2, 3, 9]. The former, IChol(k), is based on the

level of fill-in, i.e., zero elements becoming nonzeros

during factorization, of a sparse matrix. Here, it is common

to utilize IChol(0), i.e., allowing no fill-in and thus having

the same nonzero pattern as the input matrix, or IChol(1) as

these have a small memory footprint. The second method,

ICholðsÞ, is based on the numerical value of elements

related to the off-diagonal. Off-diagonal elements that are

smaller than some s or sjaiij are dropped. Additionally,

some combination of these two, i.e., ICholðk; sÞ, can be

utilized. However, the nonzero values in all these methods

are derived from the truncated factorization method. This

means that errors (e.g., � that is removed by dropping a

nonzero earlier in the incomplete factorization) might have

a large impact on some values later on in the computation.

Due to loss of precision from dropping nonzeros, many

times the incomplete factorization may fail even though the

input matrix is SPD. In these cases, several options exist.

The first is to simply allow for more fill-in, but the fac-

torization will suffer from increased computation and

memory costs. The other two methods try to deal with the

numerical issues directly [10]. The first numerical method

is applying scaling to the sparse matrix. Sparse matrices
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from multiphysics problems can have element values that

come from a large distribution and result in diagonal values

tending toward zero when updated. Relating back to neural

networks, scaling of data is very common because of the

numerical values desired by optimization methods utilized

in training. The second numerical method is to shift the

diagonal values by some small amount to prevent them

from tending toward zero when updated. The value of the

shift should be large enough to prevent the incomplete

factorization method from failing, but small enough that

the preconditioner is close to the original sparse matrix.

However, both of these introduce two more parameters to

consider while constructing a preconditioner.

A last consideration exists in the form of a sparse matrix

ordering. The amount of fill-in during factorization is a

factor or the nonzero pattern. Certain orderings, e.g., nested

dissection (ND) [11] and reverse Cuthill–McKee

(RCM) [12], are known to reduce fill-in. In theory, the

reduction in fill-in should result in better preconditioners

(i.e., a reduction in the number of iterations to converge)

when a fixed number of nonzeros are applied (e.g.,

ICHOL(0)) as there should be less error due to truncation.

While this idea holds in general, it does not hold for all

orderings. An example of this is approximate minimal

degree (AMD) [13] ordering which reduces fill-in but may

not reduce iteration count to the same degree as

RCM [9, 14].

2.1.2 Theoretical methods

The traditional incomplete factorization methods work well

in practice, although they do require tuning parameters to

match the desired convergence rate while trading off

memory usage and time. There have been attempts to build

more theoretically constructed preconditioners. The reason

for this is both academic and due to concerns with per-

formance. One such method is the use of support graphs to

construct preconditioners for M-matrices [15]. In this

method, sparse matrices are viewed with their graph rep-

resentation (i.e., rows/columns as vertices and nonzero

values as edges with weights). The idea is to determine the

importance of an edge or additional edges and what the

weights of these edges should be using the metric of a

matrix pencil or eigenvalue problem. While this work is

ideal for small input matrices, the concept tends not to

scale to larger and more general sparse systems [16]. A

more modern approach to this is preconditioners built from

graph sparsification [17]. This approach utilizes larger and

more global information to remove edges and reweight the

graph representation to have a more ideal eigenvalue dis-

tribution. However, both of these methods suffer from not

working on a wide range of sparse matrices, and the

algorithms are difficult to scale (i.e., graph and sparse

eigenvalue computations).

2.2 Neural networks and acceleration

The concept of utilizing neural networks to either solve or

help solve systems of linear equations is not new. This is

not surprising as there exists a direct relationship between

solving a system and a general dense layer neural network.

Figure 1 shows a visual representation of the matrix–vector

multiplication (Ax ¼ y). The nonzero values of the matrix

(A) are represented in the network as the edge weights

while the input (xi) and outputs (yj) represent the input and

output nodes. No place is this connection seen more than in

the foundational work related to online training such as

Hopfield networks [18–21]. These types of neural compu-

tations look at solving the system by finding the parameters

of the connections (i.e., solving for A�1) in an online

manner (i.e., during runtime to include training). In par-

ticular, they train the network by allowing for a fully

connected network (i.e., all input nodes connected to all

output nodes) and flip the inputs and outputs (i.e., xi $ yj).

Though there has been a lot of fundamental work in this

area for things like embedded systems, these are designed

for small dense networks with very specific restrictions to

parameter distributions. One of the main reasons for this is

the numerical instability of deriving an inverse.

In addition to these traditional approaches, modern work

has started to analyze where neural networks can be used in

Fig. 1 Neural network representation of Ax ¼ y. The input nodes (xi)
represent the elements of vector x, the output nodes (yj) represent the
elements of vector y, and the edge weights are taken from nonzero

elements of the sparse matrix A
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solving sparse linear systems. The work by Gotz and

Anzt [22] utilizes complex convolutional neural networks

to identify blocking locations for generating block Jacobi

preconditioners. The work demonstrates that a neural net-

work can be used to identify good blocking for this type of

preconditioner, but the neural network developed is very

large with tens of thousands of parameters even for small

problems (i.e., dimensionðAÞ\1000) and it would be dif-

ficult to fit into the framework of simple models utilized by

neural acceleration. We also note that this type of problem,

i.e., identifying blocking patterns, is very similar to cluster

and edge detection done often by neural networks within

the area of image processing. In particular, the network

utilized in this work is very close to that used in LeNet-5

for images.

One modern neural acceleration approach to sparse

linear systems considers the problem of identifying the

sparse matrix ordering and calculation of fill-in [7]. This

work uses a simple graph neural network that represents

the computational flow for the calculation of fill-in (i.e.,

column-by-column calculation). They utilize neural accel-

eration to outperform traditional methods in CHOL-

MOD [7, 23] when utilizing a GPU. However, this work

does not generate factorization or give insight into the

problem of precondition generation for sparse iterative

solvers. However, the fundamental takeaway from that

work is that the search space for a neural network model

used by neural acceleration should match the workflow.

This same principle of matching the workflow is utilized

here.

3 Neural network construction

3.1 Overview

The current trend in neural networks is to construct a large

(and most likely expensive) network that is very generic.

This means a large network would be trained (i.e., in a

supervised manner) with a large training set of sparse

matrices as inputs and ideal preconditioners as outputs.

While generic networks like these have many positive

attributes, such as being able to be reused, they have a

number of downfalls that make them less than ideal for

neural acceleration and sparse linear algebra. The reasons

are: (a) the training time normally outweighs traditional

computational methods even when amortized over the

number of uses, and (b) the training set for sparse linear

algebra is very tiny. In particular, there are very few dif-

ferent nonzero patterns and numerical values to construct a

big enough training set to train a huge neural network

model. An example of this is demonstrated in the neural

acceleration work related to graph ordering and fill-in [7].

Moving away from these large generic networks, we

outline how we construct our neural networks for incom-

plete Cholesky preconditioners based on the computational

flow. Many traditional neural network-inspired approaches

try to construct a preconditioner M such that

M � A�1 [19–21]. In particular, the network itself

becomes the output. However, constructing an inverse

directly is an error-prone task. Numerical methods under-

stand that A�1 can be numerically unstable and will likely

be dense. This is one of the reasons sparse incomplete

factorizations make sense. Sparse factorizations, in general,

are used to combat these problems by replacing M with

stable sparse triangular solves. As this is the standard

workflow, the neural network model should have the same

workflow, i.e., the neural network should have the pattern

of the incomplete factorization. The problem can be further

shrunk by fixing the nonzero pattern of the factorization,

e.g., ICHOL(k). We discuss this more about the limitations

of this fix pattern assumption in the next subsection.

Figure 2 visualizes a very simple sparse two-layer

model. The edges in the first layer represent the nonzeros in

LT , i.e., the transpose of a lower triangular matrix, and the

edges of the second layer represent the nonzero in L, i.e.,

they are ordered in the manner they would be applied to

LLTx. Our decision to utilize a fixed ordering and nonzero

pattern lends itself to us because we are able to know what

edges we desire to use for our model. In modern theoretical

approaches to constructing incomplete sparse Cholesky

(e.g., support-graph and sparsification), both the edges and

weights are flexible. In more traditional level-based

methods, the edges are fixed and the weights are calculated

based on some truncation of the standard factorization

method. In this method, the edges are fixed but the weights

Fig. 2 Neural network model of LLTx. Here, the nonzero pattern (i.e.,

the edges) is based on the same nonzero pattern of Fig. 1. However,

one hidden layer is added to the product of LTx. While the edges

themselves are fixed based on the provided pattern, their numerical

value will change based on training via backpropagation
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for them will be calculated based on the model. Note that

this could be applied to any level of ICHOL(k). In our

analysis of quality (Sect. 5), we still restrict ourselves to

ICHOL(0).

This simple model lends itself well to the current

methods of training, namely backpropagation. While

methods like those in Hopfield networks [19–21] can be

trained online, they require smaller networks with certain

distributions. In fact, they generally boil down to the gra-

dient descent method for training. With the current power

of GPUs acting as accelerators, backpropagation methods

that involve solving an optimization problem make sense.

In particular, the objective function of such an optimization

method could be written as:

min jjY � LLTXjj22 ð1Þ

Here, we minimize the objective function by finding the

numerical values for a fixed set of elements of L using Y

and X training values calculated via Y ¼ AX, and the

2-norm represents the mean square error.

Therefore, the neural acceleration method could take in

the sparse matrix A and generate samples X and Y in order

to train L. In our experimental results, we demonstrate that

the number of samples needed is relatively small (i.e.,
ffiffiffiffi

N
p

where N ¼ dimensionðAÞ). For the output, the method

could either output L to be used by the problem in its

iterative solver package or function pointers to apply sparse

triangular solve for this on the GPU where it was

generated.

3.2 Discussion

Several points of this method and implementation stand out

in a manner that requires more discussion. The first point is

limiting our method to a fixed nonzero pattern. This has

two limiting factors. The first limiting factor is that an ideal

nonzero pattern needs to be calculated. In this work, we

utilize the nonzero pattern of the input matrix so that no

additional calculation needs to be done. Limiting the

nonzero pattern of the preconditioner to that of the nonzero

pattern of the input matrix is commonly done in many

traditional preconditioner methods. Therefore, we do not

perceive this as a major limitation as many traditional

methods also use it. Moreover, due to the method’s speed,

additional models with other nonzero patterns could be

generated quickly and tested [24]. The second factor is the

nonzero pattern is not dynamic to the learning. In partic-

ular, this is a limitation if the number of nonzeros needed to

form a good preconditioner is less than the given nonzero

pattern. The additional nonzeros would account for more

storage and more operations during evaluation. However,

Fig. 3 Reconstruction of an MNIST image (number nine) as a matrix

with increasing number of samples. The first two rows of images

provide the visual reconstructions and the bottom figure provides the

error in terms of the Frobenius norm of the difference between the

original and reconstructed images. We note that it is difficult to even

make out the number at fewer than 24 samples and that the error norm

only decreases at the point of 28 samples (i.e., the number of samples

equals the dimension of the image)
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we have found that this is a trade-off between time to train

and evaluate. A non-fixed pattern (e.g., ICHOLðsÞ) would
require additional training parameters (i.e., meta-parame-

ters related to sparsification), and would require a much

more expensive training search space. Additionally, we

found no cases in our initial investigation while varying the

nonzero pattern, which suggests a pattern that was sparser

than ICHOL(0) is a better preconditioner. This aligns with

what we address in the theoretical methods (See

Sect. 2.1.2). Therefore, we do not perceive this as a limi-

tation of the neural acceleration technique as many fast

parallel incomplete factorization methods make the same

assumption [3, 25], and the goal is to achieve a fast

approximation.

Table 1 SPD matrix test suite.

ID is the number used to

identify the matrix below, N is

the matrix dimension, NNZ is

the number of nonzeros in the

matrix, density is the average

number of nonzeros per row,

SDD identifying if symmetric

diagonally dominate, and area

identifying the area of science

the matrix is used

ID Matrix N NNZ Density SDD Area

1 minsurfo 40, 806 206k 5.0 Y Optimization

2 cvxbqp1 50, 000 350k 7.0 N Optimization

3 gridgena 48, 962 512k 10.5 N Optimization

4 cfd1 70, 656 1, 826k 25.8 N Fluid

5 oilpan 73, 752 2, 149k 29.1 N Structural

6 vanbody 47, 072 2, 329k 49.5 N Structural

7 ct20stif 52, 329 2, 600k 49.7 N Structural

8 nasasrb 54, 870 2, 677k 48.8 N Structural

9 cfd2 123, 440 3, 085k 25.0 N Fluid

10 s3dkt3m2 90, 449 3, 686k 40.8 N Structural

11 cant 62, 451 4, 007k 64.1 N 2D/3D

12 shipsec5 179, 860 4, 599k 25.6 N Structural

13 consph 83, 334 6, 010k 72.1 N 2D/3D

14 G3_circuit 1, 585, 478 7, 661k 4.8 Y Circuit

15 hood 220, 542 9, 895k 44.9 N Structural

16 thermal2 1, 228, 045 8, 580k 7.0 N Thermal

17 af_0_k101 503, 625 17, 551k 34.8 N Structural

18 af_shell3 504, 855 17, 562k 34.8 N Structural

19 msdoor 415, 863 19, 173k 46.1 N Structural

20 StocF-1465 1, 465, 137 21, 005k 14.3 N Fluid

21 Fault_639 638, 802 27, 246k 43.3 N Structural

22 inline_1 503, 712 36, 816k 73.1 N Structural

23 PFlow_742 742, 793 37, 138k 50.0 N 2D/3D

24 ldoor 952, 203 42, 494k 44.6 N Structural

Table 2 GMRES matrix test

suite.ID is the number used to

identify the matrix below, N is

the matrix dimension, NNZ is

the number of nonzeros in the

matrix, and density is the

average number of nonzeros per

row

ID Matrix N NNZ Density NSym Area

1 epb2 25, 228 175k 6.9 N Thermal

2 wang3 26, 064 177k 6.8 N Semiconductor

3 minsurfo* 40, 806 206k 5.0 Y Optimization

4 shyy161 76, 480 330k 4.3 N Fluid

5 cvxbqp1* 50, 000 350k 7.0 Y Optimization

6 bcircuit 68, 902 376 5.5 N Circuit

7 scircuit 170, 998 959k 5.6 N Circuit

8 torso2 115, 967 1, 033k 8.9 N 2D/3D

9 xenon1 48, 600 1, 181l 24.3 N Materials

10 ASIC_320ks 321, 671 1, 316k 4.1 N Circuit

11 vanbody* 47, 072 2, 329k 49.5 Y Structural

12 poisson3Db 85, 623 2, 375l 27.7 N Fluid

13 FEM_3D_thermal2 147, 900 3, 489k 23.6 N Thermal

14 parabolic_fem 525, 825 3, 675k 7.0 Y Fluid

Neural Computing and Applications

123



The second point that deserves discussion is training

cost. Section 6 provides an empirical analysis of this cost

for our less-than-optimal training implementation. The

training cost would depend on both the numerical opti-

mization method used and the number of iterations needed

to construct a good approximation. The issue with this cost

is that better and often more expensive numerical opti-

mization methods require fewer iterations. In our experi-

mentation, we utilize stochastic gradient descent (SGD)

and adaptive gradient algorithm (AdaGrad) [26] as our

numerical optimizers. SGD is cheaper per iteration. We

note that we would not even attempt training with SGD in

practice except to demonstrate the versatility of the model.

SGD utilizes the same update rate for each parameter.

AdaGrad utilizes the second-order information for updating

to provide adaptive learning rates for each parameter.

AdaGrad is commonly used for training deep learning

models with sparse gradients (e.g., recurrent neural net-

works and transformers). Overall, SGD normally requires

about N iterations to achieve the same quality as AdaGrad

using
ffiffiffiffi

N
p

iterations. With AdaGrad, we find that the

maximum time to train any of our test sparse neural net-

works is very small, and the goal of neural acceleration is

to construct an approximation in a timely manner (i.e.,

having a small search space) that requires the least input

from the user. We continue the decision of this along with

choices in Sect. 6. Moreover, we only provide the results

for AdaGrad in the results as the time to train using SGD

for our test suite is too high.

In terms of training time and number of samples, there is

an example to consider. We note that in the forward

direction of Ax ¼ y, where we are trying to reconstruct A

from samples X and Y, we would need N samples utilizing

a traditional method (e.g., using QR decomposi-

tion [27, 28] with back substitution). Figure 3 demon-

strates this with an image (of the number nine) taken from

the MNIST dataset [29]. This image can be viewed as a

sparse matrix without full rank (i.e., the rank does not equal

the dimension of A). The samples from X are taken from a

random distribution to produce Y values. The

reconstruction is done using the standard backs substitution

operation (i.e., with QR decomposition when the size is

less than N) in MATLAB. While this method does not

provide the required incomplete factorization, it does give

us a sense of how many samples we really should need to

construct the incomplete factorization. Even with a sparse

matrix that is not full rank, the image remains difficult to

see after 25 samples and the error is very high (i.e., [ 1).

Therefore, the number of samples should be �N to be a

successful method.

Lastly, we discuss extending this method from ICHOL

to ILU. The largest issue that normally impacts the gen-

eralization of ICHOL to ILU is the loss of stability that is

normally handled with pivoting. Some ILU will also gen-

erate a permutation matrix P that provides the row per-

mutations as a result of pivoting. Allowing this type of ILU

may be very expensive and difficult with neural networks,

though other neural acceleration methods have considered

permutations in general [7]. Because pivot serializes fac-

torization, most parallel packages try to avoid pivoting

using some reordering methods (e.g., those that permute

large entries to the diagonal) [3] or limit the search for a

pivot to a smaller subblock [30]. In this work, we also

consider ILU after demonstrating the usefulness of ICHOL.

We avoid the permutation in a similar manner as many

other ILU codes by trying to permute large values to the

diagonal first and excluding matrices that fail due to sta-

bility along the way. However, as we demonstrate later in

Sect. 7, there is a second issue that must be considered for

our method, namely model complexity. The introduction of

sometimes more than 2� the number of parameters for

having both the upper and lower halves adds considerable

more need to train and a slower training rate. As we

demonstrate later, LLT may still be ideal even in the non-

symmetric case simply due to training.

Table 3 Methods tested for

quality
Name Description Tol

CG CG 1e-5/1e-7

PCG PCG with ICHOL(0) 1e-5/1e-7

SCG PCG with scaled matrix 1e-5/1e-7

ShCG PCG with scaled and shifted (.2) 1e-5/1e-7

NNN PCG with NN generated LLT and normalized samples 1e-5/1e-7

NN PCG with NN generated LLT 1e-5/1e-7

All but CG have the same number of floating-point operations per iteration
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4 Experimental setup

4.1 Matrix test suite

We test our method utilizing two test suites taken from the

SuiteSparse Matrix Collection [31]. The first suite is a set

of SPD matrices for testing ICHOL with PCG (Table 1).

The second suite is a set of full-rank matrices for testing

ILU with GMRES (Table 2). For all matrices, a matrix ID,

the dimension of the sparse matrix (N), the number of

nonzeros (NNZ), the average row density (Density) (i.e.,

NNZ/N), and application area (Area) where the matrix is

found are provided. The ID is used to identify the sparse

matrix in the figures in later sections to save space and

make them more readable. For the set of SPD matrices

(Table 1), a column indicates if the matrix is also sym-

metric diagonally dominate (SDD), i.e., jaiij �
P

i 6¼j jaijj.
We provide the column related to SDD to indicate what

matrices even fall into the category where a more theo-

retical method could be utilized. Support graph type the-

oretical problems require an M-matrix which is a more

restrictive group than SDD. Some of the sparsification

methods will work with SDD matrices. We do not provide

performance results with these theatrical methods as we

found they did not improve iteration counts as much as

other traditional methods like ICHOL(0) for our test suite,

but feel that pointing them out to the reader gives them a

sense of what matrices may fall into this narrow category.

Additionally, a horizontal line is drawn between the

matrices with IDs 12 and 13 to represent where the fig-

ures are broken into two. The set of matrices used with

GMRES includes a column indicating if numerical sym-

metric NSym. Additionally, three SPD matrices are used in

this test suite in addition to the first. These matrices are

used to examine the impact of using LU on these matrices

(i.e., providing additional free parameters that may not be

needed). Moreover, the overall size (i.e., NNZ) of these

matrices is smaller than the first set due to the number of

model parameters required.

For the SPD suite, we consider both the natural ordering

(i.e., the ordering provided by the input) and the RCM

ordering in our quality analysis as this has been shown in

the past to be a key factor in iteration count [9]. Therefore,

it is interesting to examine if the ordering has an impact

when the preconditioner is generated using our neural

network model. For the GMRES suite, all sparse matrices

are reordering with Dulmage–Mendelsohn decomposi-

tion [32] followed by RCM on Aþ AT nonzero pattern in

order to try to promote large values onto the diagonal.

4.2 Experimental environment

We construct our neural networks within the Tensorflow

(2.8.1) framework1 inside of Python3. MATLAB 2022a is

used for PCG and GMRES. The system used is an Intel

Xeon Silver 4210R that contains 10 physical cores and

supports 20 threads. The CPUs run at 2.4 GHz. The system

contains a total of 64 GB of DDR4 (4x16GB 2933MHz).

Training is done with the system’s Nvidia Quadro

RTX4000 GPU with 8GB of GDDR6.

4.3 Network training

All networks are trained with a custom-made version of

AdaGrad [26] built with the Tensorflow framework. The

custom-made version allows utilizing only the parameters

associated with the nonzero structure of LLT or LU.

Moreover, we could optimize the performance of this over

the built-in AdaGrad of Tensorflow/Keras2 by utilizing

SpMV operations. A total of
ffiffiffiffi

N
p

training vectors were

generated, and the models were trained iteratively utilizing

a batch of 1 vector per iteration for all LLT models. This

value is based on the theoretical number of iterations for

the convergence of iterative solvers. A total of 100
ffiffiffiffi

N
p

training vectors were generated, and the model was trained

iteratively utilizing a batch of 1 vector per iteration for all

LU models. This increase in the number of training vectors

is a result of the increase in model parameters and smaller

a needed to converge. SGD was considered initially but it

required more tuning and iterations to train. With the

sparse optimizations and the reduction of iterations, the

AdaGrad choice is cheaper in terms of the training time

(though theoretically more expensive in terms of the

number of floating-point operations and memory). We

consider two sets of training for LLT model. In particular,

we train with one set of randomly selected X (denoted as

NN) and one set of randomly selected X with normalized

samples (denoted as NNN). We set the AdaGrad parameter

to be a ¼ 0:1 for samples that are not normalized, and set

the AdaGrad parameter to be a ¼ N3=2=20000 for samples

that are normalized. We note that a for the normalized

samples is very large compared to what is normally used in

bFig. 4 Number of iterations to converge to a solution when the sparse

matrix is ordered in their natural ordering with a relative tolerance of

1e-5. The bars represent the raw number of iterations and the lines

represent the average iteration for the method across all 24 matrices.

In many cases, tradition PCG fails because the incomplete factoriza-

tion fails. In several cases, even scaling with shifting ShCG fails. The

only methods that works for all cases while constantly reducing

iteration count are our two neural network-based methods

1 https://www.tensorflow.org.
2 https://www.tensorflow.org/guide/keras.
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practice, and this indicates a very fast convergence in

training. For the LU model, we only utilize non-normalized

samples and utilize the AdaGrad parameter to be a ¼ :001.

This value is relatively small and indicates a slow learning

rate and influence from the update. The loss function uti-

lized was the mean square error (MSE) as shown in

Eq. (1).

5 Experimental evaluation of quality for LLT

In this section, we evaluate the quality of the incomplete

Cholesky factorization generated using the neural network

model. To evaluate the quality, we consider the number of

iterations for PCG to converge. While the timing perfor-

mance of PCG is important, this is primarily dominated by

the number of iterations, and therefore, the number of

iterations is a sufficient measure of performance even in

parallel execution.

We consider the quality of two different neural network

models. The first is trained with normalized sample vectors

and an AdaGrad parameter of a ¼ N3=2=20000. We denote

this one as NNN. The second is trained using non-normal-

ized sample vectors and an AdaGrad parameter of a ¼ 0:1.

We denote this one as NN. Data normalization is very

common in training large neural networks. For our model,

we desire to test its impact, and the significance is twofold.

The first is that normalized sample vectors would provide a

guaranteed larger space that is spanned by the
ffiffiffiffi

N
p

sample

vectors and it may impact the training time as we are

considering the transformation onto this vector in each

training iteration. The second is that normalized sample

vectors would provide a smaller distribution of values that

are more ideal to the numerical properties of optimization

methods used to train neural networks like AdaGrad.

However, this normalization takes a small amount of time

and may not capture some larger effect (e.g., extreme

scaling found in matrices from multiphysics problems).

We compare our two models against those shown in

Table 3. All PCG methods utilize a ICHOL(0), i.e., all

preconditioners have the same nonzero pattern as the input

matrix. This is also why the number of iterations is a suf-

ficient measure of quality, as the same amount of floating-

point operations is done in each iteration for all methods

except for CG, which does not utilize a preconditioner. Our

scaled methods (SCG and ShCG) utilize a scaling based on

the diagonal entries. We used a value of 0.2 for a diagonal

shift after exploring multiple others, and found that this

works the best on average for the whole test suite. We also

consider all these methods for two values of relative tol-

erance (Tol) for convergence, i.e., 1e-5 and 1e-7. We tested

up to a maximum of 10,000 iterations, though we cut off

our figures at 2000 due to space. Lastly, we also consider

using the natural and RCM orderings.

Figures 4 and 5 provide the iteration count for each of

the methods with natural ordering. Figure 4 provides the

iteration counts for converging to a relative tolerance of 1e-

5, and Fig. 5 provides the same for converging to a relative

tolerance of 1e-7. In cases where the method would not

converge, the number of iterations is reported as �100. The

figure also provides lines plotting the average number of

iterations for all sparse matrices. In particular, these values

are: CG � 1874; SCG � 333; ShCG � 72; NNN � 95;

NN � 110 for a relative tolerance of 1e-5. We mark PCG

below the line as it fails to converge for almost all sparse

matrices, and the average of converging cases provides an

inaccurate visual account of its performance. We first

notice that our LLT neural network models (i.e., NN and

NNN) are the only preconditioning method besides SCG

that converges for all sparse matrices in the test suite. As

mentioned in the background (Sect. 2), the development of

a preconditioner is as much an art as a science that is

guided by expert experience and trials (e.g., ShCG failing

for sparse matrices 11 and 12 despite being the best method

for many of the other sparse matrices). This demonstrates

that the use of neural acceleration can help convert this

artful practice into a standard function call.

Not only does our neural acceleration method convert it

to a simple standard function call that will converge, but it

also provides a high-quality preconditioner. The only

method that does better in terms of average iteration count

than the two neural acceleration-generated preconditioners

is the scaled shifted method (ShCG). However, this method

has its own issues that include not converging for two

sparse matrices and having to find an a value that

works [10]. For a couple of matrices (i.e., 4 and 9), the LLT

neural network model does better than ShCG. However,

there are a couple of cases where the neural network

models can be worse. These cases include matrices 6

(vanbody) and 20 (StocF-1465). In the case of matrix

6 (vanbody), a model with the non-normalized sample

vectors does not do well, i.e., NN[ 4; 000 compared to CG

[ 10; 000 and ShCG\600 when the tolerance is 1e-7.

However, the model with normalized sample vectors is

about on par with ShCG. This might indicate a scaling

bFig. 5 Number of iterations to converge to a solution when the sparse

matrix is ordered in their natural ordering with a relative tolerance of

1e-7. The bars represent the raw number of iterations and the lines

represent the average iteration for the method across all 24 matrices.

In many cases, tradition PCG fails because the incomplete factoriza-

tion fails. In several cases, even scaling with shifting ShCG fails. The

only methods that works for all cases while constantly reducing

iteration count are our two neural network-based methods
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issue with the optimization method for training. On the

other hand, for matrix 20 (StocF-1465), one neural

network model (NNN) does poorly and one does well (NN).

When comparing the two neural network methods (i.e.,

the one trained with normalized samples (NNN) and the one

trained without normalized samples (NN)), there is little

difference on average. However, if you look at the per-

formance case by case, you can exclude matrices 6

(vanbody) and 13 (consph) and notice that NN gener-

ally does better than NNN. This is a nice finding for two

particular reasons. First, normalization does not need to be

done, thus saving time in training. Second, the training of

NN is much less sensitive. In particular, a simple parameter

of a ¼ 0:1 works well with AdaGrad for training, while the

training of NNN is much more difficult. In the next section,

we will compare the time to train the models against the

standard methods.

For completeness, we also consider the case when the

sparse matrices are reordered with RCM. Figures 6 and 7

present the number of iterations for sparse matrices ordered

with RCM. Overall, the iteration counts for the natural and

RCM orderings are about the same, even though we know

in theory this may not always be true [9]. With RCM

ordering, the averages are: CG � 1889; SCG � 330;

ShCG � 69; NNN � 93; NN � 106. We do note that the

time per iteration may be less for sparse matrices ordered

with RCM because of their spatial locality in mem-

ory [33, 34]. However, this does demonstrate that, for our

test suite, the quality of the neural network models seems

to depend on ordering. In future work, we will dive deeper

into this because of the importance it might have in GPU

computations. In particular, many GPUs require formats

and orderings that are different from those on multicore

CPUs to achieve high performance [34]. If ordering does

not matter with these preconditioners, they may be better

on GPUs than methods that are dependent on ordering.

6 Experimental evaluation of cost for LLT

Next, we evaluate the cost of generating the precondi-

tioners using the neural acceleration method in comparison

with the traditional methods. The question is about what is

the timing cost of training such a preconditioner. Normally

the cost of utilizing a neural network is dominated by two

factors: (a) time for training; and (b) time for searching for

the correct set of hyperparameters utilized in backpropa-

gation and regularization. Since our neural network model

is so simple, a search of the hyperparameter space is not

needed, and only training matters. However, this type of

training can be very expensive as it requires numerical

optimization. We note that many of the current GPU

accelerators are optimized for this type of calculation with

new progress coming for sparse applications due to graph

neural networks. To gauge the cost, we use the following

metric:

NFactsðMÞ ¼ TimeNNðMÞ
TimeICholðMÞ : ð2Þ

This metric aims to gauge the number of incomplete

factorizations for a sparse matrix (M) that can be completed

in the time for training the neural network (TimeNN(M)) if

the time per incomplete factorization is TimeIChol(M). The

value of TimeIChol(M) is taken from a modified version of

Javelin [3] for the fastest case that will factor without

losing numerical stability. The Javelin package is a highly

efficient package for incomplete factorization that utilizes

threads in a shared memory environment. We have modi-

fied Javelin to do ICHOL(0) in place of being designed for

incomplete LU. Moreover, we report the time for using

four threads with Javelin as this was the largest number of

threads that did not suffer from Amdahl’s law for all

matrices in the test suite. We do not consider the time for

moving data in both TimeNN(M) and TimeIChol(M). We

justify the use of this metric as follows. The neural

acceleration method using our neural networks would only

train one model, while someone trying to find a ‘‘good’’

preconditioner utilizing different methods of scaling and

parameters for shifting would try multiple preconditioners

to match their input case. The metric judges how many of

these cases could the user try in the time that our neural

acceleration method trains the preconditioner, without user

input. Note that there are a couple of factors that may make

this metric less than realistic. The first is that a failed

incomplete factorization may take less time. The second is

that a successful incomplete factorization still might not be

as optimal. The only way to test is to apply PCG and

observe the number of iterations.

Figure 8 presents the results of using this metric for our

test suite. We note that on average the cost is about 69.3

incomplete factorizations. In some cases, e.g., matrix 14

(G3_circuit), this value can be much higher. On the

other hand, several matrices have much smaller cost, e.g.,

matrix 1 (minsurfo), matrix 11 (cant), matrix 12

(shipsec5), and matrix 22 (inline_1). One factor that

seems to dominate this trade-off is the density of the

matrix. Since we utilized a less-than-optimal optimizer

(i.e., our version of AdaGrad), a great deal more work is

bFig. 6 Number of iterations to converge to a solution when the sparse

matrix is ordered in the RCM ordering with a relative tolerance of 1e-
5. The bars represent the raw number of iterations and the lines

represent the average iteration for the method across all 24 matrices.

We notice that the ordering does not seem to impact the number of

iterations required by our method
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Fig. 7 Number of iterations to converge to a solution when the sparse

matrix is ordered in the RCM ordering with a relative tolerance of 1e-
7. The bars represent the raw number of iterations and the lines

represent the average iteration for the method across all 24 matrices.

We notice that the ordering does not seem to impact the number of

iterations required by our method
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being done for the more sparse cases with the optimizer

than for the sparse incomplete factorization. Therefore, the

neural acceleration method may consider the density of the

input and available hardware (e.g., does the current GPU

support sparse tensor operation well?) to determine if a

neural network model or the original function call should

be used.

Despite many cases where a traditional search method

with ICHOL could be faster, our method is successful as a

neural acceleration method overall. The reason is that a

high-quality approximation is found with little to no user

interaction in a time that would fit into the compile time of

a large scientific application. We note that a large scientific

application could take more than 5 min to compile

considering large frameworks like Trilinos.3 We find that

the maximum time to generate a preconditioner using our

method is relatively small (i.e., � 117 second) and the

average time is less than a minute (i.e., � 53 seconds)

using our GPU.

7 Experimental evaluation of quality for LU

After understanding that the generation of incomplete LLT

can be done successfully for SPD systems with our neural

acceleration method in Sect. 5, we next want to explore

this for the more general case of ILU utilized by GMRES.

However, this is a much more difficult problem due to

numerical stability as pointed out previously. Table 4

provides a table of all the methods tested. These methods

include the standard ILU(0) method along with two com-

mon other methods (i.e., IMR and IMC). These two

methods preserve the row (i.e., IMR; Ae ¼ LUe) and col-

umn (i.e., IMC; eTA ¼ eTLU) sum of the incomplete fac-

torization, where e is a vector of all ones. These are found

to be better than plain ILU(0) in very specific cases.

Additionally, we only consider our neural network models

where samples are not normalized as we have already

shown little difference in this case for LLT . We test these

methods up to 2000 iterations as the dimension of the

Fig. 8 Evaluation of the cost in terms of the number of factorizations (NFacts(M)). Each bar represents the value of NFacts for the particular

sparse matrix and the dotted line represents the average

Table 4 Methods tested for quality for GMRES

Name Description Tol

GMRES GMRES 1e-5 / 1e-7

ILU GMRES with ILU(0) 1e-5 / 1e-7

IMR GMRES with ILU(0) preserving row sum 1e-5 /1e-7

IMC GMRES with ILU(0) preserving column sum 1e-5 / 1e-7

NN-LU GMRES with NN generated LU 1e-5 / 1e-7

NN-LL GMRES with NN generated LLT 1e-5 / 1e-7

All but GMRES have the same number of floating-point operations per

iteration

3 https://trilinos.github.io/.
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Fig. 9 Number of GMRES iterations to converge to a solution when the sparse matrix is ordered in the RCM ordering with relative tolerances of

1e-5 and 1e-7. The bars represent the raw number of iterations
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matrices in this test suite is smaller due to the number of

training parameters in LU.

Figure 9 reports the number of iterations for our meth-

ods with relative tolerances of 1e-5 and 1e-7. We do not

report averages here as many cases do not converge.

Overall the observed performance is more complex and

variable than the case of LLT with SPD matrices. In gen-

eral, ILU is a better preconditioner over our test suite than

any others. However, there are a couple of places where

ILU fails to be the best. In particular, it fails to the reduce

iteration count of GMRES (e.g., matrix 5 (cvxbq1) which

is an SPD optimization problem) and does not do as well as

our incomplete LLT neural network model for matrix 7

(scircuit). Our LU neural network model does work as

a preconditioner as it reduces the iteration count compared

to the non-preconditioned GMRES case for all matrices.

However, there are two interesting cases to point out. The

first case is when the input matrix is SPD (e.g., matrices 3,

5, & 11). We noticed that the LU model does a fairly good

job capturing a preconditioner when the relative tolerance

is 1e-5, but this becomes worse with the lower relative

tolerance of 1e-7. This means that model choice is

important to match the structure of the initial data, and that

training alone cannot make up for picking the wrong

model. The second case is that the LLT model tends to be a

better choice than the LU model for most of the test suite,

even for matrices that are nonsymmetric. This may be due

to the simplification of the number of training parameters.

There are a couple of places where this is not the case, e.g.,

matrices 1, 2, & 6. However, for most matrices, the simpler

model LLT trains much faster and provides a better pre-

conditioner. In fact, for matrix 7 (scircuit), the LLT

model is the best preconditioner by a wide margin, and the

only one to converge for matrix 5 (cvxbqpl) with relative

tolerance of 1e-7.

Based on these observations, we believe that there is

merit in using these neural acceleration models as pre-

conditioners for general matrices with GMRES. Interest-

ingly enough, the recommendation would be to first try

using the LLT model and not the LU model even if the input

is nonsymmetric.

8 Conclusion

In this work, we developed a neural network modeling

method for incomplete factorization that can be utilized for

the neural acceleration of preconditioners for sparse itera-

tive solver methods of PCG and GMRES. The goal of this

method is to produce a good and inexpensive approxima-

tion that could be computed at compile time or in parallel

on a GPU during execution. These incomplete factorization

methods are ideal for neural acceleration to approximate

the input matrix A. In doing so, we developed a simple two-

layer sparse artificial neural network model that utilizes a

straightforward implementation of AdaGrad to train. No

meta-parameters related to regularization or dropout are

needed. As a result, the model is as simple and cheap as

expected. In particular, we demonstrated that a model as

good as a standard method (i.e., ICHOL) could be com-

puted with only
ffiffiffiffi

N
p

samples and iterations (i.e., the

expected number for this type of training). Not only was

the method efficient in training, but it was also the only

method that was able to provide a consistent decrease in

iteration count for the whole test suite. Additionally, we

demonstrate that the time to compute this model is rela-

tively low on GPU (i.e., \1 minute). Moreover, we con-

sidered the more general case of LU model for GMRES,

and we showed that both LU and LLT models work as

preconditioners. Surprisingly, we observe that LLT works

well with GMRES even with nonsymmetric sparse matrix.

As such, the method works as a black box preconditioner

that would be ideal in cases where the application user does

not have insight into the problem.
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