
To Protect or Not To Protect: Probability-Aware
Selective Protection for Sparse Iterative Solvers

Daniel Ryley Johnson∗, Hongyang Sun∗, Joshua Dennis Booth†, Padma Raghavan‡
∗ University of Kansas, Lawrence, KS, USA

† University of Alabama in Huntsville, Huntsville, AL, USA
‡ Vanderbilt University, Nashville, TN, USA

Abstract—With the increasing scale of high-performance com-
puting (HPC) systems, transient bit-flip errors are now more
likely than ever, posing a threat to long-running scientific
applications. A substantial portion of these applications involve
simulation of partial differential equations (PDEs), modeling
physical processes over discretized spatial and temporal domains,
with some requiring solving sparse linear systems of equations.
While these applications are often paired with system-level
application-agnostic resilience techniques, such as checkpointing
and replication, using these techniques imposes significant over-
head. In this work, we present a probability-aware framework
that produces low-overhead selective protection schemes for the
widely used Preconditioned Conjugate Gradient (PCG) method,
whose performance can heavily degrade due to error propa-
gation through the sparse matrix-vector multiplication (SpMV)
operation. Through the use of a straightforward mathematical
model and an optimized machine learning model, our selective
protection schemes incorporate error probability to protect only
certain crucial operations. An experimental evaluation using 15
matrices from the SuiteSparse Matrix Collection demonstrates
that our protection schemes effectively reduce resilience over-
heads, outperforming two baseline and two existing protection
schemes across all error probabilities.

Index Terms—Fault tolerance, soft errors, selective protection,
iterative solvers, preconditioned conjugate gradient.

I. INTRODUCTION

When a computing system is impacted by a transient bit-flip
without any apparent failure, applications may behave erro-
neously, resulting in incorrect calculations or excessively long
runtimes. This phenomenon is called a soft error. Soft errors
have been attributed to various sources, including radioactive
sources such as cosmic rays and packaging materials [3], as
well as electrical sources like voltage fluctuations [21] and
simple hardware defects.

Large high-performance computing (HPC) systems are par-
ticularly susceptible to soft errors due to the sheer amount of
electronic components they contain. For this reason, numerous
resilience techniques are employed in practice, both at the sys-
tem level and at the application level. System-level techniques
such as checkpointing and replication [4], [5], [14], [17], [25]
are widely adopted due to their simplicity and application-
agnostic nature. Given their significant overhead, application-
specific techniques, or algorithm-based fault tolerance (ABFT)
[10], [22], are often employed to mitigate this overhead.

In this work, we introduce a resilience technique for
the widely used Preconditioned Conjugate Gradient (PCG)
method. PCG solves a linear system Ax = b where A is

an N × N symmetric positive definite (SPD) matrix, b is an
N × 1 known vector, and x is the N × 1 solution vector.
Previous works have studied the impact of soft errors on
PCG’s performance [7], [26], [30], which can heavily dete-
riorate as errors propagate through the sparse matrix-vector
multiplication (SpMV) operation. However, certain errors may
have no impact on PCG’s performance at all. As a result,
fully protecting the SpMV operation can lead to suboptimal
resilience overhead.

The resilience framework introduced in this work produces
probability-aware selective protection schemes designed to
protect only crucial operations within SpMV, thereby miti-
gating performance degradation while minimizing resilience
overhead. Our schemes are guided by two static features
and one parameter, making decisions with a straightforward
mathematical model supplemented by a machine learning
model. The operations that we opt to protect are replicated
at the system level, and if a soft error is detected between the
original and duplicated computations, the previous iteration is
repeated.

An experimental evaluation across 15 matrices from
the SuiteSparse Matrix Collection demonstrates that our
probability-aware selective protection schemes can signifi-
cantly reduce resilience overheads, frequently surpassing or
matching the performance of both baseline and established
protection schemes over all error probabilities.

The main contributions of this work are as follows:
• We formulate a probability-aware mathematical model for

the selective protection of operations in the key SpMV
operation of PCG.

• We develop machine learning models capable of predict-
ing the slowdown resulting from a soft error in PCG from
two statically known features, making the mathematical
model practical in real-world applications.

• We conduct an experimental evaluation to demonstrate
the effectiveness of our approach as a low-overhead
system-level resilience technique.

The rest of this paper is structured as follows. Section
II provides the necessary background on sparse linear sys-
tems, the PCG algorithm, and soft errors. In Section III,
key equations are introduced to formulate the mathematical
model of our selective protection scheme. Section IV explains
how machine learning is employed to predict a key quantity
for our mathematical model. Sections V and VI detail and

present the results of an experimental evaluation of our se-
lective protection scheme. Section VII reviews related work
on resilience techniques to protect sparse iterative solvers and
surveys results on selective reliability for scientific applica-
tions. Finally, Section VIII concludes the paper and discusses
potential avenues for future work.

II. BACKGROUND

A. Sparse Linear Systems

Large-scale scientific applications often require the solving
of sparse linear systems of equations. One set of such appli-
cations are physical simulations that implicitly solve partial
differential equations (PDEs). One specific example from this
set is solving the heat equation [19] on an N × 1 rod. Fully
representing the dependencies of the N×1 cells on each other
would require an N ×N matrix. Given a sufficiently large N ,
meaning each cell likely does not affect the majority of other
cells, this N ×N matrix would then be sparse.

Sparse matrices are commonly stored in sparse matrix
storage formats such as coordinate list (COO), Compressed
Sparse Row (CSR), Compressed Sparse Column (CSC), and
more advanced formats to exploit the fact that a significant
amount of matrix entries are zero [24]. These formats reduce
the space complexity from O(N2) to O(nnz), where nnz is
the number of non-zero elements in the matrix.

B. Preconditioned Conjugate Gradient

While the standard CG method can theoretically solve the
sparse system of linear equations in N iterations, the addition
of a preconditioner tends to reduce the required number of
iterations significantly. In particular, a preconditioner M is
utilized such that A ≈ M (i.e., M−1Ax = M−1b is solved).
To keep computational cost low (i.e., reduce the cost of
finding M and computing M−1), normally a block diagonal
preconditioner (e.g., block Jacobi) or incomplete Cholesky
factorization (i.e., A ≈ LLT where L is a sparse lower
triangular matrix) is used. Concretely, PCG solves a linear
system of the form Ax = b, where A is an N ×N sparse and
symmetric positive definite (SPD) matrix, b is a dense vector,
and x is the solution vector. Pseudocode for PCG is shown
in Algorithm 1. The algorithm’s inputs are as follows: the
coefficient matrix A, the preconditioner matrix M , the right-
hand side vector b, the initial guess of the solution vector x0,
the threshold that defines solution convergence tol, and the
maximum number of iterations allowed before the algorithm
is aborted maxit.

The main loop of PCG, much like other iterative optimiza-
tion techniques, focuses on updating the solution vector and
finding the next search direction. Specifically, at any iteration i,
PCG updates the solution vector xi to xi+1 using the previous
search direction pi and generates a new search direction pi+1

that is A-orthogonal to each previous search direction, i.e.,
∀j ∈ {0, 1, . . . , i}, pTi+1Apj = 0. Lastly, if the residual of the
solution ri is below the threshold tol, a satisfactory solution
has been found.

Algorithm 1: Preconditioned Conjugate Gradient
(PCG)

Input: A,M, b, x0, tol,maxit
1 begin
2 r0 ← b−Ax0; // Initial residual

3 z0 ←M−1r0; // Preconditioning
4 p0 ← z0;
5 i← 0;
6 while i < maxit and ∥ri∥/∥b∥ > tol do
7 qi ← Api;
8 vi ← rTi zi;
9 α← vi/(p

T
i qi);

10 xi+1 ← xi + αpi; // Improve approximation
11 ri+1 ← ri − αqi; // Update residual

12 zi+1 ←M−1ri+1; // Preconditioning

13 vi+1 ← rTi+1zi+1;
14 β ← vi+1/vi;
15 pi+1 ← zi+1 + βpi; // New search direction
16 i← i+ 1;
17 end
18 end

The complexity of PCG is dominated by the sparse matrix-
vector multiplication of Api or the computation of M−1.
Sparse matrix-vector multiplication (SpMV) requires O(nnz)
time, while the computation cost of M−1 would be the O(N)
if a block diagonal preconditioner is used or O(nnz) (i.e,
the application of sparse triangular solve) if an incomplete
Cholesky is used.

C. Soft Errors

As computing systems grow in scale, the threat of bit-flip
errors due to environmental factors grows in tandem. The
implementation of error-correcting codes (ECC) and similar
mechanisms can drastically decrease the frequency of bit-
flip errors by up to 10,000-fold [2], but they do not offer a
complete solution. Consequently, software solutions are often
employed to supplement these hardware-based approaches.

These errors can be divided into two categories: hard errors
and soft errors. Hard errors result in crashes of running
processes or entire systems, whereas soft errors modify appli-
cation data in a way that could lead to incorrect calculations
or excessively long runtimes without causing a failure. Hard
errors are relatively straightforward to identify and rectify
through system checkpointing [14], [25], where the entire
system or application state is periodically dumped to disk
and restored in the event of a crash. Soft errors, which
are the main focus of this work, are not as easily detected
and corrected, often requiring the replication of processes or
the duplication of operations [5], [17]. Checkpointing and
replication both impose significant overhead, thus any decrease
in their frequency is highly beneficial.

III. PROBLEM FORMULATION

Shantharam et al. [30] proved that if a soft error in PCG
propagates into the p vector of the SpMV operation in PCG,
it will ultimately impact all elements in p given a sufficient
number of iterations. For this reason, we consider a problem
where an error is introduced at some iteration i into a random

element j of the N × 1 vector p. This error placement can
be represented by a two-tuple (i, j), where i ∈ {0, 1, . . . , Io}
and j ∈ {0, 1, . . . , N − 1}. Here, Io denotes the number of
iterations for PCG to converge in an error-free run. From this
point onward, we refer to this two-tuple as a fault site.

The presence of a soft error at a fault site (i, j) will
typically still make PCG converge to the correct solution
(which happened to all of our test cases). However, it may
require substantially more iterations to reach convergence.
We quantify this using slowdown, defined as the ratio of the
number of iterations to converge with the error (Ie(i, j)) to
the number of iterations to converge without errors (Io), i.e.,

slowdown(i, j) =
Ie(i, j)

Io
. (1)

Figure 1 shows the mean slowdowns over 1000 PCG error
runs with random fault sites for 15 matrices from the SuiteS-
parse Matrix Collection [12]. Figures 2a and 2b provide the
corresponding number of iterations without error (Io) and the
mean number of iterations with errors (Ie) for these matrices.

Protecting, synonymous with replicating, an operation also
introduces some cost. To relate the cost of errors with the cost
of protection, we introduce the following model:

Cprotection(i, j) = 1 , (2)

Cerror(i, j, pe) =
pe
NIo

(Ie(i, j)− Io)N . (3)

In particular, we establish the cost of protecting any fault
site (i, j) as one unit (Equation (2)), reflecting the need to
replicate one dot product operation in SpMV. Subsequently,
the cost associated with an error occurrence is determined by
the total number of dot product operations performed during
the additional iterations of PCG. However, errors should never
be considered guaranteed. Given the probability of an error
occurring in PCG, denoted as pe, the expected cost of an error
occurring at a particular fault site (i, j) is shown in Equation
(3), calculated as the cost of the error ((Ie(i, j) − Io)N)
multiplied by the probability of the error occurring at said fault
site pe

NIo
. Here, we assume that each of the NIo potential fault

sites has the same probability of having the error. It logically
follows that protection should be done when the expected
cost of an error occurring surpasses the cost of protection,
i.e., Cerror(i, j, pe) > Cprotection(i, j). This trivial inequality
leads to a decision criterion for when to protect any fault site
as derived below:

pe
NIo

(Ie(i, j)− Io)N > 1

⇒ Ie(i, j)− Io
Io

>
1

pe

⇒ Ie(i, j)

Io
− 1 >

1

pe

⇒ slowdown(i, j) > 1 +
1

pe
. (4)

Figure 3 shows a selective protection scheme constructed from
this model for one matrix ct20stif from the SuiteSparse Matrix
Collection [12] with pe = 0.1.

If the slowdown for a given fault site were a known constant
prior to runtime, this model could be readily applied. In
the subsequent sections, we present and evaluate a machine
learning-based approach aimed at predicting slowdown based
on two statically known features.

Fig. 1: Mean slowdowns over 1000 PCG error runs on 15
matrices from the SuiteSparse Matrix Collection [12]. Error
bars indicate a 95% confidence interval of the mean.

IV. PREDICTION OF SOFT ERROR IMPACTS

With the objective of estimating slowdown using informa-
tion known prior to execution, machine learning is a natural
direction to pursue. The top row of Figure 5 illustrates the
correlation between two key features and the slowdown on
four representative matrices: the PCG iteration number, i, and
the 2-norm of the j-th row of A, ∥Aj∥2. The formal definition
of ∥Aj∥2 is as follows:

∥Aj∥2 =

√√√√ N∑
k=1

A2
j,k. (5)

Based on our observations, a higher ∥Aj∥2 typically results
in a higher slowdown. On the other hand, i has a more
complex correlation with slowdown, often peaking at clusters
of iterations. The data shown was taken from 1,000 PCG runs
with errors inserted at one random fault site for each run. Both
features are static, thus any model trained on them can be
used to predict the slowdowns offline, incurring no additional
overhead during runtime.

To develop machine learning models capable of capturing
this correlation, a Bayesian hyperparameter search [33] is con-
ducted over a set of five standard regression models. This set
consists of polynomial regression, random decision forest, K-
nearest neighbors, gradient-boosted decision trees (XGBoost),

(a) (b)

Fig. 2: Io and Ie values on 15 matrices from the SuiteSparse Matrix Collection [12]. (a) Number of iterations without error
(Io); (b) Mean number of iterations with errors (Ie) over 1000 PCG error runs. Error bars indicate a 95% confidence interval
of the mean.

and support vector machines. This Bayesian hyperparameter
search employs 3-fold cross-validation on a dataset comprising
2,000 experimental PCG runs with an injected error, optimiz-
ing the validation r2 of each model. Once the hyperparameter
search is completed, five optimized models are produced to
choose from.

However, while regression performance is significant, the
primary focus lies in making the correct decision regarding
whether to protect or not to protect. Therefore, classification
metrics should be considered when determining which of the
five optimized models should be employed.

This model selection should prioritize the model that excels
in classifying whether the slowdown will be greater or less
than 1+ 1

pe
, as shown in Equation (4). It is important to note

that varying pe will impact model performance. Therefore, we
evaluate classification scores across a range of 100 different
pe values from 0 to 1 (with a 0.01 increment). To prevent bias
towards any specific pe, a model should be selected based on
some average classification score across all pe’s. In practice,
if some specific range of pe is preferred, an average of only
that particular range could be taken.

We focus on two specific classification metrics, accuracy
and Fβ score. Accuracy is presented for ease of human inter-
pretation, but it is not effective in assessing model performance
in scenarios where classes are imbalanced, which is common
in this setting. For a more effective assessment of model
performance, we utilize the Fβ score, which is defined as

follows:

Fβ = (1 + β2)
precision · recall

(β2 · precision) + recall
. (6)

Specifically, we choose the Fβ score with β = 2. This
choice is motivated by the goal of optimizing both precision
and recall, while also taking into account the imbalance in
misclassification cost. If a false positive occurs, indicating
that a fault site was protected when it did not encounter an
error, a cost of one is incurred. Conversely, if a false negative
occurs, indicating that a fault site was not protected when it
did encounter an error, we are likely to incur a significantly
larger cost. For these reasons, we prioritize the optimization of
recall over precision, making Fβ=2 a natural choice. We also
explored other choices of β > 2, which do not significantly
affect the model choice and performance. Upon making this
model choice, PCG can be effectively protected, as will be
validated in the following sections. Figure 4 gives a complete
outline of our protection scheme production framework.

V. EVALUATION

To assess our selective protection schemes against other
existing schemes, it is crucial to employ a metric that en-
courages error prevention while minimizing the total number
of protections. A suitable metric meeting these criteria is
the computational overhead incurred when an error strikes a
particular fault site (i, j), which is defined as follows:

overhead(i, j) =

∑Ie(i,j)
k=1

(
N + nk

)
− IoN

IoN
, (7)

Fig. 3: A selective protection scheme for the matrix ct20stif
with pe = 0.1. Black cells indicate protected fault sites.

where nk denotes the total number of protections at iter-
ation k. This formula essentially compares two quantities,∑Ie(i,j)

k=1

(
N +nk

)
and IoN . The first quantity

∑Ie(i,j)
k=1

(
N +

nk

)
represents the complete cost of an error-prone run includ-

ing the cost of protections at each iteration, and the second
quantity IoN is simply the cost of an error-free run without
any protection. Overhead can be better understood through the
following key scenarios:

• Full protection: overhead(i, j) = 1. Protecting nk = N
elements at each iteration k simplifies Equation (7) to
2IoN−IoN

IoN
, resulting in an overhead of one, regardless of

error presence. Note that no slowdown will be incurred in
this scenario even if an error is present since all elements
are protected (i.e., Ie(i, j) = Io).

• No protection with no error present: overhead(i, j) = 0.
Protecting no elements at each iteration without an error
occurring simplifies Equation (7) to IoN−IoN

IoN
, resulting

in an overhead of zero.
• No protection with error present: overhead(i, j) > 1

is likely. Protecting no elements at each iteration in the
presence of an error occurring at fault site (i, j) often
leads to

∑Ie(i,j)
k=1

(
N + 0

)
being much greater than IoN ,

resulting in an overhead greater than one. It is also
possible to have overhead(i, j) ≤ 1 in this scenario if
Ie(i, j) does not increase by too much relative to Io.

• Selective protection with error present:
– overhead(i, j) ≤ 1 if the fault site is protected.

Protecting between 0 and N elements at each itera-
tion while correctly protecting the fault site leads to∑Ie(i,j)

k=1

(
N +nk

)
−IoN =

∑Io
k=1

(
N +nk

)
−IoN =∑Io

k=1 nk being less than IoN , resulting in an overhead
between zero and one.

– overhead(i, j) > 1 is likely if the fault site is not
protected. Protecting between 0 and N elements at
each iteration while not correctly protecting the fault
site will often lead to

∑Ie(i,j)
k=1

(
N + nk

)
being much

greater than IoN , resulting in an overhead greater than
one. It is also possible to have overhead(i, j) ≤ 1 in
this scenario if Ie(i, j) and/or nk are relatively small.

Utilizing this key metric, we offer a comprehensive eval-
uation of our selective protection schemes compared to two
baseline schemes as well as two previously established pro-
tection schemes:

• No protection: A baseline scheme where no protection is
employed.

• Full protection: A baseline scheme that protects all po-
tential fault sites.

• Best Random %: Among all potential fault sites, ran-
domly protect P percent of them. Integer values of P
ranging from 1 to 99 are tested, and the P yielding the
best performance is selected. This protection scheme was
presented in [32].

• Best 2-Norm %: For every potential fault site, protect if
∥Aj∥2 is in the top P percentile of 2-norms in A. Integer
values of P ranging from 1 to 99 are tested, and the P
yielding the best performance is selected. This protection
scheme was presented in [38].

In our evaluation, we select 15 matrices from the SuiteS-
parse Matrix Collection [12]. These matrices were chosen at
random with the caveat that they must be SPD due to that
being a prerequisite for PCG. Table I presents these matrices
alongside their row/column count (N), number of non-zero
elements (nnz), and element density (nnz/N2).

For each selected matrix, we execute the PCG algorithm
using a zero fill sparse incomplete Cholesky Factorization
from Matlab (i.e, icho) as the preconditioner, tol = 10−6,
maxiter = 100 · Io, b = A · 1⃗N where 1⃗N is a vector of
length N containing only ones, and the initial guess x0 = 0⃗N

where 0⃗N is a vector of length N containing only zeros.
Experimental setups similar to this have been used in previous
works (e.g. [7], [26], [38], [39]). The error-free iteration count
Io for each matrix in this setup is also shown in Table I. A
random fault site is sampled from a uniform distribution such
that in the i-th iteration of PCG, the j-th element of vector p
(Line 7 of Algorithm 1) has an error injected in it. Instead of
inducing a physical bit-flip in the data operated on by SpMV,
a straightforward value augmentation is done. Specifically, the
value of the j-th element in vector p is increased by the
maximum value in p, i.e., pj = pj + maxk pk. Following
the injection of this error, the corresponding element may or
may not be appropriately protected, after which the overhead
of the run is recorded. This process is repeated 1,000 times,

Fig. 4: An overview of the selective protection scheme production framework.

forming the runs where an error is present in the evaluation.
To account for the probability of an error occurring, pe,

there must also be 1000/pe − 1000 runs where an error
does not occur, thus a total of 1000/pe runs. Due to the
deterministic nature of PCG and our machine learning models,
all non-error PCG runs will produce identical overhead results.
Therefore, we duplicate the overhead of one non-error PCG
run 1000/pe − 1000 times for each considered pe. Once
all evaluation runs are completed, the average overhead is
computed over all recorded overhead values. The probability
of an error, pe, is varied between 0 and 1 in our evaluation,
with an increment of 0.01.

Table I: 15 matrices selected from the SuiteSparse Matrix
Collection [12] for performance evaluation.

Id Matrix N nnz Density Io
1 ex10 2410 54840 0.94% 479
2 msc04515 4515 97707 0.48% 1879
3 s1rmq4m1 5489 262411 0.87% 605
4 Na5 5832 305630 0.9% 101
5 bcsstk18 11948 149090 0.1% 432
6 vibrobox 12328 301700 0.2% 565
7 cbuckle 13681 676515 0.36% 341
8 Pres Poisson 14822 715804 0.33% 72
9 raefsky4 19779 1316789 0.34% 79

10 vanbody 47072 1751178 0.079% 491
11 ct20stif 52329 2600295 0.095% 364
12 cant 62451 4007383 0.1% 394
13 bcircuit 68902 375558 0.0079% 48
14 apache1 80800 542184 0.0083% 131
15 consph 83334 6010480 0.087% 611

VI. RESULTS

In this section, we present performance metrics evaluating
the quality of our predictions of soft error impacts, alongside
a comparison of our produced selective protection schemes
against both baseline approaches and existing schemes from
previous works.

A. Prediction of Soft Error Impacts

The bottom row of Figure 5 presents the regression results
for four models over four matrices based on 1,000 PCG runs,
achieving high r2 values over a diverse set of correlations.
The mean r2 of our optimized models across all 15 matrices
is 0.84, indicating strong overall regression fits.

As mentioned previously, classification results are more
indicative of good performance due to our setting ultimately
being a decision problem. Figure 6 shows accuracies and
Fβ=2 scores of all five models produced from the Bayesian
hyperparameter search over the same four matrices. Per our
methodologies, the model with the highest average Fβ=2 score
over all error probabilities is taken. One can see that the best
models often surpass the 0.9 mark, indicating a good balance
of avoiding false negatives and false positives. Notably, this
metric is still not a direct measurement of protection scheme
performance, which is given below.

B. Protection Scheme Performance

To evaluate our produced protection schemes, Figure 7
shows the mean overheads and the corresponding 95% confi-
dence intervals of three protection schemes on four represen-
tative matrices, varying pe. The “Best Random %” scheme
is omitted in the interest of visual clarity and the lack of
competitiveness (its results are summarized for selected pe’s
along with those of other schemes in Table II). The “Full
Protection” scheme is also omitted due to its inherent 100%
overhead with zero uncertainty.

It is evident that the performance of the “No Protection”
scheme can fluctuate significantly. This approach typically
performs exceptionally well when the error probability pe is
extremely small but tends to perform disastrously when pe is
substantial, particularly when the average slowdown associated
with an error occurrence for a given matrix is significant. We
classify matrices with high average slowdowns when errors
occur as dangerous, as exemplified by the vanbody matrix.
Conversely, matrices with low average slowdowns are deemed
non-dangerous, as exemplified by the Na5 matrix. In the case
of non-dangerous matrices, the “No Protection” scheme can
perform effectively even at high values of pe.

The “Best 2-Norm %” scheme maintains overheads below
100% for every value of pe. While this scheme consistently
outperforms “Full Protection”, it does not account for pe,
leading to higher overheads for low values of pe.

“Our Scheme” refers to the decisions made from Equa-
tion (4) where the slowdown is predicted by the optimized
model produced from Section IV. This scheme consistently
approximates the performance of “No Protection” at low pe
values, being the only scheme to do so. When pe is significant,
“Our Scheme” often outperforms “Best 2-Norm %” with

Fig. 5: Correlations between the error iteration number i, the 2-norm of the j-th row of A, and the resulting slowdown, along
with regression fits r2 over 1000 PCG error runs on four representative matrices.

diminishing margins as pe increases. Na5 is the only matrix
where this margin increases. Across 8 out of 15 matrices, “Our
Scheme” exhibits a 95% confidence interval lower than that
of “Best 2-Norm %” at all values of pe. In matrices where
this is not the case, the confidence interval of “Our Scheme”
overlaps with that of “Best 2-Norm %” for less than 50% of
pe values, almost always being the lower end of the overlap.

Table II presents the mean overheads of four protection
schemes on all 15 matrices, with pe fixed at 0.1, 0.5, and
0.9, reflecting low, medium, and high probabilities of error,
respectively. The “Full Protection” scheme is again omitted
due to its inherent 100% overhead with zero uncertainty. At
pe = 0.1, “Our Scheme” outperforms “No Protection” by an
average of 145.8% with a maximum difference of 723.8%,
“Best Random %” by an average of 36.96% with a maximum
difference of 88.50%, and “Best 2-Norm %” on average by
14.93% with a maximum difference of 52.09%. At pe = 0.5,
“Our Scheme” outperforms “No Protection” by an average of
846.8% with a maximum difference of 4,008%, “Best Random
%” by an average of 36.85% with a maximum difference of
88.17%, and “Best 2-Norm %” on average by 5.747% with a
maximum difference of 17.97%. At pe = 0.9, “Our Scheme”
outperforms “No Protection” by an average of 1,556% with
a maximum difference of 7,294%, “Best Random %” by an
average of 43.92% with a maximum difference of 92.33%,
and “Best 2-Norm %” on average by 4.600% with a maximum
difference of 26.13%.

These results demonstrate that our schemes consistently
match or outperform other existing protection schemes, regard-
less of whether the matrices are dangerous or non-dangerous.
It has been shown that our schemes more accurately determine
which fault sites are crucial to protect and which are not,
resulting in lower resilience overheads on average. Further-
more, our schemes are capable of achieving the previously

unparalleled performance of “No Protection” at very low levels
of pe, while surpassing existing schemes as pe increases.

VII. RELATED WORK

This section reviews related work on resilience techniques to
protect sparse iterative solvers and surveys results on selective
reliability for scientific applications.

A. Resilence for Sparse Iterative Solvers

Due to the importance of sparse iterative solvers (e.g., CG,
PCG, GMRES) in scientific computing [18], [19], various
resilience methods have been proposed to protect them against
hard failures and soft errors. Checkpointing, replication, and
recomputation are general techniques to protect and/or recover
scientific applications from faults [20]. For example, Dichev
and Nikolopoulos [13] applied replication to detect soft errors
for the PCG solver. Sloan et al. [32] used partial recomputation
by performing a binary search to locate the errors. Benoit et
al. [4] combined replication (duplication and triplication) and
checkpointing to detect and correct soft errors.

Besides general-purpose approaches, many application-
specific resilience techniques have also been proposed.
Algorithm-based fault tolerance (ABFT) is one such technique
[10], [23], which was originally designed for dense linear alge-
bra but has been successfully applied to protect computations
that involve sparse matrices. Bronevestky and de Supinski [7]
applied ABFT-based matrix encoding to protect the CG solver.
Shantharam et al. [31] develop an ABFT-encoded scheme to
protect PCG while exploring the symmetric positive definite
and diagonally dominant properties of the sparse matrices.
Schöll et al. [29] applied a similar technique but used a blocked
checksum approach for PCG. While most existing work only
applied a roll-back method to recover applications upon fault
detection, Tao et al. [39] combined roll-back and roll-forward

Fig. 6: Accuracy (top row) and Fβ=2 score (bottom row) of each model over 1000 PCG error runs on four representative
matrices, while varying pe between 0 and 1. Dashed lines indicate an average over all pe values.

Fig. 7: Mean overhead (in %) of three protection schemes over 1000 PCG error runs and 1000
pe

− 1000 non-error runs on four
representative matrices, while varying pe between 0 and 1. Shaded regions indicate the 95% confidence interval of the mean.

methods to provide a more complete protection scheme for the
PCG solver. A similar technique was also developed in [16] to
protect CG with both error detection and correction capabil-
ities. Another application-specific technique to protect sparse
iterative solvers is to explore their numerical and convergence
properties to make them resilient to faults. Chen [9] performed
error detection with a periodic verification of the orthogonal
and residual properties of the Krylov subspace, and used
checkpoint/restart if errors were detected. Sao and Vuduc [27]
proposed a self-stabilizing approach by periodically checking
and restoring the orthogonality properties of iterative solvers.
Schöll et al. [28] also combined orthogonality restoration and
periodic checkpointing to achieve both roll-back and roll-

forward recoveries for PCG. Agullo et al. [1] combined the
residual gap criterion and a bound on the α value to detect
soft errors. They showed the robustness of this method even
under finite precision computation.

All application-specific techniques above require modifying
the underlying numerical libraries of the solvers, which is an
intrusive approach that is often not easy and sometimes im-
possible to implement (when accessing the numerical libraries
is limited). In this case, general-purpose techniques remain
the most viable resilience approach. This is the approach we
assumed in this paper by duplicating the computation to detect
soft errors and re-running an iteration if errors are detected.

Table II: Mean overhead (in %) of four protection schemes over 1000 PCG error runs and 1000
pe

− 1000 non-error runs on 15
matrices from the SuiteSparse Matrix Collection [12], where pe ∈ {0.1, 0.5, 0.9}. Note that the numbers in each column are
aligned by decimal point.

Matrix
pe = 0.1 pe = 0.5 pe = 0.9

No Protection Best Random % Best 2-Norm % Our Scheme No Protection Best Random % Best 2-Norm% Our Scheme No Protection Best Random % Best 2-Norm% Our Scheme
apache1 2.133 3.131 13.27 2.133 10.67 11.51 18.32 10.46 19.20 20.08 23.38 18.15

bcircuit 49.03 98.72 54.07 23.81 245.2 105.5 54.18 47.66 441.3 101.0 54.30 52.90

bcsstk18 247.2 103.2 83.45 49.62 1236 119.1 85.27 75.02 2225 133.4 87.08 77.80

cant 529.8 102.4 99.55 92.65 2649 126.2 99.57 94.78 4768 142.1 99.60 96.42

cbuckle 90.60 99.71 34.85 27.83 453.0 115.2 42.05 40.81 815.5 133.2 49.25 48.09

consph 0.1376 1.137 1.137 0.1376 0.6882 1.683 1.681 0.6882 1.239 2.218 2.225 1.239

ct20stif 85.57 98.74 98.09 46.01 427.9 113.3 98.47 85.02 770.2 110.3 98.85 92.53

ex10 461.2 103.0 66.63 53.99 2306 133.7 73.22 69.76 4151 127.5 79.81 77.84

msc04515 4.054 5.009 19.63 4.054 20.27 20.97 22.14 16.19 36.49 36.86 24.65 21.12

Na5 6.687 26.96 18.15 6.339 33.44 44.68 38.68 20.71 60.19 63.11 59.22 33.09

Pres Poisson 5.468 8.311 13.02 5.468 27.34 29.46 29.10 24.94 49.22 51.14 45.18 41.64

raefsky4 23.84 93.28 5.984 4.783 119.2 97.00 9.917 8.833 214.6 99.99 13.85 13.03

s1rmq4mi 26.38 98.67 51.20 22.30 131.9 101.6 51.52 45.90 237.5 106.0 51.84 48.90

vanbody 821.4 104.0 99.01 97.59 4107 119.0 99.06 98.71 7393 191.3 99.10 99.01

vibrobox 326.2 101.5 59.15 56.54 1631 110.3 59.55 57.05 2936 119.9 59.94 57.53

B. Selective Reliability

While some parts of an application are important and should
be protected at all costs, some other parts (i.e., non-critical
data) can be loosely protected or or even not protected with
little impact on the results. This is referred to as selective
reliability, which has been considered by some authors to
reduce the resilience overhead for certain applications.

Bridges et al. [6] and Elliott et al. [15] applied a “sandbox”
model that provides isolation of unreliable parts of an appli-
cation to contain the impact of faults. They applied this model
to the GMRES solver and designed a fault-tolerant version of
it, called FT-GMRES, that uses selective reliability to its inner
and outer loops. Casas et al. [8] considered the Algebraic Multi
Grid (AMG) solver, which is vulnerable to pointer corruptions.
They designed a resilience technique that selectively protects
the most critical pointers as well as the operations that access
them. In a series of works, Subasi et al. [34]–[37] applied
partial redundancy to different scientific applications (e.g.,
sparse LU, Cholesky, FFT, Stream) to mitigate both fail-stop
and silent errors. By observing that different tasks/phases in
an application exhibit different vulnerabilities and may have
different reliability requirements, they designed techniques to
selectively replicate certain tasks in the application, either
through programmer-directed annotations [34] or by automatic
runtime heuristics [35]–[37], which determine which tasks are
critical and therefore should be replicated.

Sun et al. [38] applied selective protection to the PCG
solver to reduce the resilience overhead against soft errors.
They presented a static scheme that uses only the row-2-
norm of the sparse matrix to decide which elements should
be protected based on an analytical model. The closest work
to ours is done by Chen et al. [11], which considered a similar
problem while utilizing machine learning to predict the impact
of soft errors. A dynamic scheme was proposed to select the
elements to be protected if the impact crosses a threshold. Both
of these works, however, did not take the error probability
into account. In this paper, we presented a probability-aware
selective protection scheme with a versatile machine-learning

model that improves upon the previous results.

VIII. CONCLUSION AND FUTURE WORK

A. Summary

In this work, we have introduced a probability-aware frame-
work for producing low-overhead selective protection schemes
for the widely used PCG algorithm. Our schemes are informed
by two statically known features and one probability param-
eter. Using this information, a straightforward mathematical
model guided by an optimized machine learning model is
proposed, capable of making highly accurate protection de-
cisions. Experimental results derived from an evaluation using
matrices from a subset of the SuiteSparse Matrix Collection
demonstrate that our schemes effectively reduce the resilience
overheads, outperforming both baseline and existing protection
schemes across all error probabilities.

The code and results of this work are available at https:
//github.com/DanielRJohnson/Dynamic-Selective-Protection.

B. Future Work

One key area for future research is the creation of a unified
slowdown prediction model that performs well across all
matrices. To achieve this, the disparate correlations between
the iteration number and the row 2-norm with the slowdown
would need to be unified through the use of other matrix
features. Several features could be explored in this process,
such as the number of non-zero elements in A (nnz), the
density of A (nnz/N2), the average non-zero element value
(1
nnz

∑N
i=1

∑N
j=1 Ai,j), or even an embedding of the sparsity

pattern of A. Producing a unified model would also neces-
sitate closely matching or surpassing the performance of the
individual models, which could prove challenging.

Another area worthy of exploration is delving deeper into
extremely small values of pe. Because our choice of maxiter
is 100 · Io, the minimum possible pe before our approach
regresses into “No Protection” is 1/99, simply derived directly
from Equation (4). While this could be beneficial for systems
with an exceedingly low probability of errors, it makes the data

https://github.com/DanielRJohnson/Dynamic-Selective-Protection
https://github.com/DanielRJohnson/Dynamic-Selective-Protection

collection process extremely long. With maxiter = 100 · Io,
certain highly dangerous matrices like vanbody and cant
already require days to gather a substantial amount of data.
Clever techniques will need to be developed to improve the
efficiency of the data collection process without compromising
the model performance for small values of pe.

Lastly, our current framework requires perfect knowledge of
pe in order to make protect or no protect decisions. Although
error probabilities can be estimated through system failure logs
and application profiling, the estimate may not be accurate.
How to make robust protection decisions with uncertainty of
pe is another area worthy of investigation.

ACKNOWLEDGEMENT

This work is supported in part by the U.S. National Science
Foundation grants #2135309, #2135310, and the institutional
fund of the University of Kansas.

REFERENCES

[1] E. Agullo, S. Cools, E. F. Yetkin, L. Giraud, N. Schenkels, and
W. Vanroose. On soft errors in the conjugate gradient method: Sensitivity
and robust numerical detection. SIAM Journal on Scientific Computing,
42(6):C335–C358, 2020.

[2] R. Baumann. Soft errors in advanced computer systems. IEEE design
& test of computers, 22(3):258–266, 2005.

[3] R. C. Baumann. Radiation-induced soft errors in advanced semiconduc-
tor technologies. IEEE Transactions on Device and materials reliability,
5(3):305–316, 2005.

[4] A. Benoit, A. Cavelan, F. Cappello, P. Raghavan, Y. Robert, and H. Sun.
Coping with silent and fail-stop errors at scale by combining replication
and checkpointing. J. Parallel Distrib. Comput., 122:209–225, 2018.

[5] M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni.
Using group replication for resilience on exascale systems. Int. J. High
Perform. Comput. Appl., 28(2):210–224, May 2014.

[6] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen.
Fault-tolerant linear solvers via selective reliablity. Sandia National
Laboratories, 2012.

[7] G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative
linear algebra methods. In ICS, pages 155–164, 2008.

[8] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz. Fault
resilience of the algebraic multi-grid solver. In ICS, page 91–100, 2012.

[9] Z. Chen. Online-ABFT: an online algorithm based fault tolerance
scheme for soft error detection in iterative methods. In PPoPP, 2013.

[10] Z. Chen and J. Dongarra. Algorithm-based fault tolerance for fail-
stop failures. IEEE Transactions on Parallel and Distributed Systems,
19(12):1628–1641, Dec 2008.

[11] Z. Chen, T. Verrecchia, H. Sun, J. D. Booth, and P. Raghavan. Dynamic
selective protection of sparse iterative solvers via ML prediction of soft
error impacts. In FTXS, 2023.

[12] T. A. Davis and Y. Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1), 2011.

[13] K. Dichev and D. S. Nikolopoulos. TwinPCG: Dual thread redundancy
with forward recovery for preconditioned conjugate gradient methods.
In CLUSTER, 2016.

[14] J. Dongarra, T. Herault, and Y. Robert. Fault tolerance techniques for
high-performance computing. Springer, 2015.

[15] J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the impact of SDC
on the GMRES iterative solver. In IPDPS, 2014.

[16] M. Fasi, Y. Robert, and B. Uçar. Combining backward and forward
recovery to cope with silent errors in iterative solvers. In PDSEC, 2015.

[17] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold. Evaluating
the viability of process replication reliability for exascale systems. In
SC, pages 44:1–44:12, 2011.

[18] G. Golub and J. M. Ortega. Scientific Computing: An Introduction with
Parallel Computing. Academic Press, 1993.

[19] M. T. Heath. Scientific computing: an introductory survey, revised
second edition. SIAM, 2018.

[20] T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for High-
Performance Computing, Computer Communications and Networks.
Springer Verlag, 2015.

[21] S. Krishnamohan and N. R. Mahapatra. A highly-efficient technique
for reducing soft errors in static cmos circuits. In IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
2004. ICCD 2004. Proceedings., pages 126–131. IEEE, 2004.

[22] Kuang-Hua Huang and J. A. Abraham. Algorithm-based fault tolerance
for matrix operations. IEEE Transactions on Computers, C-33(6):518–
528, June 1984.

[23] Kuang-Hua Huang and J. A. Abraham. Algorithm-based fault tolerance
for matrix operations. IEEE Transactions on Computers, C-33(6):518–
528, 1984.

[24] D. Langr and P. Tvrdik. Evaluation criteria for sparse matrix storage for-
mats. IEEE Transactions on parallel and distributed systems, 27(2):428–
440, 2015.

[25] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing system.
In SC ’10: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–11, Nov 2010.

[26] B. Ozcelik Mutlu, G. Kestor, J. Manzano, O. Unsal, S. Chatterjee, and
S. Krishnamoorthy. Characterization of the impact of soft errors on
iterative methods. In HiPC, pages 203–214, 2018.

[27] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In ScalA, 2013.
[28] A. Schöll, C. Braun, M. A. Kochte, and H. Wunderlich. Low-overhead

fault-tolerance for the preconditioned conjugate gradient solver. In
DFTS, 2015.

[29] A. Schöll, C. Braun, M. A. Kochte, and H. Wunderlich. Efficient
algorithm-based fault tolerance for sparse matrix operations. In DSN,
2016.

[30] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the
impact of soft errors on iterative methods in scientific computing. In
ICS, 2011.

[31] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant
preconditioned conjugate gradient for sparse linear system solution. In
ICS, 2012.

[32] J. Sloan, R. Kumar, and G. Bronevetsky. An algorithmic approach
to error localization and partial recomputation for low-overhead fault
tolerance. In DSN, 2013.

[33] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimiza-
tion of machine learning algorithms. Advances in neural information
processing systems, 25, 2012.

[34] O. Subasi, J. A. Moreno, O. S. Unsal, J. Labarta, and A. Cristal.
Programmer-directed partial redundancy for resilient HPC. In Com-
puting Frontiers, 2015.

[35] O. Subasi, O. S. Unsal, and S. Krishnamoorthy. Automatic risk-based
selective redundancy for fault-tolerant task-parallel HPC applications. In
ESPM2@SC, 2017.

[36] O. Subasi, G. Yalcin, F. Zyulkyarov, O. S. Unsal, and J. Labarta. A
runtime heuristic to selectively replicate tasks for application-specific
reliability targets. In IEEE CLUSTER, 2016.

[37] O. Subasi, G. Yalcin, F. Zyulkyarov, O. S. Unsal, and J. Labarta.
Designing and modelling selective replication for fault-tolerant HPC
applications. In CCGRID, 2017.

[38] H. Sun, A. Gainaru, M. Shantharam, and P. Raghavan. Selective
protection for sparse iterative solvers to reduce the resilience overhead.
In SBAC-PAD, 2020.

[39] D. Tao, S. L. Song, S. Krishnamoorthy, P. Wu, X. Liang, E. Z. Zhang,
D. Kerbyson, and Z. Chen. New-sum: A novel online ABFT scheme
for general iterative methods. In HPDC, 2016.

	Introduction
	Background
	Sparse Linear Systems
	Preconditioned Conjugate Gradient
	Soft Errors

	Problem Formulation
	Prediction of Soft Error Impacts
	Evaluation
	Results
	Prediction of Soft Error Impacts
	Protection Scheme Performance

	Related work
	Resilence for Sparse Iterative Solvers
	Selective Reliability

	Conclusion and Future Work
	Summary
	Future Work

	References

