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We consider the online scheduling problem of moldable task graphs on multiprocessor systems for minimizing

the overall completion time (or makespan). Moldable job scheduling has been widely studied in the literature,

in particular when tasks have dependencies (i.e., task graphs) or when tasks are released on-the-fly (i.e.,

online). However, few studies have focused on both (i.e., online scheduling of moldable task graphs). In this

article, we design a new online scheduling algorithm for this problem and derive constant competitive ratios

under several common yet realistic speedup models (i.e., roofline, communication, Amdahl, and a general

combination). These results improve the ones we have shown in the preliminary version of the article. We also

prove, for each speedup model, a lower bound on the competitiveness of any online list scheduling algorithm

that allocates processors to a task based only on the task’s parameters and not on its position in the graph.

This lower bound matches exactly the competitive ratio of our algorithm for the roofline, communication,

and Amdahl’s model, and is close to the ratio for the general model. Finally, we provide a lower bound on

the competitive ratio of any deterministic online algorithm for the arbitrary speedup model, which is not

constant but depends on the number of tasks in the longest path of the graph.
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1 INTRODUCTION

This work investigates the online scheduling of parallel task graphs on a set of identical processors,
where each task in the graph is moldable. In the scheduling literature, a moldable task (or job) is a
parallel task that can be executed on an arbitrary but fixed number of processors. The execution
time of the task depends upon the number of processors used to execute it, which is chosen once
and for all when the task starts its execution but cannot be modified later on during execution.
This corresponds to a variable static resource allocation, as opposed to a fixed static allocation
(rigid tasks) and to a variable dynamic allocation (malleable tasks) [12].
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Moldable tasks offer a nice tradeoff between rigid and and malleable tasks: They easily adapt
to the number of available resources, contrarily to rigid tasks, while being easy to design and
implement, contrarily to malleable tasks. Thus, many computational kernels in scientific libraries
(e.g., for numerical linear algebra and tensor computations) can be deployed as moldable tasks to
efficiently run on a wide range of processors. Because of the importance and wide availability of
moldable tasks, scheduling algorithms for such tasks have received considerable attention in the
literature (see Section 2 for details). Like many other scheduling problems, scheduling moldable
tasks comes in different flavors, and the following provides a brief taxonomy:

— Offline Scheduling vs. Online Scheduling. In the offline version of the scheduling prob-
lem, all tasks are known in advance, before the execution starts. The problem is NP-
complete for both independent and dependent tasks [30], and the goal is to design scheduling
algorithms with good approximation ratios, which measure the worst-case performance of
an algorithm against an optimal scheduler for all possible input instances. On the contrary,
in the online version of the scheduling problem, tasks are released on-the-fly, and the ob-
jective is to design online algorithms with good competitive ratios [28], against an optimal
offline scheduler that knows in advance all the tasks and their dependencies in the graph.
The competitive ratio is established against all possible strategies devised by an adversary
trying to force the online algorithm to take bad decisions.

— Independent Tasks vs. Task Graphs. In a scheduling problem, different tasks can be either
independent of each other or dependent forming a task graph. If tasks are independent, then
they are either all known to the scheduling algorithm initially (in the offline version) or
released on-the-fly and the scheduler only discovers their characteristics upon release (in
the online version). For task graphs, either the entire graph is known at the start (in the
offline version) or each new task along with its characteristics is only released when all of
its predecessors have completed execution (in the online version). For the latter case, the
shape of the graph as well as the nature of the tasks are not known in advance, and they are
revealed only as the execution progresses.

In this article, we investigate arguably the most difficult version of the moldable task scheduling
problem, namely, the online scheduling of tasks graphs, which is the version that has received the
least research attention so far. The objective is to minimize the overall completion time of the
task graph, or the makespan. We assume that the scheduling of each task is non-preemptive and
without restarts [13], which is highly desirable to avoid large overheads incurred by checkpointing
partial results, context switching, task migration, and so on.

The performance of a scheduling algorithm greatly depends upon the speedup model, which
specifies the speedup (or equivalently the execution time) of a task as a function of its proces-
sor allocation. We consider several common yet realistic speedup models, including the roofline
model, the communication model, the Amdahl’s model, and a general combination of them (see
Section 3.1 for their precise definitions). These models have been widely assumed and studied in
the literature for modeling the scaling behavior of parallel applications. We extend and improve
upon our preliminary work [7] by designing a new online scheduling algorithm that achieves bet-
ter constant competitive ratios for these models. This is done through a novel analysis framework,
which provides a tighter and more coupled analysis between a local processor allocation algo-
rithm and an online list scheduling algorithm. To the best of our knowledge, a competitive ratio
was previously known only for task graphs under the roofline model [13], while our work offers
the first competitive results for several other speedup models. Besides these common models, we
also consider the arbitrary speedup model, which allows the speedup (or execution time) of a task
to take any arbitrary function of its processor allocation. We show the difficulty of scheduling
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Table 1. Competitive Ratios of Our Algorithm in This Article and the Algorithm in [7] for Four

Common Speedup Models and a Lower Bound for the Arbitrary Speedup Model

Speedup Model Roofline Comm. Amdahl General Arbitrary (Lower Bound)

Results of this article ≈ 2.62 ≈ 3.39 ≈ 4.55 ≈ 4.63
Ω(ln(D))

Results of [7] ≈ 2.62 ≈ 3.61 ≈ 4.74 ≈ 5.72

under such a model by proving a lower bound in this case. Altogether, these results lay the theo-
retical foundations for this difficult but practical scheduling problem.

Our main contributions are summarized as follows:

— We present a new online algorithm and prove its constant competitive ratio for the four
speedup models. In particular, the results for the communication model, the Amdahl’s model,
and the general model improve upon those previously obtained in [7]. Table 1 lists our results
in comparison with the ones proven in [7].

— For each speedup model, we prove a lower bound on the competitiveness of any online list
scheduling algorithm whose processor allocation is local and deterministic, i.e., the decision
depends only on the total number of processors and a task’s parameters but not on its posi-
tion in the graph. The results show that our algorithm achieves the best possible competitive
ratios for the roofline, communication, and Amdhal’s models for this class of algorithms.

— We derive a lower bound on the competitiveness of any deterministic online algorithm for
the arbitrary speedup model and show that it is not constant but grows logarithmically with
the number of tasksD in the longest path of the graph. Table 1 also includes this lower bound
result.

The rest of this article is organized as follows: Section 2 surveys some related works on moldable
task scheduling. The formal model and problem statement are presented in Section 3. Section 4 in-
troduces the new online algorithm and proves its competitive ratios for different speedup models.
Section 5 presents, for each model, a lower bound of any online list scheduling algorithm with
deterministic local processor allocation. Our algorithm belongs to this class and has the best possi-
ble competitive ratio for the roofline, communication, and Amdahl’s models. Section 6 is devoted
to proving a lower bound of any deterministic online algorithm for the arbitrary speedup model.
Finally, Section 7 concludes the article and provides hints for future directions.

2 RELATED WORKS

In this section, we discuss some related works on moldable task scheduling. Following the taxon-
omy of the previous section, we consider four versions of the problem combining offline vs. online
scheduling and independent tasks vs. task graphs scheduling. We mainly focus on works that
have derived approximation or competitive ratios. While some of these results depend on specific
speedup models, others hold for a more general class of models.

Offline Scheduling of Independent Tasks. Belkhale and Banerjee [3] considered moldable tasks
that follow the monotonic model, where the execution time of a task is non-increasing and the
area (processor allocation times execution time) is non-decreasing with the number of processors.
They presented a 2

1+1/P
-approximation algorithm by iteratively updating the processor allocations.

For the same model, Błażewicz et al. [8] also presented a 2-approximation algorithm while relying

on an optimal continuous schedule. Mounié et al. [26] presented a (
√

3 + ϵ )-approximation algo-
rithm using dual approximation. They later improved the ratio to 1.5 + ϵ [27]. Finally, Jansen and
Land [17] proposed a Polynomial-Time Approximation Scheme (PTAS) for the problem.

If the execution time of a task can be an arbitrary function of the processor allocation (i.e.,
the arbitrary model), Turek et al. [29] designed a 2-approximation list-based algorithm and a
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3-approximation shelf-based algorithm. Ludwig and Tiwari [25] showed the same result but with
lower computational complexity. When each task only admits a subset of all possible processor
allocations, Jansen [16] presented a (1.5 + ϵ )-approximation algorithm, which is tight, since the
problem cannot have an approximation ratio better than 1.5 unless P = NP [21]. When the num-
ber of processors is a constant or polynomially bounded by the number of tasks, Jansen et al. [18]
showed that a PTAS exists.

Online Scheduling of Independent Tasks. For scheduling independent moldable tasks that arrive
online over time, Havill and Mao [15] presented a 4-competitive algorithm for the communication
model by minimizing the execution time of each task. For the same model, Dutton and Mao [11]
and Kell and Havill [23] further presented improved competitive results when the total number P
of processors is bounded by a constant.

Under an alternative online setting, where independent moldable tasks with the same arrival
time are released one-by-one to the scheduler, Ye et al. [33] designed a 16.74-competitive algorithm
for the arbitrary speedup model. They also showed how to transform an online algorithm for rigid
tasks whose makespan is at most ρ times the lower bound into a 4ρ-competitive algorithm for
moldable tasks.

Offline Scheduling of Task Graphs. For offline scheduling of moldable task graphs, Wang and
Cheng [31] showed that the earliest completion time algorithm is a (3− 2

P
)-approximation for the

roofline model. Since the processor allocation is done independently for each task, their algorithm
and corresponding ratio can also be applied to the online setting as discussed below.

For the monotonic model, Belkhale and Banerjee [4] presented a 2.618-approximation algorithm
while assuming the availability of an optimal processor allocation. Lepère et al. [24] proposed an
algorithm with an approximation ratio of 5.236. They also showed that the optimal allocation can
be achieved in pseudo-polynomial time for some special graphs, such as series-parallel graphs
and trees, thus leading to a 2.618-approximation for these graphs. Jansen and Zhang [20] later
improved the approximation ratio for general graphs to around 4.73. When assuming that the
area of a job is a concave function of the number of processors, Jansen and Zhang [19] proposed
a 3.29-approximation algorithm. Chen and Chu [10] improved the ratio to around 2.95 by fur-
ther assuming that the execution time of a job is strictly decreasing in the number of allocated
processors.

Online Scheduling of Task Graphs. Feldmann et al. [13] designed an online algorithm to sched-
ule moldable task graphs under the roofline model. They showed that their algorithm achieves a
competitive ratio of 2.618, thus improving the previous result by Wang and Cheng [31]. Further-
more, their algorithm works in the non-clairvoyant setting, where the task execution time is also
unknown to the scheduler.

Benoit et al. [5, 6] recently investigated the problem of scheduling moldable tasks subject to
failures, where a task needs to be re-executed after a failure until it is successfully completed.
This corresponds to a special task graph consisting of multiple linear chains (one per task), where
the length of each chain corresponds to the total number of executions of a task. The problem is
semi-online, since all the tasks are known at the beginning, but the task failures and hence their
re-executions are only discovered on-the-fly. They considered several common speedup models
(as in this article) and presented a scheduling algorithm that achieves constant competitive ratios
for these models. In this article, we extend our preliminary work [7] and study the general online
scheduling of moldable task graphs (as in Reference [13]). We present improved competitive ratios
as well as lower bounds for the common speedup models. We do not consider task failures as
in References [5, 6], but our results can readily carry over to the failure scenario.
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Table 2. Difference Versions of Moldable Task Scheduling Problem and Related Papers in each Version

Offline Scheduling Online Scheduling

Independent Tasks
Monotonic model: [3, 8, 17, 26, 27]

Arbitrary model: [16, 17, 25, 29]

Comm. model (over time) [11, 15, 23]

Arbitrary model (one-by-one): [33]

Task Graphs
Roofline model: [31]

Monotonic model: [4, 10, 19, 20, 24]

Roofline model: [13, 31]

Common models: [5–7], [this article]

Table 2 summarizes different versions of the moldable task scheduling problem together with
the related papers within each version.

3 PROBLEM STATEMENT

In this section, we formally present the online scheduling model and objective function. We also
show a simple lower bound on the optimal makespan, against which the performance of our online
algorithms will be measured. We finally derive the minimum execution time and minimum area
of any task, which will be used in our subsequent analysis.

3.1 Model and Objective

We consider the online scheduling of a directed acyclic graph (DAG) of moldable tasks on a plat-
form with P identical processors. Let G = (V ,E) denote the task graph, where V = {1, 2, . . . ,n}
represents a set of n tasks and E ⊆ V ×V represents a set of precedence constraints (or dependen-
cies) among the tasks. An edge (i, j ) ∈ E indicates that task j depends on task i , and therefore it
cannot be executed before task i is completed. Task i is called the predecessor of task j, and task j
is called the successor of task i . In this work, we do not consider the costs associated with the data
transfers between dependent tasks.

The tasks are assumed to be moldable, meaning that the number of processors allocated to a
task can be determined by the scheduling algorithm at launch time, but once the task has started
executing, its processor allocation cannot be changed. The execution time tj (pj ) of a task j is a
function of the numberpj of processors allocated to it, and we assume that the processor allocation
must be an integer between 1 and P . In this article, we mainly focus on the following execution
time function:

tj (pj ) =
w j

min(pj , p̄j )
+ dj + c j (pj − 1) , (1)

where w j denotes the total parallelizable work of the task, p̄j denotes the maximum degree of
parallelism of the task, dj denotes the sequential work of the task, and c j denotes the communica-
tion overhead when more than one processor is used. The execution time function in Equation (1)
generalizes several speedup models commonly observed for parallel applications. In particular, it
contains the following well-known models as special cases:

— Roofline Model [32] (with dj = 0 and c j = 0):

tj (pj ) =
w j

min(pj , p̄j )
. (2)

This model assumes that the task has a linear speedup until a maximum degree of
parallelism p̄j .

— Communication Model [15] (with p̄j ≥ P and dj = 0):

tj (pj ) =
w j

pj
+ c j (pj − 1) . (3)

ACM Transactions on Parallel Computing, Vol. 11, No. 1, Article 2. Publication date: March 2024.
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This model assumes that the work of the task can be perfectly parallelized, but there is
a communication overhead when more than one processor is allocated, which increases
linearly with the number of allocated processors.

— Amdahl’s Model [2] (with p̄j ≥ P and c j = 0):

tj (pj ) =
w j

pj
+ dj . (4)

This model assumes that the task has a perfectly parallelizable fraction with workw j and an
inherently sequential fraction with work dj .

From the execution time function of the task j, we can further define the area of the task as a
function of the processor allocation as follows: aj (pj ) = pjtj (pj ). Intuitively, the area represents
the total amount of processor resources utilized over the entire period of task execution.

In this work, we consider the online scheduling model, where a task becomes available only
when all of its predecessors have been completed. This represents a common scheduling model for
dynamic task graphs, whose dependencies are only revealed upon task completions [1, 9, 13, 22].
Furthermore, when a task j is available, all of its execution time parameters (i.e., w j , p̄j , dj , c j )
become known to the scheduling algorithm as well. The goal is to find a feasible schedule of the task
graph that minimizes its overall completion time or makespan, denoted by T . The performance
of an online scheduling algorithm is measured by its competitive ratio: The algorithm is said to
be c-competitive if, for any task graph, its makespan T is at most c times the makespan T opt

produced by an optimal offline scheduler, i.e., T
T opt ≤ c . Note that the optimal offline scheduler

knows in advance all the tasks and their speedup models, as well as all dependencies in the graph.
The competitive ratio is established against all possible strategies by an adversary trying to force
the online algorithm to take bad decisions.

3.2 Lower Bound on Optimal Makespan

We now state a simple and well-known lower bound on the optimal makespan. Let t
opt
j and a

opt
j

denote, respectively, the execution time and the area of task j under the processor allocation of an
optimal schedule. The two quantities defined below can be used as a lower bound of the optimal
makespan.

Definition 1. Given the processor allocations of all the tasks in an optimal schedule,

— the total area Aopt of the task graph is the sum of the areas of all the tasks in the graph, i.e.,

Aopt =
∑n

j=1 a
opt
j .

— the length Lopt ( f ) of a path1 f in the graph is the sum of the execution times of all the tasks

along that path, i.e., Lopt ( f ) =
∑

j ∈f t
opt
j . The critical path length Copt of the graph is the

length of the longest path in the graph, i.e., Copt = maxf L
opt ( f ).

Clearly, the optimal makespan cannot be smaller than Aopt

P
andCopt. This follows from the well-

known area and critical-path bounds for scheduling any task graph [14]. The following lemma
states this result:

Lemma 1. T opt ≥ max( Aopt

P
,Copt).

1A path f consists of a sequence of tasks with linear dependency, i.e., f = (jπ (1), jπ (2), . . . , jπ (v ) ), where the first

task jπ (1) in the sequence has no predecessor in the graph, the last task jπ (v ) has no successor, and, for each 2 ≤ i ≤ v ,

task jπ (i ) is a successor of task jπ (i−1) .
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3.3 Minimum Execution Time and Area of a Task

This section derives the minimum execution time and minimum area of any task j. Given the
execution time function in Equation (1), we first define a critical processor count for task j as
follows:

p̃j =

{
	sj 
, if tj (	sj 
) ≤ tj (�sj �)
�sj �, otherwise,

where sj =
√

w j

c j
. Here, p̃j represents a processor count beyond which the task’s execution time

can no longer decrease (the same is also true for p̄j ).

Lemma 2. The execution time of task j is non-decreasing for any pj > min(p̄j , p̃j ).

Proof. For pj > p̄j , the execution time function simplifies to tj (pj ) =
w j

p̄j
+ dj + c j (pj − 1),

which is obviously an increasing function of pj . For pj ≤ p̄j , the execution time function becomes

tj (pj ) =
w j

pj
+dj + c j (pj − 1), which is a convex function of pj whose minimum value is achieved at

sj =
√

w j

c j
. Since the processor allocation must be an integer, the minimum execution time is then

achieved at p̃j . Thus, the execution time is non-decreasing for any pj > p̃j . �

We now define the maximum number of processors that should be allocated to task j as follows:

pmax
j = min(P , p̄j , p̃j ) . (5)

Indeed, allocating more than pmax
j processors to the task either is impossible (if pmax

j = P ) or will

no longer decrease its execution time while only increasing its area (based on Lemma 2). Thus, we
assume that the processor allocation of the task never exceeds pmax

j by any reasonable algorithm.

Furthermore, we say that a task j is monotonic if it satisfies the following two monotonic prop-
erties [24]:

— The execution time is a non-increasing function of the processor allocation, i.e., tj (p) ≥
tj (q) for all 1 ≤ p < q ≤ P ;

— The area is a non-decreasing function of the processor allocation, i.e., aj (p) ≤ aj (q) for all
1 ≤ p < q ≤ P .

Note that the second condition above also suggests that the task cannot achieve superlinear
speedup, i.e.,

tj (p)

tj (q)
≤ q

p
for all 1 ≤ p < q ≤ P . (6)

Lemma 3. A task j is monotonic if its processor allocation is in the range [1,pmax
j ].

Proof. When the processor allocation is in the range [1,pmax
j ], we have pj ≤ pmax

j ≤ p̄j . Thus,

the execution time function simplifies to tj (pj ) =
w j

pj
+ dj + c j (pj − 1). This is a convex function

whose minimum integer solution is achieved at p̃j . Since we also have pj ≤ pmax
j ≤ p̃j , it shows

that the execution time is a non-increasing function of pj in the range [1,pmax
j ].

Similarly, when pj ≤ pmax
j ≤ p̄j , the area becomes aj (pj ) = pjtj (pj ) = w j + djpj + c j (p2

j − pj ),
which is non-decreasing for any pj ≥ 1. �

Based on Lemmas 2 and 3, the minimum execution time of the task is achieved as tmin
j = tj (pmax

j )

and the minimum area of the task is achieved as amin
j = aj (1).
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ALGORITHM 1: Online_Scheduling_Algorithm

1 initialize a waiting queue Q

2 when at time 0 or a running task completes execution do

// Processor Allocation

3 for each new task j that becomes available do

4 Allocate_Processor(j )

5 insert task j into the waiting queue Q

6 end

// List Scheduling

7 for each task j in the waiting queue Q do

8 if there are enough processors to execute the task then

9 execute task j now

10 end

11 end

12 end

4 ONLINE ALGORITHM AND ITS ANALYSIS

In this section, we present a new online scheduling algorithm and derive its competitive ratio for
the general speedup model (Equation (1)) and its three special cases.

4.1 Algorithm Description

Algorithm 1 presents the pseudocode of the online scheduling algorithm, which at any time main-
tains the set of available tasks in a waiting queue Q . At time 0 or whenever a running task com-
pletes execution, it checks if new tasks have become available. If so, then for each newly available
task j, it finds a processor allocation pj for the task (using Algorithm 2) before inserting it into the
queue Q . Then, it applies the well-known list scheduling strategy [14] by scanning through all
the available tasks in Q and executing each one right away if there are enough processors. Note
that tasks are inserted into the queue without any priority considerations, although in practice
certain priority rules may work better.

Algorithm 2 presents the details of the processor allocation strategy for any task j. It consists
of two steps. The first step performs an initial allocation for the task, which is inspired by the
local processor allocation strategy proposed in References [5, 6]. Specifically, for each possible
allocation p ∈ [1,pmax

j ], we define the following:

— дj (p) � aj (p )

amin
j

: ratio between the area of the task and its minimum area;

— fj (p) � tj (p )

t min
j

: ratio between the execution time of the task and its minimum execution time.

We then find an allocation p that minimizes fj (p) subject to the constraint дj (p) ≤ αM , where

αM ≥ 1 is a constant whose exact value will be determined based upon the specific speedup model
M under consideration. As we will show in our later analysis (Section 4.4), this algorithm can
achieve certain local properties for any task j under a speedup model M by guaranteeing constant
upper bounds for the two ratios (i.e., дj (p) and fj (p)). Such local properties can then be used
globally for proving the competitive ratios of the algorithm. Since дj (p) is non-decreasing with p
and fj (p) is non-increasing with p, the above optimization problem can be efficiently solved using
binary search in O (log P ) time.

In the second step, the algorithm reduces the initial allocation to �μMP� if it is more than �μMP�;
otherwise, the allocation will be unchanged. Here, μM ≤ 0.5 is also a constant whose value will
be determined by the speedup model M . Let pj denote the initial allocation for the task and p ′j the

ACM Transactions on Parallel Computing, Vol. 11, No. 1, Article 2. Publication date: March 2024.
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ALGORITHM 2: Allocate_Processor(j)

Input: Task j and its speedup model M ; parameters α M , μ M

Output: Processor allocation p′j for the task

// Step 1: Initial Allocation

1 Compute pmax
j based on Equation (5)

2 Compute t min
j = tj (pmax

j ) and amin
j = aj (1)

3 Find an allocation pj ∈ [1, pmax
j ] from the following optimization problem:

min
p

fj (p ) �
tj (p )

t min
j

s.t. дj (p ) �
aj (p )

amin
j

≤ α M

// Step 2: Allocation Adjustment

4 if pj > �μ M P � then p′j ← �μ
M P � else p′j ← pj

final allocation. Thus, after the second step, we have:

p ′j =
⎧⎪⎨⎪⎩�μ

MP�, if pj > �μMP�
pj , otherwise

. (7)

This step adopts the technique first proposed in Reference [24] and subsequently also used
in References [19, 20]. The intuition behind this step is to impose a cap on the number of processors
allocated for any task to enable the execution of more tasks at any time, thus potentially increasing
the overall resource utilization of the platform and reducing the makespan.

The exact values of the two parameters αM and μM for each speedup model M will be presented
in Section 4.4 when analyzing the above algorithm.

4.2 Analysis Overview

Before delving into the details of the analysis for the proposed online algorithm, we first provide
an overview in this section that outlines the key ideas of our analysis. On a high level, the analysis
consists of two parts: a global analysis framework and a local analysis of the tasks’ properties.
Combining the two parts leads to the algorithm’s competitive ratios.

First, in the global analysis framework (Section 4.3), we focus on the online list scheduling al-
gorithm and divide its entire execution of a task graph into intervals of different categories. We
relate subsets of these intervals to the total areaAopt and critical path lengthCopt under an optimal
schedule (Lemmas 6 and 7), while assuming certain local properties of the tasks. As Aopt and Copt

serve as two lower bounds on the optimal makespan (Lemma 1), it allows us to derive an explicit
expression for the algorithm’s competitive ratio subject to a constraint and the tasks’ local proper-
ties (Lemma 8). We note that this analysis framework is generically applicable to any monotonic
speedup model, and it is inspired by the analysis shown in References [19, 20, 24]. Compared to the
original analysis, we refine the intervals to include more categories. This allows for a more coupled
analysis with the tasks’ local properties, which were not considered in References [19, 20, 24].

Later, in the local analysis (Section 4.4), we focus on the processor allocation algorithm (i.e.,
Algorithm 2) and show that it achieves certain local properties for any task under a given speedup
model M . Specifically, we show that the area and execution time ratios of a task (as defined in
Algorithm 2) can be upper-bounded by two constants αM and βM regardless of the task’s parame-
ters (Lemmas 9 to 12). Then, pluggingαM and βM into the global analysis result while verifying that
the required constraint is satisfied gives rise to the competitive ratio for each considered speedup
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2:10 L. Perotin and H. Sun

model (Theorems 1 to 4). We point out that, compared to the analysis in our preliminary work [7],
the local bounds αM and βM derived in this article are tighter, which along with the refined global
analysis leads to the improved competitive ratios.

4.3 Global Analysis Framework

In this section, we present the global analysis framework that derives the competitive ratio of our
online algorithm. Since the framework applies to any speedup model M , for simplicity, we will
drop the superscript M for αM , βM , and μM , and re-introduce it later in Section 4.4 when deriving
the local properties for each considered speedup model.

Recall that T denotes the makespan of the online scheduling algorithm. Since the algorithm
allocates and de-allocates processors upon task completions, the schedule can be divided into a set
I = {I1, I2, . . . } of non-overlapping intervals, where tasks only start (or complete) at the beginning
(or end) of an interval, and the number of utilized processors does not change during an interval.
For each interval I ∈ I, let p (I ) denote its processor utilization, i.e., the total number of processors
used by all tasks running in interval I . We first classify the set of all intervals into the following
two categories:

— I0: subset of intervals that satisfy p (I ) ∈ (0, �(1 − μ )P�);
— I3: subset of intervals that satisfy p (I ) ∈ [�(1 − μ )P�, P].

We will use the following well-known result from References [13, 14] regarding a property of
list scheduling.

Lemma 4 ([13, 14]). When a task graph is scheduled by list scheduling, there exists a path f in the

graph such that some task along that path is running whenever there is no available task in the queue.

We now apply the above lemma to show a property for the subset of intervals in I0.

Lemma 5. There exists a path f in the graph such that in any interval of I0 some task along f is

running.

Proof. During I0, the processor utilization is at most �(1 − μ )P� − 1, so there are at least P −
(�(1 − μ )P� − 1) ≥ �μP� available processors. Based on Algorithm 2, any task is allocated at most
�μP� processors. Thus, there are enough processors to execute any new task (if one is available).
This implies that there is no available task in the queue during I0. The result directly follows by
applying Lemma 4. �

Using the path f stated in Lemma 5, we further split I0 into the following two sub-categories:

— I1: subset of I0 where the processor allocation for the currently running task in f was not
reduced (by the second step of Algorithm 2);

— I2: subset of I0 where the processor allocation for the currently running task in f was re-
duced (i.e., the task is running on �μP� processors).

Finally, given the processor allocation of an optimal schedule, we further split I2 into the fol-
lowing two sub-categories:

— I2′ : subset of I2 where the currently running task in f was allocated with strictly fewer
processors than in the optimal schedule;

— I2′′ : subset of I2 where the currently running task in f was allocated with equal or more
processors than in the optimal schedule.

Let |I | denote the duration of an interval I , and let T1 =
∑

I ∈I1 |I |, T2 =
∑

I ∈I2 |I |, T2′ =
∑

I ∈I2′ |I |,
T2′′ =

∑
I ∈I2′′ |I |, andT3 =

∑
I ∈I3 |I | denote the total durations of the different categories of intervals,
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respectively. Since I1, I2, and I3 are obviously disjoint and partition I, we have T = T1 +T2 +T3.
Finally, we define z ∈ [0, 1] such that T2′ = zT2 and T2′′ = (1 − z)T2.

The next two lemmas relate these durations to the total area Aopt and critical path length Copt

of the task graph under an optimal schedule, given certain conditions on the initial processor
allocations of the tasks under our algorithm.

Lemma 6. If there exists a constant α such that, for each task j, its initial processor allocation

satisfies aj (pj ) ≤ αamin
j , then we have:

μ
(
z +

1 − z
α

)
T2 +

(1 − μ )

α
T3 ≤ T opt . (8)

Proof. As the area of each task j is non-decreasing with its processor allocation and p ′j ≤ pj ,

the final area of the task should satisfy aj (p ′j ) ≤ aj (pj ) ≤ αamin
j ≤ αa

opt
j . Furthermore, during I2′ ,

any running task j from path f satisfies aj (p ′j ) ≤ aj (p
opt
j ) = a

opt
j . We let A2′ |f (respectively, A2′′ |f )

denote the total area of the fraction of tasks from f running in I2′ (respectively, I2′′), and A
opt

2′ |f
(respectively, A

opt

2′′ |f ) the corresponding fraction of area in an optimal schedule. We have A2′ |f ≤
A

opt

2′ |f and A2′′ |f ≤ αA
opt

2′′ |f . Since �μP� ≥ μP processors are used to run tasks from f in I2′ ∪ I2′′ , we

have μT2′ ≤
A2′ |f

P
≤

A
opt

2′ |f
P

and μT2′′ ≤
A2′′ |f

P
≤

αA
opt

2′′ |f
P

.

Finally, letA3 denote the total area of the fraction of tasks running in I3 andA
opt
3 the correspond-

ing fraction of area in an optimal schedule. Since at least �(1 − μ )P� ≥ (1 − μ )P processors are

utilized during I3, we have (1 − μ )T3 ≤ A3

P
≤ αA

opt
3

P
.

Thus, altogether, we can derive:

μ
(
z +

1 − z
α

)
T2 +

(1 − μ )

α
T3

= μT2′ +
μT2′′

α
+

(1 − μ )

α
T3

≤
A

opt

2′ |f

P
+
A

opt

2′′ |f

P
+
A

opt
3

P

≤ Aopt

P
≤ T opt .

The last inequality is due to the makespan lower bound shown in Lemma 1. �

Lemma 7. If there exists a constant β such that, for each task j, its initial processor allocation

satisfies tj (pj ) ≤ βtmin
j , then we have:

T1

β
+ (μz + 1 − z)T2 ≤ T opt . (9)

Proof. For any task j from path f running during I1, its processor allocation was not reduced
by the second step of Algorithm 2, thus, we must have p ′j = pj ≤ �μP�. Therefore, its execution

time should satisfy tj (p ′j ) = tj (pj ) ≤ βtmin
j ≤ βt

opt
j .

For any task j from path f running during I2′ , its processor allocation has been reduced, i.e.,

p ′j = �μP�. Based on Equation (6), the task’s execution time should satisfy
tj (p′j )

t min
j

=
tj ( �μP �)
tj (pmax

j ) ≤
pmax

j

�μP � ≤
P

μP
= 1

μ
. Thus, we have tj (p ′j ) ≤

1
μ
tmin

j ≤ 1
μ
t

opt
j .
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Finally, for any task j from path f running during I2′′ , its processor allocation is higher than

that of an optimal schedule. Therefore, its execution time should satisfy: tj (p ′j ) ≤ tj (p
opt
j ) = t

opt
j .

Now, let L
opt

1 |f (respectively, L
opt

2′ |f and L
opt

2′′ |f ) denote the length for the portion of path f executed

during I1 (respectively, I2′ and I2′′) under an optimal schedule. The argument above implies that

T1 ≤ βL
opt

1 |f , T2′ ≤ 1
μ
L

opt

2′ |f and T2′′ ≤ L
opt

2′′ |f . Thus, we can derive:

T1

β
+ (μz + 1 − z)T2

=
T1

β
+ μT2′ +T2′′

≤ L
opt

1 |f + L
opt

2′ |f + L
opt

2′′ |f

≤ Lopt ( f ) ≤ Copt ≤ T opt .

The last inequality is again due to the makespan lower bound shown in Lemma 1. �

Based on the results of Lemmas 6 and 7, we can now derive an upper bound on the makespan
of the online scheduling algorithm as shown below.

Lemma 8. If there exist two constants α and β such that, for each task j, then its initial processor

allocation satisfies:

дj (pj ) �
aj (pj )

amin
j

≤ α , (10)

fj (pj ) �
tj (pj )

tmin
j

≤ β , (11)

then by setting μ such that β + α
1−μ
= 1

μ
, i.e., μ =

α+β+1−
√

(α+β+1)2−4β

2β
, and under the condition

β ≥ μ (α−1)
(1−μ )2 , we get:

T

T opt
≤ 1

μ
=

2β

α + β + 1 −
√

(α + β + 1)2 − 4β
. (12)

Proof. As the makespan is given by T = T1 + T2 + T3, we can multiply both sides by
1−μ

α
and

apply Inequality (8) to remove the T3 term, which gives:

1 − μ

α
T ≤ 1 − μ

α
T1 +

(
1 − μ − zαμ − (1 − z)μ

α

)
T2 +T

opt .

We can then multiply both sides of the above inequality by α
(1−μ )β

and apply Inequality (9) to

remove the T1 term. This gives:

T

β
≤

(
1 − μ − zαμ − (1 − z)μ

(1 − μ )β
− μz + z − 1

)
T2 +

(
1 +

α

(1 − μ )β

)
T opt .

Now, if f (z) =
1−μ−zα μ−(1−z )μ

(1−μ )β
− μz + z − 1 ≤ 0 is true for all z ∈ [0, 1], then we can omit the T2

term in the above inequality and get:

T ≤
(
β +

α

(1 − μ )

)
T opt =

1

μ
T opt .
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We have f ′(z) =
μ (1−α )
(1−μ )β

+ (1 − μ ) ≥ 0 under the condition β ≥ μ (α−1)
(1−μ )2 , which makes f (z) an

increasing function of z. Thus, we simply need to ensure that f (1) =
1−μ−α μ

(1−μ )β
− μ ≤ 0, which is

true if β + α
1−μ
= 1

μ
. One can then solve for μ from the above second-degree equation, and get

μ =
α+β+1−

√
(α+β+1)2−4β

2β
.

Finally, we show that the value of μ above is well-defined and is a valid choice satisfying μ ∈
(0, 0.5].

— First, we can derive that Δ = (α + β + 1)2 − 4β > (β + 1)2 − 4β = (β − 1)2 ≥ 0. Thus, the
value of μ is well-defined.

— We have μ >
α+β+1−

√
(α+β+1)2

2β
= 0, since α , β > 0.

— We can show μ =
α+β+1−

√
(α+β+1)2−4β

2β
≤ 0.5, which after some manipulations is equivalent

to showing 0 ≤ β2 + 2β (α − 1). The latter inequality is always true, since α ≥ 1. �

Remarks. We point out that the two bounds shown in Lemma 8, i.e., Inequalities (10) and
(11), must be satisfied by all tasks in a task graph for the derived competitive ratio shown in
Equation (12) to hold. In Section 4.4, we will prove that, for a given speedup model and re-
gardless of the task parameters, there always exists a processor allocation that satisfies the two
bounds with a particular (α , β ) choice that achieves the minimum (or close to minimum) compet-
itive ratio. We then show in Section 5 that the obtained competitive ratios are tight (or almost
tight) by proving matching (or near-matching) lower bounds for different speedup models. Thus,
given an achievable (α , β ) pair for a speedup model, the processor allocation algorithm should
always be able to find an allocation for each task to satisfy the two bounds. In case of multiple
allocations that all satisfy the bounds, Algorithm 2 will find one that, subject to the α bound,
minimizes the execution time of the task, thus satisfying the β bound as well. Intuitively, this
is a good practical choice and it also helps to simplify the analysis, which we will present in
Section 4.4.

4.4 Local Analysis and Competitive Ratios

In this section, we analyze the local properties of a task and prove the competitive ratios of the
online algorithm under different speedup models. Based on Lemma 8, the competitive ratio is given

by: 1
μ
=

2β

α+β+1−
√

(α+β+1)2−4β
subject to the constraint β ≥ α−1

(1−μ )2 .

For a given speedup model with parameters P ⊆ {w,d, c, p̄}, a generic approach for minimizing
the ratio above can be outlined as follows: First, compute β (α ) as small as possible based on the
model parameters P for any fixed α ≥ 1. To do that, since the area of a task is non-decreasing
with the processor allocation and the time non-increasing in the range [1,pmax], we can find the

largest processor allocation p∗ (P ) ∈ [1,pmax] that satisfies
a (p∗ (P))

amin ≤ α and then compute β (α ) =

supP (
t (p∗ (P))

t min ). Finally, plug β (α ) into the expression of the competitive ratio and find the α that
minimizes it while satisfying the constraint.

Although the technique outlined above is a good generic approach, the computations involved
are often too complicated for some speedup models and solving it will rely on numerical tools.
Therefore, to derive the competitive ratios analytically, we will simply find a valid pair (α , β ) below
for each considered speedup model while verifying that the constraint is satisfied. We will then
show the tightness (or near tightness) of the obtained competitive ratios by computing the lower
bounds in Section 5.
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In the following, we will first consider the three special speedup models (i.e., roofline, commu-
nication, and Amdahl) before tackling the general model. For clarity, we now re-introduce super-
script M ∈ {Roo,Com,Amd,Gen} to the notations αM , βM , and μM in the lemmas and theorems
below. Given a speedup model M , the analysis focuses on finding αM and βM for each individual
task, thus, we will drop the task index j for simplicity.

4.4.1 Roofline Model. Recall that a task follows the roofline speedup model if its execution time
satisfies t (p) = w

min(p,p̄ ) for some p̄ ≤ P .

Lemma 9. For any task that follows the roofline speedup model, there exists a processor allocation

that achieves αRoo = βRoo = 1.

Proof. For any task with p̄, setting the processor allocation to p = p̄ clearly achieves the min-
imum execution time tmin = w

p̄
for the task. It also achieves the minimum area amin = w , which

is not affected by the processor allocation in [1, p̄] due to the task’s linear speedup in this range.
Thus, this gives αRoo = βRoo = 1. �

Theorem 1. Algorithm 1 is 2

3−
√

5
< 2.62-competitive for any graph of tasks that follow the roofline

speedup model. This is achieved with μRoo = 3−
√

5
2 ≈ 0.382.

Proof. With α = β = 1, the constraint β ≥ μ (α−1)
(1−μ )2 = 0 is obviously satisfied. Thus, we get

μ =
α+β+1−

√
(α+β+1)2−4β

2β
= 3−

√
5

2 , and the competitive ratio is given by 1
μ
= 2

3−
√

5
< 2.62. �

Remarks. The above ratio retains the same result by Feldmann et al. [13],2 who also proved a
matching lower bound for any online deterministic algorithm under the “non-clairvoyant" setting,
where the work w of a task is unknown to the scheduler. In Section 5, we will prove the same
lower bound, but without the non-clairvoyant setting for a class of list scheduling algorithms with
deterministic local decisions for processor allocation.

4.4.2 Communication Model. Recall that a task follows the communication model if its execu-
tion time satisfies t (p) = w

p
+ c (p − 1), with c ≥ 0. If c = 0, then it simplifies to a special case

of the roofline model and we can reach α = β = 1. Thus, we assume c > 0 and rewrite the ex-

ecution time function as: t (p) = c ( w ′

p
+ p − 1) with w ′ = w

c
. The area function is then given by

a(p) = c (w ′ + p (p − 1)).

Lemma 10. For any task that follows the communication model, there exists a processor allocation

that achieves αCom = 4
3 and βCom = 3

2 .

Proof. Recall that pmax denotes the number of processors that minimizes the task’s execution

time t (p), i.e., t (pmax) = tmin. Clearly, we have either pmax = P or 	
√
w ′
 ≤ pmax ≤ �

√
w ′�. Also,

the minimum area of the task is obtained with one processor, i.e., amin = a(1) = cw ′.

Furthermore, for a given choice of p, we can show that f (w ′,p) � t (p )
t min =

w′
p +p−1

w′
pmax +pmax−1

is a

non-decreasing function of w ′ in the interval [p2,∞). To see that, we can compute the partial

2In Reference [13], each task has a parallelism p , and can be virtualized if p′ ≤ p processors are used for execution, with

a linear slowdown. This is equivalent to the roofline model.
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derivative:

∂ f (w ′,p)

∂w ′
=

1
p

(
w ′

pmax + pmax − 1
)
− 1

pmax

(
w ′

p
+ p − 1

)
(

w ′
pmax + pmax − 1

)2

=

pmax−1
p
− p−1

pmax(
w ′

pmax + pmax − 1
)2
,

which is defined everywhere except at the points where pmax changes (due to changes of w ′), and

has the same sign as
pmax−1

p
− p−1

pmax ≥ 0. The last inequality is because if p = pmax, then it is equal

to 0, otherwise,
pmax−1

p
≥ 1 and

p−1
pmax < 1. This remains true if p ≤ pmax, which is satisfied when

w ′ ≥ p2.
We now consider three cases:
Case 1: w ′ ≤ 6. In this case, we set p = 1, which gives the minimum area, i.e.,

a (p )
amin = 1. When

w ′ ≤ 1, setting p = 1 also gives the minimum execution time, i.e.,
t (p )
t min = 1. Otherwise, we have

t (p )
t min = f (w ′, 1) ≤ f (6, 1) = 6

min( 6
2+1, 6

3+2)
= 3

2 , since pmax = 2 or pmax = 3 when w ′ = 6.

Case 2: 6 < w ′ ≤ 25. In this case, we set p = 2 and get
a (p )
amin =

c (w ′+2)
cw ′ = 1 + 2

w ′ <
4
3 . As

w ′ > p2 = 4, we can also get
t (p )
t min = f (w ′, 2) ≤ f (25, 2) =

25
2 +1
25
5 +4
= 27

18 =
3
2 , since pmax = 5 when

w ′ = 25.
Case 3: w ′ > 25. In this case, we use tmin ≥ c (2

√
w ′ − 1), which is the minimum possible

execution time if the processor allocation could be non-integers. We set p = 	
√

w ′
3 +

1
2 
 and obtain

a (p )
amin =

c (w ′+p (p−1))
cw ′ ≤ 1 + 1

w ′ (
√

w ′
3 +

1
2 ) (

√
w ′
3 −

1
2 ) ≤ 1 + 1

w ′
w ′

3 =
4
3 . Finally,

t (p )
t min ≤

c ( w′√
w′
3 −

1
2

+

√
w′
3 )

c (2
√

w ′−1)
=

1
2− 1√

w′
( 1

1√
3
− 1

2
√

w′
+ 1√

3
). This function is clearly decreasing with w ′, and using w ′ > 25, we get

t (p )
t min ≤ 5

9 ( 10
√

3

10−
√

3
+ 1√

3
) ≈ 1.48 < 3

2 . �

Remarks. Using the generic approach outlined at the beginning of this section, we could actually
compute the best possible β (α ) for any α > 1. The analysis, however, is very technical, and finding
the optimal α then requires numerical analysis tools. It turns out that the best (α , β ) pair is ( 4

3 ,
3
2 ),

and we will show that this pair is optimal in Section 5.

Theorem 2. Algorithm 1 is 18

23−
√

313
< 3.391-competitive for any graph of tasks that follow the

communication model. This is achieved with μCom = 23−
√

313
18 ≈ 0.295.

Proof. With α = 4
3 and β = 3

2 , we get μ =
α+β+1−

√
(α+β+1)2−4β

2β
= 23−

√
313

18 , and the constraint

β ≥ μ (α−1)
(1−μ )2 ≈ 0.2 is satisfied. Thus, the competitive ratio is given by 1

μ
= 18

23−
√

313
< 3.391. �

4.4.3 Amdahl’s Model. Recall that a task follows the Amdahl’s model if its execution time func-
tion is t (p) = w

p
+ d , with d ≥ 0, thus the area function is given by a(p) = pt (p) = w + dp.

Lemma 11. For any task that follows the Amdahl’s model, there exists a processor allocation that

achieves αAmd =
√

2+1+
√

2
√

2−1
2 ≈ 1.883 and βAmd =

1+
√

4
√

2+5
2 ≈ 2.132.
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Proof. The minimum execution time of the task is obtained with all P processors, i.e., tmin =

t (P ) = w
P
+ d , and the minimum area with just one processor, i.e., amin = a(1) = w + d .

We first show that, for any α > 1, there exists a processor allocation p that satisfies the α bound,

i.e.,
a (p )
amin ≤ α and at the same time achieves β (α ) = α

α−1 , i.e.,
t (p )
t min ≤ β (α ) = α

α−1 . To show that, for

any given α > 1, we let x = α − 1, and set p = min(�x w
d
�, P ). This implies p ≤ �x w

d
� ≤ x w

d
+ 1.

Thus, we have
a (p )
amin =

w+dp

w+d
≤ w+d (x w

d
+1)

w+d
= w+d+xw

w+d
= 1 + xw

w+d
≤ 1 + x = α . Furthermore, if

p = �x w
d
� ≥ x w

d
, then we have

t (p )
t min ≤

w
x w

d
+d

w
P +d

≤
d
x +d

d
= 1

x
+ 1 = 1

α−1 + 1 = α
α−1 = β (α ). Otherwise,

if p = P , then we get t (p) = tmin and thus
t (p )
t min = 1 < α

α−1 = β (α ).
We can now substitute β (α ) into the expression of the competitive ratio and get:

1

μ
=

2 α
α−1

α + α
α−1 + 1 −

√(
α + α

α−1 + 1
)2
− 4 α

α−1

.

To minimize the ratio above, one can use the standard technique of differentiating and setting the
derivative to zero. The expression is quite long, and the full analysis is omitted. It turns out that

αAmd =
√

2+1+
√

2
√

2−1
2 minimizes the ratio. Plugging it back into β (α ) = α

α−1 and simplifying, we

can get βAmd =
1+
√

4
√

2+5
2 . �

Theorem 3. Algorithm 1 is 2

1−
√

8
√

2−11
< 4.55-competitive for any graph of tasks that follow the

Amdahl’s model. This is achieved with μAmd =
1−
√

8
√

2−11
2 ≈ 0.22.

Proof. By substituting α =
√

2+1+
√

2
√

2−1
2 and β = 1+

√
4
√

2+5
2 into the expression of μ and simpify-

ing (hard!), we can get μ =
α+β+1−

√
(α+β+1)2−4β

2β
=

1−
√

8
√

2−11
2 . We can also check that the constraint

β >
μ (α−1)
(1−μ )2 ≈ 0.32 is satisfied. Thus, the competitive ratio is given by 1

μ
= 2

1−
√

8
√

2−11
< 4.55. �

4.4.4 General Model. We finally consider the general speedup model as given in
Equation (1). Without loss of generality, we assume w > 0 (otherwise, we get α = β = 1
using one processor), and c,d > 0 (otherwise, the model reduces to the communication or the
Amdahl’s model and also results in smaller α and β). We rewrite the execution time function as:

t (p) = c ( w ′

min(p,p̄ ) + d
′ + p − 1) with w ′ = w

c
and d ′ = d

c
. We further assume p̄ ≤ P (otherwise,

changing p̄ to P does not affect the execution time of the task for any feasible processor allocation).
Finally, any reasonable scheduling algorithm will not allocate more than p̄ processors to the task,
since it would increase both execution time and area. Thus, assuming p ≤ p̄, we can simplify

the execution time function as t (p) = c ( w ′

p
+ d ′ + p − 1) and the area function is given by

a(p) = c (w ′ + d ′p + p (p − 1)).

Lemma 12. For any task that follows the general model, there exists a processor allocation that

achieves αGen = 2 and βGen = 27
13 .

Proof. If we allow the processor allocation to take non-integer values and assuming unbounded

p̄, then the execution time function t (p) would be minimized at p∗ =
√
w ′. Thus, the minimum

execution time should satisfy tmin ≥ c (2
√
w ′+d ′−1). Note that this bound will hold true regardless

of the value of p̄: It is obviously true if p̄ ≥ p∗, otherwise, tmin is achieved at p̄, with a value also

higher than c (2
√
w ′ +d ′ − 1). Furthermore, the minimum area is obtained with one processor, i.e.,

amin = a(1) = c (w ′ + d ′).
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Recall that pmax denotes the number of processors that minimizes the execution time, i.e.,

t (pmax) = tmin. Clearly, we have either pmax = p̄ or 	
√
w ′
 ≤ pmax ≤ �

√
w ′�.

We consider three cases.
Case 1: w ′ ≤ 4 or p̄ = 1. In this case, it must be that pmax ≤ 2. We can then set p = 1, and get

a (p )
amin = 1 and

t (p )
t min ≤ 2.

Case 2: 4 < w ′ ≤ 49 and p̄ ≥ 2. In this case, we set p = 2 and get
a (p )
amin ≤ w ′+2d ′+2

w ′+d ′ ≤ 2.

Similarly to the proof of Lemma 10 (for the communication model), we can show that f (w ′,p) �
t (p )
t min =

w′
p +d ′+p−1

w′
pmax +d ′+pmax−1

is increasing with w ′ if w ′ ≥ p2. Therefore, we can get
t (p )
t min ≤ f (49, 2) ≤

49
2 +d ′+1

2
√

49+d ′−1
= 51+2d ′

26+2d ′ ≤ 2.

Case 3: w ′ > 49 and p̄ ≥ 2. In this case, we will set p = min(	 w ′+d ′√
w ′+d ′

+ 1
2 
, p̄) and get:

a(p)

amin
=
w ′ + p (d ′ + p − 1)

w ′ + d ′

≤
w ′ +

(
w ′+d ′√
w ′+d ′

+ 1
2

) (
d ′ + w ′+d ′√

w ′+d ′
− 1

2

)
w ′ + d ′

=

w ′ + d ′

2 −
1
4 +

w ′+d ′√
w ′+d ′

(
d ′ + w ′+d ′√

w ′+d ′

)
w ′ + d ′

≤
w ′ + d ′ + w ′+d ′√

w ′+d ′

(
d ′ + w ′+d ′√

w ′+d ′

)
w ′ + d ′

= 1 +
d ′(
√
w ′ + d ′) +w ′ + d ′

(
√
w ′ + d ′)2

= 1 +
d ′2 + d ′

√
w ′ + d ′ +w ′

d ′2 + 2d ′
√
w ′ +w ′

≤ 2 .

The last inequality above comes from w ′ > 1 and d ′ > 0.

Since w ′ > 1, we get tmin ≥ c (2
√
w ′ + d ′ − 1) > c (

√
w ′ + d ′). To derive the execution time ratio,

we further consider two subcases.

— If p = 	 w ′+d ′√
w ′+d ′

+ 1
2 
, then p ≥ w ′+d ′√

w ′+d ′
− 1

2 ≥
w ′− 1

2

√
w ′√

w ′+d ′
. We can then get:

t (p)

tmin
≤

w ′

p
+ d ′ + p − 1
√
w ′ + d ′

≤
w ′ (
√

w ′+d ′)

w ′− 1
2

√
w ′

√
w ′ + d ′

+
d ′ + w ′+d ′√

w ′+d ′√
w ′ + d ′

≤ 1

1 − 1

2
√

w ′

+
d ′(
√
w ′ + d ′) +w ′ + d ′

(
√
w ′ + d ′)2

≤ 1

1 − 1

2
√

w ′

+ 1.
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Table 3. Summary of Parameters and Competitive Ratios for Different Speedup Models

Model M μM αM βM Comp. Ratio

Roofline (Roo) 3−
√

5
2 ≈ 0.382 1 1 2

3−
√

5
≈ 2.62

Comm. (Com) 23−
√

313
18 ≈ 0.295 4

3
3
2

18
23−
√

313
≈ 3.39

Amdahl (Amd) 1−
√

8
√

2−11
2 ≈ 0.22

√
2+1+
√

2
√

2−1
2 ≈ 1.88 1+

√
4
√

2+5
2 ≈ 2.13 2

1−
√

8
√

2−11
≈ 4.55

General (Gen) 33−
√

738
27 ≈ 0.216 2 27

13
27

33−
√

738
≈ 4.63

For the last inequality, we recognize the same term we had when bounding the area ratio,
which is at most 1. Finally, the last expression above decreases with w ′, so using w ′ > 49,

we get
t (p )
t min ≤ 1

1− 1
14

+ 1 = 27
13 .

— If p = p̄ < 	 w ′+d ′√
w ′+d ′

+ 1
2 
, and, since p̄ is an integer, then it is necessarily the case that

p̄ ≤ 	 w ′+d ′√
w ′+d ′

+ 1
2 
 − 1 ≤ w ′+d ′√

w ′+d ′
≤
√
w ′ (because w ′ > 1). Therefore, we should also have

pmax = p̄ = p, and thus
t (p )
t min = 1. �

Theorem 4. Algorithm 1 is 27

33−
√

738
< 4.63-competitive for any graph of tasks that follow the

general speedup model given in Equation (1). This is achieved with μGen = 33−
√

738
27 ≈ 0.216.

Proof. With α = 2 and β = 27
13 , we get μ =

α+β+1−
√

(α+β+1)2−4β

2β
= 33−

√
738

27 and the constraint

β ≥ μ (α−1)
(1−μ )2 ≈ 0.35 is satisfied. Thus, the competitive ratio is given by 1

μ
= 27

33−
√

738
< 4.63. �

Finally, Table 3 summarizes the parameters and competitive ratios derived for all the considered
speedup models.

5 LOWER BOUNDS FOR ONLINE LIST SCHEDULING ALGORITHMS WITH

DETERMINISTIC LOCAL DECISIONS

In Section 4.4, we derived the competitive ratios of our online algorithm under several common
speedup models. In this section, we will show corresponding lower bounds on the competitive
ratios. We point out that, in contrast to the lower bounds proven in our preliminary work [7], which
apply only to the presented algorithm, the lower bounds shown in this section are stronger, as
they apply to any online list scheduling algorithm with deterministic local decisions for processor
allocation.

Definition 2. An online algorithm is said to make deterministic local decisions if it allocates
processors by considering only the total number of processors (i.e., P ) and the parameters of a
task’s speedup function (i.e., w , p̄, d , c). Thus, two identical tasks will receive exactly the same
allocation regardless of their relative positions in the task graph as well as the graph structure.

Ultimately, we will show that our algorithm has the optimal competitive ratios over all algo-
rithms in this class for the roofline, communication, and Amdahl’s models. The result also indi-
cates that our algorithms’s competitive ratio for the general model is close to optimal using the
lower bound of the Amdahl’s model.
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5.1 Analysis Overview

Under any model M , we have shown in Section 4 that, for any task, our online algorithm achieves:

a

amin
≤ αM and

t

tmin
≤ βM , (13)

where α M

1−μ M + βM = 1
μ M . In particular, for any possible instance consisting of a set T of tasks, if

our algorithm achieves a makespan of T and the optimal makespan is T opt, then we have shown
that:

T

T opt
≤ max

j ∈T

aj

amin
j (1 − μM )

+max
j ∈T

tj

tmin
j

≤ αM

1 − μM
+ βM =

1

μM
. (14)

To prove the lower bounds, we will use a contradiction argument. Suppose an online list sched-
uling algorithm A respecting Definition 2 and having a competitive ratio strictly less than 1

μ M

exists. Specifically, we will assume that A’s competitive ratio is 1
μ M − 4ϵ for some 0 < ϵ < 1. We

will then derive a contradiction thus proving the result.

Notations. We will use four different tasks A,B,C,D to construct the lower bound instances.
For algorithm A, we let pA (respectively, pB ,pC ,pD ) denote its processor allocation for task A
(respectively, B, C , D), let tA (respectively, tB , tC , tD ) denote the resulting execution time of the
tasks, and let aA = tApA (respectively, aB ,aC ,aD ) denote the resulting area of the tasks. Similarly,
we use p∗A,p

∗
B ,p

∗
C ,p

∗
D , t

∗
A, t
∗
B , t
∗
C , t
∗
D ,a

∗
A,a

∗
B ,a

∗
C ,a

∗
D to denote the corresponding values for another

algorithm A∗ on this instance.

Two-step Approach. We will proceed in two steps corresponding to proving the tightness of the
two inequalities (13, local) and (14, global), respectively.

In the first step (Section 5.2), we will show the existence of two tasks A and B and an algorithm
A∗ such that:

aB

a∗
B

(1 − μM )
+
tA
t∗
A

≥ 1

μM
− ϵ , (15)

thus showing the tightness of our local analysis.
In the second step (Section 5.3), we will build an instance using these two tasks (as well as two

other tasks C and D) such that, by using list scheduling, and with best decision-making for A∗,
algorithm A will always have a makespan that satisfies:

T

T ∗
≥ aB

a∗
B

(1 − μM )
+
tA
t∗
A

− 2ϵ ≥ 1

μM
− 3ϵ , (16)

whereT andT ∗ denote the makespans ofA andA∗ for this instance, respectively. This contradicts
the assumed competitive ratio of 1

μ M −4ϵ for algorithmA, thus showing the tightness of our global

analysis and hence the non-existence of A.

Constraints. The lower bound instances need to respect a set of constraints (or rules) for the
tasks and for the task graph, which are required to show the global results. This will allow us
to prove the lower bound regardless of the model, as long as these constraints are satisfied. For
convenience, Table 4 lists and labels all the required constraints (R’s) along with some definitions
(F ’s). We will refer to them according to their labels and use (R : �) to denote that a constraint R
is satisfied in the subsequent analysis.
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Table 4. List of Constraints (R’s) and Definitions (F ’s) for Constructing Lower Bound Instances

For tasks For task graph

t∗
C
≤ ϵ

121P 2 (R1) P ≥
(

120900
ϵ

)4
(F1)

pC ≥ μMP (R2) X =
⌈

P−pC+1
pB

⌉
(F2)

tA ≤ 5t∗
A

(R3) K =
⌈

5t ∗
A

ϵX t ∗
B

⌉
(F3)

t∗
B
= a∗

B
= tB (1) (R4) Y =

⌊
X Kt ∗

B

t ∗
A

⌋
(F4)

aB ≤ 5a∗
B

(R5) Z = K (P − p∗
A

) (F5)

0.1 ≤ t∗
B
≤ 100 (R6)

pB ≤ P3/4 (R7) 1 ≤ X ≤ P (R13)

p∗
A
≤ P3/4 (R8) XKt∗

B

(
1 − ϵ

5

)
≤ Yt∗

A
≤ XKt∗

B
(R14)

t∗
A
≤ 24t∗

B
(R9) K (P − P3/4) ≤ Z ≤ 121P

ϵ (R15)

tD ≤ tB (R10)

t∗
D
≤ ϵ

121P 2 (R11)

pD ≤ 4 (R12)

5.2 Step 1: Local Analysis

In this section, we will show that, for a given model M and any online list scheduling algorithm
A respecting Definition 2, there exist tasks A and B as well as another algorithm A∗ such that

aB

a∗
B

(1−μ M )
+

tA

t ∗
A
≥ 1

μ M − ϵ . We start with the following theorem and will prove it separately for each

considered model:

Theorem 5. Given a model M ∈ {Roo,Com,Amd}, let A be an online list scheduling algorithm

respecting Definition 2 with a competitive ratio of 1
μ M − 4ϵ for some 0 < ϵ < 1, and let P ≥ ( 120900

ϵ
)4.

Then, there exist four tasks A, B, C , and D satisfying the constraints on tasks in Table 4 (R1 to R12)

and another algorithm A∗ such that:

aB

a∗
B

(1 − μM )
+
tA
t∗
A

≥ 1

μM
− ϵ . (17)

Proof. First, we set tC (p) = ϵ
121P 2 ·p . Indeed, this execution time function belongs to all speedup

models,3 and clearly, we have (R1 : �), i.e., constraint (R1) is satisfied. Further, if we had pC < μMP ,

then we would have tC

t ∗
C
>

ϵ

121P 2 ·μ M P
ϵ

121P 2 ·P
= 1

μ M , which contradicts the competitive ratio of A on an

instance consisting of only one task C (R2 : �). Similarly, for task A, we must have tA ≤ 5t∗A to

respect the competitive ratio ofA on an instance consisting of a single such task, as 1
μ M < 5 for all

models (R3 : �). For task B, we will setp∗B = 1 for all models (R4 : �). Also, if we hadaB > 5a∗B , then

an instance consisting of P independent such tasks would result in a makespan at least PaB

P
= aB

3For all models, we have w = ϵ
121P 2 . Additionally, for the roofline model, p̄ = ∞; for the communication model, c = 0; and

for the Amdhal’s model, d = 0.

ACM Transactions on Parallel Computing, Vol. 11, No. 1, Article 2. Publication date: March 2024.



Improved Online Scheduling of Moldable Task Graphs under Common Speedup Models 2:21

for A, since PaB is the total area to be completed on P processors, while A∗ can execute all tasks
simultaneously in parallel with a resulting makespan of a∗B , which also contradicts the competitive
ratio of A (R5 : �).

The following three lemmas will conclude the proof of the theorem by considering each of
the three models separately. Note that we only need to define tasks A, B, and D and verify the
constraints (R6) to (R12). �

Lemma 13. Theorem 5 is true for the roofline model.

Proof. For the roofline model, we will only use sequential tasks with p̄ = 1, and set tA (p) =
tB (p) = 1 and tD (p) = ϵ

121P 2 for all p. Thus, we have (R6,R9,R10,R11 : �). Clearly, ifA allocates 3 or
more processors to task B orD, then running P independent such tasks would result in a makespan
at least three times that of the optimal using a single processor, contradicting the competitive ratio
of A. Thus, we can assume that pB ≤ 2 ≤ P3/4 (R7 : �) and pD ≤ 2 ≤ 4 (R12 : �). We further set

p∗A = p
∗
B = 1 (R8 : �). These give aB

a∗
B
≥ 1 and tA

t ∗
A
= 1. With μRoo = 3+

√
5

2 , we obtain:

aB

a∗
B

(1 − μRoo)
+
tA
t∗
A

≥ 1

1 − μRoo
+ 1 =

1

μRoo
. �

Lemma 14. Theorem 5 is true for the communication model.

Proof. Given algorithmA, we defineU to be the subset of {x ∈ R+} such thatA allocates one
processor to a task whose execution time function has the form: t (p) = x

p
+p − 1. By definition,A

always has the same allocation for identical tasks, soU is well-defined and must satisfy:

— [0, 0.1] ⊆ U , otherwise, there would exist an x ≤ 0.1 such that A allocates at least two

processors for t (p) = x
p
+ p − 1, and we would have a

amin ≥ a (2)
a (1) =

x+2
x
= 1 + 2

x
≥ 21, which

contradicts the competitive ratio of A.
—U ⊆ [0, 64], otherwise, there would exist an x > 64 such thatA allocates one processor for
t (p) = x

p
+p − 1, and we would have t

t min ≥ x
x/8+7 =

8x+448
x+56 −

448
x+56 ≥ 8 − 448

120 > 4, which also

contradicts the competitive ratio of A.

Based on the previous analysis, we now consider s = sup (U ) ∈ [0.1, 64]. By definition, there
exists a δ ∈ [0, 1

P
) such that (s − δ ) ∈ U and (s − δ + 1

P
) � U . We choose such δ , and set

w̄ = s − δ > 0.09, tA (p) = w̄
p
+ p − 1 and tB (p) =

w̄+ 1
P

p
+ p − 1 with pA = 1 and pB > 1. Thus, we

get t∗B = w̄ +
1
P

(R6 : �).

We also have aB

amin
B

=
w̄+ 1

P +pB (pB−1)

w̄+ 1
P

≥ 1+
(pB−1)2

65 , from which we can assume pB ≤ 15, otherwise,

aB

amin
B

> 4, again contradicting A’s competitive ratio. As P > 81, it leads to pB ≤ P3/4 (R7 : �). We

now show that Inequality (17) is true:

aB

a∗
B

(1 − μCom)
+
tA
t∗
A

≥ w̄ + 2

(w̄ + 1
P

) (1 − μCom)
+

w̄
w̄
p∗

A
+ p∗

A
− 1

=
w̄ + 2

w̄ (1 − μCom)
· 1

1 + 1
Pw̄

+
w̄

w̄
p∗

A
+ p∗

A
− 1

≥ w̄ + 2

w̄ (1 − μCom)
·
(
1 − 1

Pw̄

)
+

w̄
w̄
p∗

A
+ p∗

A
− 1
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=
w̄ + 2

w̄ (1 − μCom)
− (w̄ + 2)

Pw̄2 (1 − μCom)
+

w̄
w̄
p∗

A
+ p∗

A
− 1

≥ w̄ + 2

w̄ (1 − μCom)
− 2(w̄ + 2)

Pw̄2
+

w̄
w̄
p∗

A
+ p∗

A
− 1

≥ w̄ + 2

w̄ (1 − μCom)
− 16297

P
+

w̄
w̄
p∗

A
+ p∗

A
− 1

≥
1 + 2

w̄

1 − μCom
+

1

1
p∗

A
+

p∗
A
−1

w̄

− ϵ .

We further consider two cases:
Case 1: w̄ ≤ 6. In this case, we set p∗A = 2 and obtain:

aB

a∗
B

(1 − μCom)
+
tA
t∗
A

≥
1 + 2

w̄

1 − μCom
+

1
1
2 +

1
w̄

− ϵ .

We define f (w̄ ) �
1+ 2

w̄

1−μCom +
1

1
2+

1
w̄

, and get f ′(w̄ ) = 4
(w̄+2)2 − 2

(1−μCom )w̄2 , which is negative in [0,w0),

where w0 is the smallest positive w̄ such that f ′(w̄ ) = 0. Solving the equation above, we find

w0 =
2+2
√

2−2μCom

1−2μCom > 6. Therefore, we can replace w̄ by 6 to obtain:

aB

a∗
B

(1 − μCom)
+
tA
t∗
A

≥ 4

3(1 − μCom)
+

3

2
− ϵ

=
αCom

1 − μCom
+ βCom − ϵ

=
1

μCom
− ϵ .

Case 2: w̄ > 6. In this case, we set p∗A = 3 and obtain:

aB

a∗
B

(1 − μCom)
+
tA
t∗
A

≥
1 + 2

w̄

1 − μCom
+

1
1
3 +

2
w̄

− ϵ .

We again define f (w̄ ) �
1+ 2

w̄

1−μCom +
1

1
3+

2
w̄

, and get f ′(w̄ ) = 18
(w̄+6)2 − 2

(1−μCom )w̄2 , which is positive in

(w0,∞), where w0 is the largest positive w̄ such that f ′(w̄ ) = 0. Solving the equation above, we

find w0 =
6+18
√

1−μCom

8−9μCom < 6. Therefore, we can replace w̄ by 6 to obtain:

aB

a∗
B

(1 − μCom)
+
tA
t∗
A

≥ 4

3(1 − μCom)
+

3

2
− ϵ

=
αCom

1 − μCom
+ βCom − ϵ

=
1

μCom
− ϵ .

In both cases, we get the desired result with (R8 : �). Further, because p∗A ≤ 3 and w̄ > 0.09, we
get t∗A ≤ w̄ + 2 ≤ 24w̄ ≤ 24t∗B (R9 : �).
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Finally, for task D, we set tD (p) = ϵ
121P 2 ·p + p − 1 and p∗D = 1. Thus, A must also allocate one

processor to the task (i.e., PD = 1), otherwise, aD

amin
D

≥
ϵ

121P 2 +2
ϵ

121P 2
> 5, which contradicts its competitive

ratio. Therefore, we have (R10,R11,R12 : �). �

Lemma 15. Theorem 5 is true for the Amdahl’s model.

Proof. Given algorithm A, we define U to be the subset of {x ∈ R+} such that A allocates

strictly less than
√
P processors to a task whose execution time function has the form: t (p) = x

p
+ 1√

P
.

By definition,A always has the same allocation for identical tasks, soU is well-defined and must
satisfy:

— [0, 0.1] ⊆ U , otherwise, there would exist an x ≤ 0.1 such that A allocates at least
√
P

processors for t (p) = x
p
+ 1√

P
, and we would have a

amin ≥ a (
√

P )
a (1) =

x+1
x+ 1√

P

= 1 +
1− 1√

P

x+ 1√
P

≥

1 + 0.99
0.11 = 10, which contradicts the competitive ratio of A.

—U ⊆ [0, 10], otherwise, there would exist an x > 10 such that A allocates less than
√
P

processors for t (p) = x
p
+ 1√

P
, and we would have t

t min ≥ t (
√

P )
t (P ) =

x√
P
+ 1√

P
x
P +

1√
P

> x
x√
P
+1
= 1

1√
P
+ 1

x

>

1
0.11 > 9, which also contradicts the competitive ratio A.

Based on the previous analysis, we now consider s = sup (U ) ∈ [0.1, 10]. By definition, there
exists a δ ∈ [0, 1√

P
) such that (s − δ ) ∈ U and (s − δ + 1√

P
) � U . We choose such δ , and set

w̄ = s − δ > 0.09, tA (p) = w̄
p
+ 1√

P
and tB (p) =

w̄+ 1√
P

p
+ 1√

P
with pA <

√
P and pB ≥

√
P . Thus, we

get t∗A ≤ w̄ + 1√
P

and t∗B = w̄ + 2√
P

(R6,R9 : �). We can further assume pB ≤ P3/4, otherwise, we

would have aB

amin
B

≥
w̄+ P 3/4

√
P

w̄+ 2√
P

≥ 0.09+P 1/4

11 > 5, which contradicts the competitive ratio of A (R7 : �).

Finally, we set p∗A = 	P
3/4
 (R8 : �) and get:

aB

a∗
B

(1 − μAmd)
+
tA
t∗
A

≥ w̄ + 1

(w̄ + 2√
P

) (1 − μAmd)
+

w̄√
P
+ 1√

P

w̄
P 3/4−1

+ 1√
P

=
w̄ + 1

w̄ (1 − μAmd)
· 1

1 + 2

w̄
√

P

+
w̄ + 1

1 + w̄
P 1/4− 1√

P

≥ w̄ + 1

w̄ (1 − μAmd)

(
1 − 2

w̄
√
P

)
+ (w̄ + 1) ��1 − w̄

P1/4 − 1√
P

���
≥ w̄ + 1

w̄ (1 − μAmd)
+ w̄ + 1 − 22

0.092 × 0.5
√
P
− 110

P1/4 − 1√
P

≥ w̄ + 1

w̄ (1 − μAmd)
+ w̄ + 1 − ϵ .

We now set x = w̄+1
w̄
> 1, so x

x−1 = w̄ + 1. We can finally conclude that:

aB

a∗
B

(1 − μAmd)
+
tA
t∗
A

≥ x

1 − μAmd
+

x

x − 1
− ϵ

≥ min
x ′>1

(
x ′

1 − μAmd
+

x ′

x ′ − 1

)
− ϵ
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Fig. 1. A task graph for proving lower bounds.

=
αAmd

1 − μAmd
+ βAmd − ϵ

=
2

1 −
√

8
√

2 − 11

− ϵ .

To show the third step above, we can take the derivative of x ′

1−μAmd +
x ′

x ′−1 and show that its

minimum is achieved when x ′ satisfies (x ′−1)2 = 1−μAmd. This is equivalent to x ′ = αAmd, because

(αAmd − 1)2 =
(
√

2−1+
√

2
√

2−1)2

4 =
1+(
√

2−1)
√

2
√

2−1
2 =

1+
√

8
√

2−11
2 = 1 − μAmd = (x ′ − 1)2. As x ′ > 1, the

only solution is x ′ = αAmd. From the proof of Lemma 11, we also get that βAmd = α Amd

α Amd−1
= x ′

x ′−1 .
Finally, for task D, we set tD (p) = ϵ

121P 2 and p∗D = 1. Thus, we must have pD ≤ 4, otherwise,
aD

amin
D

> 4, which contradicts the competitive ratio of A (R10,R11,R12 : �). �

5.3 Step 2: Global Analysis

In this section, we assume that algorithmA and model M are fixed, while the tasksA, B,C , D, and
algorithm A∗ are chosen such that the conditions of Theorem 5 hold. We construct a task graph
(as shown in Figure 1), based on which we will show that T

T ∗ ≥
aB

a∗
B

(1−μ M )
+

tA

t ∗
A
− 2ϵ ≥ 1

μ M − 3ϵ .

In our constructed task graph, the tasks are partitioned into four different groups: TA,TB , TC ,
and TD . Specifically,

— TA has Y tasks identical to A, labeled as (Ai )i ∈[1,Y ];
— TB has XZ tasks identical to B, labeled as (Bi, j )i ∈[1,Z ], j ∈[1,X ];
— TC has Z tasks identical to C , labeled as (Ci )i ∈[1,Z ];
— TD has Z tasks identical to D, labeled as (Di )i ∈[1,Z ],

where X = � P−pC+1
pB
�, and using K = � 5t ∗

A

ϵX t ∗
B
�, we set Y = 	X Kt ∗

B

t ∗
A

 and Z = K (P − p∗A). These

parameters are specified as definitions (F ’s) in Table 4.
The tasks are organized in layers and have the following precedence constraints:

— task Ci is the predecessor of task Di+1 for 1 ≤ i < Z , and of tasks Bi+1, j for 1 ≤ i < Z and
1 ≤ j ≤ X ;

— task Di is the predecessor of task Ci for 1 ≤ i ≤ Z ;
— task CZ is the predecessor of task A1;
— task Ai is the predecessor of task Ai+1 for 1 ≤ i < Y .

To prove the lower bound, we will first show that the constraints (R13) to (R15) in Table 4 per-
taining to the parameters of the task graph are also respected (Lemma 16). We will then show
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Fig. 2. Shapes of algorithmA’s schedule (a) and algorithmA∗’s schedule (b) for the task graph of Figure 1.

that algorithm A’s schedule must follow the shape as shown in Figure 2(a) (Lemma 17), whereas
algorithm A∗ could wait until tasks in TC and TD are finished before launching tasks in TA and
TB , resulting in a better schedule as shown in Figure 2(b). This last result together with Theorem 5
will lead to a contradiction, hence proving the lower bound (Theorem 6). In the following analysis,
we will provide a reference to a constraint or a definition whenever it is used.

Lemma 16. Given the setting above, constraints (R13), (R14), and (R15) in Table 4 are satisfied.

Proof. Constraint (R13) can be obtained directly from the definition of X :

1 ≤ X =

⌈
P − pC + 1

pB

⌉
≤ P . (F2)

Constraint (R14) can be derived from the definitions of Y and K :

XKt∗B ≥ Yt∗A ≥ XKt∗B − t
∗
A (F4)

= XKt∗B

(
1 −

t∗A
XKt∗

B

)

≥ XKt∗B

(
1 − ϵ

5

)
. (F3)

Finally, constraint (R15) can be obtained with:

K (P − P3/4) ≤ Z ≤ KP (F5,R8)

≤
(

5t∗A
ϵXt∗

B

+ 1

)
P (F3)

≤
(

120

ϵ
+ 1

)
P (R9,R13)

≤ 121P

ϵ
. (ϵ < 1) �

Lemma 17. For a given task T , let s (T ) denote its starting time in algorithm A’s schedule and

e (T ) its ending time. If all constraints in Table 4 are satisfied, then algorithm A’s schedule must

follow the shape as shown in Figure 2(a), i.e.:

— s (Di ) = s (Bi,1) = · · · = s (Bi,X ),∀i ∈ [1,Z ];
— s (Ci ) = e (Bi,1) = · · · = e (Bi,X ),∀i ∈ [1,Z ];
— s (Di ) = e (Ci−1),∀i ∈ [2,Z ];
— s (A1) = e (CZ );
— s (Ai ) = e (Ai−1),∀i ∈ [2,Y ].

As a result, the makespan of A must satisfy: T ≥ ZtB + YtA.
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Proof. It is possible to simultaneously run all the tasks Bi, j ’s and Di in layer i , as the total
number of processors required is:

XpB + pD ≤
(
P − pC + 1

pB
+ 1

)
PB + 4 (F2,R12)

= P − PC + PB + 5

≤ (1 − μM )P + P3/4 + 5 (R2,R7)

< 0.8P + 0.01P + 5 < P . (F1, μM > 0.2)

However, it is not possible to run all the Bi, j ’s and Ci in parallel, as the number of processors
required would be:

XpB + pC ≥
P − pC + 1

pB
pB + pC (F2)

= P + 1 .

Therefore, given that algorithm A uses list scheduling to schedule the tasks, we get s (D1) =
s (B1,1) = · · · = s (B1,X ). Furthermore, since tD ≤ tB (R10), C1 becomes available before the first
layer of tasks in TB finishes and will be launched as soon as the layer is done, which gives s (C1) =
e (B1,1) = · · · = e (B1,X ). A direct induction shows that, using list scheduling, the same scenario
would happen for all the Z layers. Finally, the tasks in TA are executed one after another after the
completion of CZ , so the schedule corresponds to the one shown in Figure 2(a). Since there are
Z layers of tasks in TB and Y layers of tasks in TA, the makespan of algorithm A must satisfy
T ≥ ZtB + YtA. �

Theorem 6. Given a model M ∈ {Roo,Com,Amd}, there is no online list scheduling algorithm

respecting Definition 2 with a competitive ratio strictly less than 1
μ M .

Proof. We prove the theorem by contradiction. Specifically, we assume that there exists such
an algorithm A with a competitive ratio of 1

μ M − 4ϵ for some 0 < ϵ < 1, as also assumed in

Theorem 5. We will then show, using the constructed task graph, that the makespan ofA satisfies
T
T ∗ ≥

1
μ M − 3ϵ , which leads to a contradiction, hence implying that no such algorithm exists.

We first bound the makespan T ∗ of algorithm A∗, assuming that it follows the schedule of
Figure 2(b) by first running all the Ci ’s and Di ’s before running the Ai ’s sequentially while at the
same time using one processor to run each of the Bi, j ’s. As there are XZ tasks of Bi, j ’s, executing

them all on P−p∗A processors takes time � X Z
P−p∗

A
�t∗B = �

X K (P−p∗
A

)

P−p∗
A
�t∗B = XKt∗B (F5), whereas executing

all the Ai ’s takes time Yt∗A ≤ XKt∗B (R14). Therefore, T ∗ should satisfy:

T ∗ ≤ Z (t∗C + t
∗
D ) + XKt∗B

≤ 121P

ϵ

( ϵ

121P2
+

ϵ

121P2

)
+ XKt∗B (R1,R11,R15)

≤ 2

P
+ XKt∗B .

Now, using the result of Lemma 17, we get:

T

T ∗
≥ ZtB + YtA

2
P
+ XKt∗

B

≥ K (P − P3/4)tB

2 + XKt∗
B

+
YtA

2
P
+ Yt∗

A
/
(
1 − ϵ

5

) (R14,R15)
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=
(P − P3/4)tB

2
K
+ Xt∗

B

+
tA

t∗
A
/
(
1 − ϵ

5

)
+ 2

Y P

≥ (P − P3/4)tB

2 + t∗
B

(
P (1−μ M )+1

pB
+ 1

) + tA
t∗
A

·
1 − ϵ

5

1 + 2
PX Kt ∗

B
(1 − ϵ

5 )
(F2,R2, F4)

≥ (P − P3/4)tB

2 + 2t∗
B
+

Pt ∗
B

(1−μ M )

pB

+
tA
t∗
A

·
1 − ϵ

5

1 + 2
Pt ∗

B

≥ tBpB

pB (2+2t ∗
B

)

P−P 3/4 +
Pt ∗

B
(1−μ M )

P−P 3/4

+
tA
t∗
A

·
1 − ϵ

5

1 + 20
P

(R6)

≥ aB

2+2t ∗
B

P 1/4−1
+

t ∗
B

(1−μ M )

1−P−1/4

+
tA
t∗
A

·
1 − ϵ

5

1 + 20
P

(R7)

≥ aB

(4 + 4t∗
B

)P−1/4 + t∗
B

(1 − μM ) (1 + 2P−1/4)
+
tA
t∗
A

·
1 − ϵ

5

1 + 20
P

.

The last step above assumes 1
P 1/4−1

≤ 2P−1/4 and 1
1−P−1/4 ≤ 1 + 2P−1/4, both of which are true if

P1/4 ≥ 2, i.e., P ≥ 16. We conclude with the following derivations:

T

T ∗
≥ aB

t∗
B

(1 − μM ) + (4 + 6t∗
B

)P−1/4
+
tA
t∗
A

·
1 − ϵ

5

1 + 20
P

≥ aB

a∗
B

(1 − μM ) + 604P−1/4
+
tA
t∗
A

·
1 − ϵ

5

1 + 20
P

(R4,R6)

=
aB

a∗
B

(1 − μM )
· 1

1 + 604P−1/4

a∗
B

(1−μ M )

+
tA
t∗
A

·
1 − ϵ

5

1 + 20
P

≥ aB

a∗
B

(1 − μM )
· 1

1 + 12080P−1/4
+
tA
t∗
A

·
1 − ϵ

5

1 + 20
P

(R4,R6, μ
M ≤ 0.5)

≥ aB

a∗
B

(1 − μM )

(
1 − 12080P−1/4

)
+
tA
t∗
A

(
1 − 20

P

) (
1 − ϵ

5

)

≥ aB

a∗
B

(1 − μM )
+
tA
t∗
A

− 120800P−1/4 − 100

P
− ϵ (R3,R5, μ

M ≤ 0.5)

≥ aB

a∗
B

(1 − μM )
+
tA
t∗
A

− 120800P−1/4 − 100P−1/4 − ϵ

=
aB

a∗
B

(1 − μM )
+
tA
t∗
A

− 120900P−1/4 − ϵ

≥ aB

a∗
B

(1 − μM )
+
tA
t∗
A

− 2ϵ (F1)

≥ 1

μM
− 3ϵ .

The last step above applies Theorem 5, and the result proves this theorem and the optimal
competitive ratio of our algorithm for these speedup models. �
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Fig. 3. A lower bound instance in Theorem 7 with � = 2, K = 4, and n = 15 linear task chains. Each circle

represents a task and the number inside each circle indicates the ID of the linear chain the task is in (and

the number in the parentheses indicates the task’s position in that linear chain).

Remarks. Since the Amdahl’s model is a special case of the general model, its lower bound also
applies to the general model.

6 A LOWER BOUND OF ANY DETERMINISTIC ONLINE ALGORITHM FOR

ARBITRARY SPEEDUP MODEL

So far, we have focused on the general speedup model of Equation (1) and its three special cases. In
this section, we show that the competitive ratio of any deterministic online algorithm (including
ours) can be unbounded under an arbitrary speedup model.4

Theorem 7. Any deterministic online algorithm is at least Ω(ln(D))-competitive for scheduling

moldable task graphs under an arbitrary speedup model, where D denotes the number of tasks along

the longest (critical) path of the graph.

Proof. We fix an arbitrary integer � > 1 and set K = 2� . The instance consists of n = 2K − 1
independent linear task chains organized in groups. Specifically, for any i ∈ [1,K], group i contains
2K−i linear chains, each with exactly i tasks. Thus, the number of tasks along the longest path of
the graph is given by D = K . Figure 3 shows such an instance for � = 2,K = 4, and n = 15. All
tasks in the graph are identical, with an execution time function t (p) = 1

lg(p )+1 .5 Here, lg denotes

logarithm to the base 2. We set the total number of processors to be P = K · 2K−1.
We show that the optimal offline algorithm completes the above instance with a makespan at

most 1, whereas any deterministic online algorithm may produce a makespan at least ln(K ) −
ln(�) − 1

� , thus proving the result.
First, the optimal offline algorithm could schedule the tasks as follows: For any group i ∈ [1,K],

it allocates 2i−1 processors to each linear chain in the group. The total number of required proces-
sors is then

∑K
i=1 2i−1 × 2K−i = K × 2K−1 = P . Thus, all linear chains could be executed in parallel.

Furthermore, they will all be completed at time 1, since each linear chain in group i has i tasks,

4Under an arbitrary speedup model, the execution time t (p ) of a task can take any arbitrary function of its processor

allocation p .
5As this execution time function satisfies the monotonic properties (defined in Section 3.3), our lower bound result also

applies to the monotonic model.

ACM Transactions on Parallel Computing, Vol. 11, No. 1, Article 2. Publication date: March 2024.



Improved Online Scheduling of Moldable Task Graphs under Common Speedup Models 2:29

Fig. 4. For the lower bound instance of Figure 3: (a) An offline schedule with a makespan of 1; (b) An online

algorithm’s schedule, allocating (approximately) the same number of processors to all linear chains and

producing a makespan of t4 ≈ 1.23.

and each task has an execution time t (2i−1) = 1
lg(2i−1 )+1

= 1
i
. Figure 4(a) illustrates the schedule for

this instance with � = 2.
Now, we establish a lower bound on the makespan of any deterministic online algorithm. For

any i ∈ [1,K − 1], let Li denote the set of linear chains in all groups j ≤ i , and let L′i denote the set
of linear chains in all groups j > i . Let us define ti to be the first time a linear chain in L′i completes
i tasks. We further define t0 = 0 and let tK denote the makespan of the online algorithm.

Lemma 18. Any deterministic online algorithm could produce a schedule that satisfies: ti − ti−1 ≥
1

�+i
, ∀i ∈ [1,K].

Proof. Since all tasks are identical, an online algorithm cannot distinguish the linear chains.
Thus, for any i ∈ [1,K], an adversary could make all linear chains that first complete i tasks by
the online algorithm be chains from Li . Therefore, at time ti , all linear chains containing exactly
i tasks (i.e., the ones from group i) are already completed, and at time ti−1, no linear chain has
started its ith task by definition (this also holds for t0 and tK ). Hence, all tasks in the ith position
of the linear chains in group i must be entirely processed between ti and ti−1, and the number of
such tasks is 2K−i .

For the sake of contradiction, suppose we have ti − ti−1 <
1

�+i
. Thus, the execution time of

these tasks must satisfy t (p) = 1
lg(p )+1 ≤

1
�+i

, hence their processor allocation must be at least

p ≥ 2�+i−1 = K · 2i−1. As the area of the task a(p) = pt (p) =
p

lg(p )+1 is increasing with the number

of processors, the total area of all tasks that needs to be processed between ti and ti−1 is at least

2K−i ·a(K × 2i−1) = 2K−i ·K ·2i−1

lg(K ·2i−1 )+1
= K ·2K−1

�+i
= P

�+i
. Since we have P processors, the total time required

to process this area is at least 1
�+i

, which contradicts ti − ti−1 <
1

�+i
. �

One strategy to cope with the worst-case scenario above is to allocate the same number of
processors to each linear chain (or more precisely, allocate one more processor to some linear
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chains to utilize all the processors). Figure 4(b) illustrates this strategy for the same instance with
� = 2.

Finally, we can use the result of Lemma 18 to lower bound the makespan of an online algorithm,

which is given by tK =
∑K

i=1 (ti − ti−1). Since for all j, ln(j ) +γ <
∑j

i=1
1
i
< ln(j ) +γ + 1

j
where γ is

the Euler constant, we obtain:

tK ≥
K∑

i=1

1

� + i
>

K∑
i=�+1

1

i
=

K∑
i=1

1

i
−

�∑
i=1

1

i

> (ln(K ) + γ ) −
(
ln(�) + γ +

1

�

)
= ln(K ) − ln(�) − 1

�
. �

7 CONCLUSION AND FUTURE WORK

In this article, we have studied the online scheduling of moldable task graphs to minimize
makespan with tasks obeying several common speedup models. To the best of our knowledge,
no competitive ratio was known under this setting, except for the roofline model [13]. Owing to
the design of a new online algorithm and a novel analysis framework, we have extended the result
and derived competitive ratios for several other speedup models, including the communication
model, the Amdahl’s model, and a general combination. We have also shown that no online list
scheduling algorithm with deterministic local decisions for processor allocation may have a better
competitive ratio than ours for the roofline, communication, and Amdahl’s models. Finally, we
have considered the arbitrary speedup model and established a lower bound for any determinis-
tic online algorithm. Altogether, these new results lay the foundations for further study of this
important but difficult scheduling problem.

For future work, we will consider extending the algorithm and analysis to other common
speedup models. We also plan to extend our algorithm and analysis to other online scheduling
settings (e.g., for independent tasks released over time and for special task graphs such as fork-
join graphs or trees). Finally, we will expand this study to a more practical side by experimentally
benchmarking the performance of our algorithm using realistic workflows.
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