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a b s t r a c t 

The problem of low-rank matrix reconstruction arises in various applications in communications and sig- 

nal processing. The state of the art research largely focuses on the recovery techniques that utilize affine 

maps satisfying the restricted isometry property (RIP). However, the affine map design and reconstruction 

under a priori information, i.e., column or row subspace information, has not been thoroughly investi- 

gated. To this end, we present designs of affine maps and reconstruction algorithms that fully exploit the 

low-rank matrix subspace information. Compared to the randomly generated affine map, the proposed 

affine map design permits an enhanced reconstruction. In addition, we derive an optimal representation 

of low-rank matrices, which is exploited to optimize the rank and subspace of the estimate by adapting 

them to the noise level in order to achieve the minimum mean square error (MSE). Moreover, in the 

case when the subspace information is not a priori available, we propose a two-step algorithm, where, in 

the first step, it estimates the column subspace of a low-rank matrix, and in the second step, it exploits 

the estimated information to complete the reconstruction. The simulation results show that the proposed 

algorithm achieves robust performance with much lower complexity than existing reconstruction algo- 

rithms. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The size of matrices that appear in modern science and engi-

eering is steadily getting large, which has required heavy comput-

ng power to timely process them. Fortunately, in many cases, data

atrices have the low-rank property. Since the low-rank matrices

ave much lower degrees of freedom than the full-rank matrices,

t is possible to recover them by taking limited observations [1,2] .

he limited observation refers to the situation when the number

f observations involved is much smaller than the dimension of

he matrix. 

The low-rank matrix reconstruction is to recover a large-

imensional low-rank matrix L ∈ R 

M×N from an affine observation

 (L ) , where A (·) : R 

M×N �→ R 

p [3] , where p is the number of ob-

ervations. Early work in low-rank matrix reconstruction focuses

n non-adaptive approaches [3–9] , where the affine map A (·) is

xed during the reconstruction. To provide a reliability guarantee,

he affine map A (·) is designed to satisfy the restricted isome-

ry property (RIP) [3–7] . Popularly studied non-adaptive methods

re nuclear norm minimization (NNM) [3–5] , matrix factorization
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MF) [6] , and iterative thresholding [10,11] . With convex relaxation,

NM will achieve a reliable reconstruction when the RIP holds

3–5] . However, the main issue is that NNM does not scale with

he problem dimension. Alternatively, other non-convex techniques

6,10,11] were investigated to address the complexity issue intro-

uced by NNM. In particular, the MF in [6] is a block-coordinate

escent method, where the low-rank matrix is expressed as the

roduct of two low-dimensional matrices. In [10,11] , the low-rank

olution is guaranteed by taking singular value projection of each

teration result. Though these non-convex techniques have low

omplexity, they are still limited by an increased number of ob-

ervations and many iterations to converge. 

Recent work has studied adaptive low-rank matrix reconstruc-

ion techniques [12,13] that significantly reduce the computational

omplexity as well as enhance the reconstruction accuracy. Un-

ike the non-adaptive approaches [3–9] where they exploit the en-

ire observations A (L ) for reconstruction, the methods proposed in

12,13] divide the reconstruction task into two steps, where each

tep only needs to manipulate partial observations of A (L ) to ob-

ain partial information of L . Considering that the dimension of

artial observations is much smaller than the entire observations,

he computational complexity can be reduced substantially. An in-

eresting observation is that any partial information of matrix sub-

pace provides a significant clue when adapting the affine map
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to enhance the reconstruction accuracy. However, how to adapt

the affine map to the available subspace information has not been

thoroughly studied in the existing literature (e.g., [12,13] ). 

In this paper, we analyze and design low-rank matrix recon-

struction algorithms that best exploit available subspace informa-

tion of a low-rank matrix to enhance the reconstruction accuracy

in two aspects: (1) we find the optimal representation of the low-

rank matrix estimate and (2) we provide the optimal design of the

affine map A (·) . By the optimal representation, we mean that the

degrees of freedom of the subspace estimate, i.e., the rank of the

estimate, is adapted to obtain the minimum mean squared error

(MSE). By the optimal design of the affine map A (·) , we mean

that we provide an optimality condition of A (·) so the estimate

achieves the minimum MSE. Compared with randomly generated,

conventional affine map, the optimized A (·) is shown to capture

specific information of low-rank matrices. 

In practice, the subspace information of a low-rank matrix must

be estimated. Therefore, we propose a two-step method, where the

affine map A (·) is decomposed into two parts, A 1 (·) and A 2 (·) .
In the first step, the affine map A 1 (·) is designed to capture the

sparse column subspace information of L , and the subspace esti-

mation accuracy is analyzed. For the second step, different from

the existing works in [12,13] where the affine map A 2 (·) is fixed,

the affine map A 2 (·) in the proposed algorithm is constructed

based on the estimated column subspace information from the

first step. By doing so, the observations A 2 (L ) collect the coeffi-

cient matrix that represents the optimal combining weights of the

estimated column subspace. An important implication is that the

proposed two-step method will not waste the number of observa-

tions by not sampling the orthogonal complement of the estimated

column subspace. As demonstrated in our simulation studies, this

has its own merit when estimating a large-scale, but substantially

low-rank, matrix subject to a limited number of observations. 

The paper is organized as follows. Section 2 presents the

traditional techniques for low-rank matrix reconstruction and

the motivation of our work. In Section 3 , the low-rank matrix

reconstruction under the column subspace information is investi-

gated, where the optimization for the affine map and the minimal

matrix representation is discussed. In Section 4 , we introduce the

proposed two-step low-rank matrix reconstruction technique, and

analyze its error bound. The simulation results are illustrated and

analyzed in Section 5 . Finally, conclusions are drawn in Section 6 . 

Notations 

A bold lower case letter a is a vector and a bold capital letter

A is a matrix. A 

T , A 

−1 , tr( A ), | A |, ‖ A ‖ F , ‖ A ‖ ∗ , and ‖ a ‖ 2 are, respec-

tively, the transpose, inverse, trace, determinant, Frobenius norm,

nuclear norm (i.e., the sum of the singular values of A ) of A , and

l 2 -norm of a . [ A ] :, i , [ A ] i ,: , [ A ] i,j , [ a ] i are, respectively, the i th column,

i th row, i th row and j th column entry of A , and i th entry of vector

a . vec (A ) stacks the columns of A and form a long column vector.

diag (A ) extracts the diagonal entries of A to form a column vec-

tor. I M 

∈R 

M×M is the identity matrix. col( A ) denotes the subspace

spanned by the columns of matrix A . 

2. Low-rank matrix reconstruction 

In this section, we define and review the low-rank matrix re-

construction problem, and provide a general motivation of our

work. 

2.1. Classical techniques: non-adaptive 

Suppose a matrix observation model where the observations

of L ∈ R 

M×N are made through the affine map A (·) : R 

M×N →
R 

p , where p is the number of observations and rank (L ) = r �
in (M, N) . Here, the i th element of the affine map A (L ) is given

y 

 A (L )] i = tr (X 

T 
i L ) , i = 1 , 2 . . . p, (1)

here X i ∈ R 

M×N is a measurement matrix associated with the

 th entry of A (L ) . In practice, the observations are corrupted by

oise 

 = A (L ) + n , (2)

here n ∈ R 

p is the additive white Gaussian noise vector with zero

ean and C ∈ R 

p×p covariance, i.e., n ∼ N (0 , C ) . 

When the number of observations p is not sufficiently large, re-

overing the matrix L from y is not always possible. Nonetheless,

hen the L is low-rank, it is possible to reconstruct L within a cer-

ain accuracy [3] . 

The NNM formulation of the low-rank matrix reconstruction

roblem [3–5,14] can be given by, 

in 

L 
‖ 

L ‖ ∗ + τ‖ 

y − A (L ) ‖ 

2 
F , (3)

here τ is a parameter which balances the values of two parts

n the objective function. This problem is an unconstrained con-

ex optimization program, and can be solved by using a proxi-

al gradient method [15,16] . The main drawback is that it does

ot scale to large-dimensional matrices due to the high complex-

ty of singular value decomposition (SVD) in each iteration [14,17] .

hough the computational complexity can be resolved by using ac-

elerated proximal gradient method and in-exact SVD [18,19] , the

umber of required observations for NNM to recover a rank- r ma-

rix L ∈ R 

M×N (M ≤ N) is still high, i.e., O (r N log (N)) [17,18] . When

he number of available observations is less than this requirement,

he reconstruction accuracy will deteriorate [9] . 

The development of MF [6,20,21] has provided an efficient tech-

ique to handle large-scale low-rank matrices. The MF problem for

ow-rank matrix reconstruction can be formulated as (
B 

� , R 

� 
)

= argmin 

B ∈ R M×r , R ∈ R N×r 

∥∥y − A (BR 

T ) 
∥∥2 

2 
. (4)

olving (4) results in 

̂ L = B 

� (R 

� ) T . The problem in (4) is non-

onvex, however, the alternating minimization with power factor-

zation [21] can be used to obtain an effective sub-optimal solu-

ion. The complexity of the MF is much lower than that of NNM,

nd MF outperforms NNM when the matrix is substantially low-

ank [6,21,22] . A critical drawback of MF is that it can not guaran-

ee the convergence to the true low-rank matrix, which is largely

ependent on the initializations of B and R [6] . Moreover, since

ach iteration of solving MF is a least square, it still requires much

omputational time when the dimension of L is very large. 

.2. Previous work: adaptive techniques 

In order to reduce the computational complexity of low-rank

atrix reconstruction, the works in [12,13] have proposed adap-

ive matrix sensing techniques. Specifically, in stead of manipulat-

ng the whole observations y in (2) , they process the partial obser-

ations in two stages, 

y 1 
y 2 

]
= 

[
A 1 (L ) 
A 2 (L ) 

]
+ 

[
n 1 

n 2 

]
, (5)

here y 1 ∈ R 

p 1 , y 2 ∈ R 

p 2 , and p = p 1 + p 2 . In the first stage, y 1 =
 1 (L ) + n 1 is taken to estimate the column subspace of the L ,

hich we denote ̂ F ∈ R 

M×r . The second part y 2 = A 2 (L ) + n 2 is

o estimate the coefficient matrix with respect to the estimated
 

 in order to reconstruct L . Each technique in [12,13] proposes a

ethod of generating A 2 (·) in (5) . In particular, in [12] , the ele-

ents in A (·) are drawn from i.i.d. Gaussian distributions. While
2 
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cause it is a standard procedure. �

1 We call an estimator is efficient, if it is unbiased and attains the Cramer-Rao 

lower bound [23] . 
n [13] , A 2 (·) consists of elements vectors to select m 2 ( > r ) rows

f L . 

Since y 1 and y 2 are of much smaller number than p , [12,13] pro-

ide the ways to utilize the subspace information to assist the

econstruction of L , and reduce the computational complexity as

ell. However, these techniques did not fully consider the design

f affine maps (A 1 (·) , A 2 (·)) and the optimal representation of the

stimated low-rank matrix, which can potentially improve the re-

onstruction accuracy. Overall, how to adapt the affine maps to the

vailable subspace information has not been thoroughly studied in

he existing literature. 

.3. Motivation 

The RIP is an important characterization that provides the per-

ormance guarantees for reliable low-rank matrix reconstruction.

ecause of this, it has been widely employed [3–6,14] . Under the

IP, many of the state of the art reconstruction methods [3–6,10–

3] employ randomly generated affine maps and focus on the re-

onstruction algorithms. On the other hand, if one can optimize

he affine map to lower reconstruction error of a specific algo-

ithm, it is expected that this will reduce the observation overhead.

hen the subspace information of a low-rank matrix is partially

nown, it would be possible to adapt A (·) to the known subspace

y minimizing MSE. 

. Affine map design and minimal representation with known 

olumn subspace 

In this section, we analyze the optimal design of the affine map

nd provide the optimal representation of the estimate given the

olumn subspace information. 

Denote the singular value decomposition (SVD) of L as 

 = U�V 

T = 

r ∑ 

k =1 

λk u k v 
T 
k (6) 

here U = [ u 1 , u 2 , · · · , u r ] ∈ R 

M×r and V = [ v 1 , v 2 , · · · , v r ] ∈ R 

N×r 

re the left and right singular matrix, respectively. The � ∈
iag ([ λ1 , λ2 , · · · , λr ]) is a diagonal matrix where the singular val-

es λk are arranged in descending order. 

.1. Design of affine map 

Denote F ∈ R 

M×r as a semi-unitary matrix, such that col( F ) is

he column subspaces of L . It is worth noting that F is not neces-

arily same as U in (6) . Given the F , the low-rank matrix L can be

xpressed as 

 = FQ , (7) 

here Q ∈ R 

r×N is a combining matrix. Given the representation

n (7) , we find the estimate of L in the form, ̂ L = F ̂  Q . Thus, the

roblem of estimating L is equivalent to reconstruct ̂ Q . 

To begin with, we reshape the affine map A in (1) as S ∈
 

p×MN , 

 = 

[
vec (X 1 ) , · · · , vec (X p ) 

]T 
. (8) 

hen the observation y in (2) can be rewritten as 

 = S vec (L ) + n 

= S vec (FQ ) + n 

= S (I N � F ) vec (Q ) + n . (9) 

o formulate a design criterion to optimize the affine map S , we

mpose a power constraint ‖ S ‖ 2 F ≤ P to S . In (9) , we denote 

 = S (I N � F ) , (10) 
here A ∈ R 

p×Nr . Given the observation model in (9) , the efficient

stimator 1 of Q yields [23] 

ec ( ̂  Q ) = (A 

T C 

−1 A ) −1 A 

T C 

−1 y . 

he MSE of ̂  L is then written as 

 

(∥∥̂  L − L 
∥∥2 

F 

)
= E 

(∥∥̂ Q − Q 

∥∥2 

F 

)
= E 

(∥∥(A 

T C 

−1 A ) −1 A 

T C 

−1 n 

∥∥2 

F 

)
= tr (A 

T C 

−1 A ) −1 . (11) 

Now the problem is optimizing the affine map S by minimizing

he MSE in (11) subject to (10) and the power constraint and it can

ormally be written as 

min 

S 
tr (A 

T C 

−1 A ) −1 

subject to A = S (I N � F ) , ‖ 

S ‖ 

2 
F ≤ P. (12) 

he following lemma shows that the problem in (12) is equivalent

o a more simple problem. 

emma 1. Denote the optimal solution to (12) as ̂  S . Suppose the fol-

owing problem 

in 

A 
tr (A 

T C 

−1 A ) −1 subject to tr (A 

T A ) ≤ P (13) 

as the minimal solution as ̂  A . Then, the equality holds, 

 

 = ̂

 A (I N � F ) T . (14) 

roof. This is a direct consequence of the equality (I N � F ) T (I N �

 ) = I Nr . �

Lemma 1 specifies that in order to obtain the optimal S , we

an turn to solving the problem (13) , and the optimal ̂ S can be

alculated according to (14) . The solution of (13) is summarized in

he following lemma. 

emma 2. Suppose the power-constrained MSE minimization prob-

em in (13) , i.e., 

in 

A 
tr (A 

T C 

−1 A ) −1 subject to tr (A 

T A ) ≤ P. (15) 

enote the SVD of A and C as A = U A �A V 

T 
A 

with U A ∈ R 

p×Nr , �A ∈
 

N r×N r , V A ∈ R 

N r×N r and C = U C �C U 

T 
C 

with U C ∈ R 

p×p , �C ∈ R 

p×p ,

espectively. 

Then, the optimal solution to (15) has the following form, 

 A = [ U C ] p−Nr +1: p , 

 = [ �C ] p−Nr +1: p,p−Nr +1: p , 

= tr 

(
D 

1 
2 

)2 /
P 2 , 

2 
A = μ− 1 

2 D 

1 
2 , V 

T 
A V A = I Nr . (16) 

n addition, the minimal MSE is given by 

1 

P 

( 

p ∑ 

k = p−Nr+1 

λ
1 
2 

c,k 

) 2 

, (17) 

here λc,k is the kth largest eigenvalue of C . After ̂  A is designed based

n (16) , the ̂  S is obtained by (14) . 

roof. The problem (15) is a standard differentiable convex op-

imization problem. This can be optimally solved by applying

arush-Kuhn-Tucker (KKT) conditions [24] . We omit the details be-
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3.2. Optimal representation of an estimator 

In the previous section, we assume that the estimate of L has

the form ̂

 L = F ̂  Q . In this subsection, we investigate the optimal rep-

resentation of the low-rank matrix estimate given the noisy affine

map in (2), which can achieve the minimum MSE. 

The following lemma shows that the estimation error will not

increase if we project any estimation result onto the column sub-

space of the low-rank matrix. 

Lemma 3. Suppose that L ∈ R 

M×N is a low-rank matrix and has

a decomposition L = FQ , where F ∈ R 

M×r with F T F = I r . Given the

observation y = A (L ) + n with E (nn 

T ) = C , the following inequality

holds ∥∥˜ L − L 
∥∥2 

F 
≥

∥∥FF T ˜ L − L 
∥∥2 

F 
, (18)

where ˜ L is the arbitrary estimate of L . 

Proof. It is worth noting that FF T denotes the projection matrix

for the column subspace of L . Let us first define P F = FF T , P F ⊥ =
I M 

− P F , then the estimation error of ˜ L is given by 

‖ ̃

 L − L ‖ 

2 
F = ‖ P F ̃

 L + P F ⊥ ̃
 L − L ‖ 

2 
F 

= ‖ P F ̃
 L − L ‖ 

2 
F + ‖ P F ⊥ ̃

 L ‖ 

2 
F 

≥ ‖ P F ̃
 L − L ‖ 

2 
F . 

This concludes the proof. �
The lemma concludes that the optimal estimation should have

the form ̂

 L = P F ̃
 L in order to further minimize the estimation er-

ror. In other words, the column subspace of ̂ L should lie on the

column subspace of L , col( F 1 ) ⊆col( F ) where we denote the column

subspace of estimate ̂ L as col( F 1 ) and F 1 ∈ R 

M×d with F T 1 F 1 = I d ,

d ≤ r . 

Given F 1 , we rewrite the true low-rank matrix in (7) as 

L = FQ = 

[
F 1 F 2 

][Q 1 

Q 2 

]
(19)

where F = [ F 1 , F 2 ] is semi unitary F T F = I r and Q 1 ∈ R 

d×N , and

Q 2 ∈ R 

(r−d) ×N . With the column subspace of ̂ L being col( F 1 ), we

obtains the estimate as 

 L = F 1 ̂  Q 1 , (20)

where ̂ Q 1 ∈ R 

d×N . Then, the observation y in (2) satisfies the fol-

lowing 

y = A (F 1 Q 1 ) + A (L − F 1 Q 1 ) + n 

= A (F 1 Q 1 ) + 

˜ n 

= S (I � F 1 ) vec (Q 1 ) + 

˜ n 

= A 1 vec (Q 1 ) + 

˜ n , (21)

where ˜ n = A (L − F 1 Q 1 ) + n , and A 1 = S (I � F 1 ) ∈ R 

p×dN . The effec-

tive noise covariance can be calculated as 

C 1 = E ( ̃  n ̃

 n 

T ) = A 1 vec (Q 1 ) vec (Q 1 ) 
T A 

T 
1 + C . (22)

Given the observation (21) , the efficient estimator of Q 1 yields 

vec ( ̂  Q 1 ) = (A 

T 
1 C 

−1 
1 A 1 ) 

−1 A 

T 
1 C 

−1 
1 y . (23)

The MSE of ̂  L is given by 

E 

(∥∥̂  L − L 
∥∥2 

F 

)
= E 

(∥∥F 1 ̂  Q 1 − L 
∥∥2 

F 

)
= E 

(∥∥̂ Q 1 − Q 1 

∥∥2 

F 

)
+ ‖ 

L ‖ 

2 
F − ‖ 

Q 1 ‖ 

2 
F 

= tr (A 

T 
1 C 

−1 A 1 ) 
−1 + ‖ 

L ‖ 

2 
F − ‖ 

Q 1 ‖ 

2 
F . (24)
1 
n order to minimize the MSE above, we solve the following opti-

ization problem in terms of the affine map, 

min 

S , F 1 
tr (A 

T 
1 C 

−1 
1 A 1 ) 

−1 + ‖ 

L ‖ 

2 
F − ‖ 

Q 1 ‖ 

2 
F 

ubject to A 1 = S (I � F 1 ) , ‖ 

S ‖ 

2 
F ≤ P. (25)

The following Lemma analyzes optimality conditions for F 1 and

 to achieves the minimal MSE. 

emma 4. The optimal F 1 ∈ R 

M×d and S that achieve the minimal

SE in (25) satisfy the following conditions: 

(1) The optimal rank of the estimate satisfies 

d opt = argmin 

d 

⎛ ⎝ 

1 

P 

( 

p ∑ 

k = p−Nd+1 

λ
1 
2 

c 1 ,k 

) 2 

+ 

r ∑ 

k = d+1 

λ2 
k 

⎞ ⎠ , (26)

where λc 1 ,k 
is the kth largest singular value of C 1 , and λk is

the kth largest singular value of L . 

(2) F 1 spans the subspace of the dominant d opt left singular vectors

of L . 

(3) The optimal S is ̂  S = ̂

 A 1 (I � F ) T , where ̂  A 1 ∈ R 

p×dN is the solu-

tion of (15) in Lemma 2 by substituting C with C 1 in (22) . 

roof. Since there are two optimization variables: F 1 and S , we

ill solve the whole optimization problem in two steps, where

hese two steps can be described by using the problem 

in 

F 1 

(
min 

S 
tr (A 

T 
1 C 

−1 
1 A 1 ) 

−1 + ‖ 

L ‖ 

2 
F − ‖ 

Q 1 ‖ 

2 
F 

)
subject to A 1 = S (I � F 1 ) , ‖ 

S ‖ 

2 
F ≤ P. (27)

he first step is to design S for any F 1 . The second step is to opti-

ize F 1 that minimizes the whole objective function. 

First of all, for any arbitrary F 1 , the value ( ‖ L ‖ 2 F − ‖ Q 1 ‖ 2 F ) is

onstant due to Q 1 = F T 
1 

L , simplifying (27) to 

in 

S 
tr (A 

T 
1 C 

−1 
1 A 1 ) 

−1 

subject to A 1 = S (I � F 1 ) , ‖ 

S ‖ 

2 
F ≤ P. (28)

he objective value tr (A 

T 
1 C 

−1 
1 

A 1 ) 
−1 attains the minimum when S is

alculated according to Lemmas 1 and 2 , yielding 

1 

P 

( 

p ∑ 

k = p−Nd+1 

λ
1 
2 

c 1 ,k 

) 2 

. 

Now the problem in (27) is over the F 1 , 

in 

F 1 

1 

P 

( 

p ∑ 

k = p−Nd+1 

λ
1 
2 

c 1 ,k 

) 2 

+ ‖ 

L ‖ 

2 
F − ‖ 

Q 1 ‖ 

2 
F . (29)

It is worth noting that the first part of (29) only relies on the

imension of F 1 , i.e., d . In other words, the value of the first part

s a constant for any fixed d . However, for any given d , the value

f the second part (i.e., ‖ L ‖ 2 F − ‖ Q 1 ‖ 2 F ) can be minimized when F 1 
pans the subspace of the dominant d left singular vectors of L .

hen, we obtain the MSE in terms of d as 

SE (d) = 

1 

P 

( 

p ∑ 

k = p−Nd+1 

λ
1 
2 

c 1 ,k 

) 2 

+ 

r ∑ 

k = d+1 

λ2 
k . (30)

To minimize (30) , the d should be chosen by 

 opt = min 

d 
MSE (d) , 

hich concludes the proof. �



W. Zhang, T. Kim and G. Xiong et al. / Signal Processing 163 (2019) 123–131 127 

Fig. 1. Optimal d vs. Noise levels ( M = 20 , N = 50 , r = 6 ). 
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In order to understand the Lemma 4 in detail, we analyze and

llustrate the scenario when the noise is i.i.d. Gaussian such as

 (nn 

T ) = σ 2 I p . In this case, the MSE over d is expressed as 

d 2 N 

2 

P 
σ 2 + 

r ∑ 

k = d+1 

λ2 
k , (31) 

ecause λk is monotonically decreasing with k , the optimal d that

inimizes (31) should satisfy the following 

 opt = argmin 

d=0 , 1 ··· ,r 

( 

d 2 N 

2 

P 
σ 2 + 

r ∑ 

k = d+1 

λ2 
k 

) 

. (32) 

bserving (32) , the value of first part is increasing over d , while

he value of second part is decreasing over d . This means that

hen the noise level is high, such as a large σ 2 , we will have a

mall d opt for fixed P and { λk } r k =1 
. When the noise level is low, the

alue of d opt will approach r , which is the rank of matrix L . 

In Fig. 1 , we plot the optimal values of d which achieve the

mallest MSEs for different noise levels σ 2 . The line of theoretical

ptimal d is calculated according to (32) . It is clear that the the-

retical d opt well matches with the simulation results. Specifically,

hen the noise level is low, the d opt is equal to the rank of matrix,

.e., r . When the noise level is high, d opt approaches to zero, which

s consistent with our analysis. 

. Two-step low-rank matrix reconstruction 

As we discussed in the previous section, when the column sub-

pace of low-rank matrix is known in advance, the affine map can

e attained as we analyzed in Section 3 . In practice, however, the

olumn subspace of L is often not known as a priori, in which we

ave to first estimate the column subspace and then using this es-

imated priori information to finish the estimation of the low-rank

atrix. 

In this section, we propose a two-step method to reconstruct L ,

hich consists of column subspace learning and coefficient matrix

earning, where we assume the powers for these two steps are P 1 
nd P 2 with P 1 + P 2 = P . 

.1. Column subspace learning 

For a matrix L ∈ R 

M×N with rank r , the column subspace of L ,

.e., col( L ), can be expressed by the a semi-unitary matrix U p ∈
 

M×r such that col (L ) = col (U p ) . Here, we denote U p as the col-

mn subspace matrix of L . It is worth noting that the column sub-

pace matrix of a given L is not unique. In particular, the left sin-

ular vectors of L is a candidate of column subspace matrix for L . 

Denote L 1 ∈ R 

M×m as the sub-matrix of L , which is generated

y selecting m columns of L . If there are r columns in L 1 are lin-

arly independent, we will have col (L ) = col (L 1 ) . In general, how-

ver, we can not guarantee that subspace equality between L 1 and

 . Fortunately, according to Rahmani and Atia [13 , Lemma 2], if we

andomly select m columns of L as L 1 , and m ( ≥ r ) is large enough,

he selected columns of matrix L 1 span the column subspace of L

ith high probability. 

In more detail, we let Y 1 ∈ R 

M×m be the observations under

oise, i.e., 

 1 = LZ 1 + 

√ 

mM / P 1 W 1 = L 1 + W s , (33) 

here Z 1 ∈ R 

N×m is the column sampling matrix, which randomly

elects m columns from L , and W 1 ∈ R 

M×m is reshaped the noise

atrix with [ W 1 ] i, j ∼ N (0 , σ 2 ) . Note that the number of observa-

ions to obtain Y 1 in the first step is p 1 = mM. The remaining ques-

ion is to obtain the column subspace of L 1 from the observations

 1 . 

Considering that L 1 is also a low-rank matrix when m  r , it is

ntuitive to estimate L s by solving the following nuclear norm and

 -norm minimization problem [13] , 

in 

L 1 
‖ 

L 1 ‖ ∗ + ε ‖ 

Y 1 − L 1 ‖ � , (34) 

here � denote different norm operation determined by the type

f noise W s in (34) , and ε is the trade-off parameter. 

However, the column subspace learning approach above re-

uires m  r , which needs mM observations in total. Alternatively,

e put a more straightforward but rather robust method. Consid-

ring the observations Y 1 = L 1 + W s , when the elements in W s are

ufficiently small, the column subspace of L 1 can be approximated

y the column subspace of Y 1 . Suppose the singular value decom-

osition of L 1 is given by, 

 1 = U p �p V 

T 
p , (35) 

here the left singular vector matrix U p ∈ R 

M×r , the right singular

ector matrix V p ∈ R 

N×r , and �p is a diagonal matrix where the

ingular values are sorted in a descending order. 

Because of the noise matrix W s , the matrix Y 1 has full rank

ith probability one, and the singular value decomposition of Y 1 

an be expressed as, 

 1 = ̂

 U ̂

 �̂ V 

T = 

(̂ U p 
̂ U o 

)(̂ �p 0 

0 

̂ �o 

)(̂ V 

T 
p ̂ V 

T 
o 

)
(36) 

here ̂ U p ∈ R 

M×r , ̂ V p ∈ R 

N×r , ̂ U o ∈ R 

M×(m −r) , ̂ V o ∈ R 

N×(m −r) . The

iagonal matrices ̂ �p and 

̂ �o include singular values in a descend-

ng order. 

When the elements in error matrix W s are small compared

ith the L 1 , we can treat col ( ̂  U p ) as the estimation for the col-

mn subspace of L , i.e., col( U p ) in (35) . In the following sections,

e will discuss the subspace estimation accuracy in more details. 

emark 1. When we have no idea about the rank of the ma-

rix L , we can estimate it through the observations Y 1 in the

rst step. When the matrix L 1 is zero, the matrix Y 1 only con-

ains noise. Moreover, the singular values of Y 1 are supported on
 

σ
√ 

M (1 −
√ 

m/M ) , σ
√ 

M (1 + 

√ 

m/M ) 
] 

as M → ∞ [25] . It inspires

s to use the threshold τ = σ
√ 

M (1 + 

√ 

m/M ) to determine the

ank estimation, namely 

ˆ 
 = max { i : ˆ λ ≥ τ } , (37) 
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Algorithm 1 Two-step method for reconstruction of low-rank ma- 

trices. 

1: Input: The data matrix L ∈ R 

M×N and the power P . 

2: Initialization: The column selecting matrix Z ∈ R 

N×m , powers 

for two steps are P 1 and P 2 with P = P 1 + P 2 , and the permu- 

tation matrix P . 

3: Column subspace learning: 

• Sample the columns of L by Y 1 = LZ + 

√ 

mM/P 1 W 1 = L 1 + 

W s with noise matrix W 1 . 
• Calculate the column subspace basis matrix ̂  U p through (36) 

and 

̂ Q 1 in (39). 

4: Calculate the coefficient matrix: 

• Let the reshaped affine map of A 2 (·) be S 2 = √ 

P 2 
r(N−m ) 

I r(N−m ) 

(
I � ̂ U p 

)T 
, obtain the observations through 

y 2 = A 2 (L 2 ) + n 2 . 
• Calculate the estimation of coefficient matrix ̂ Q 2 through 

(43). 

5: Obtain the estimate of the LR matrix: ̂  L = ̂

 U p [ ̂  Q 1 , ̂
 Q 2 ] P . 

6: Output: Estimate result ̂  L . 

4

 

p  

c  

s

η  

a  

f

L  

t  

l  

t∥∥

 

w  

r

 

o  

t

L  

t  

g∥∥
 

where δ is defined in same way as Lemma 5 . 
where ˆ λi is the i th largest singular value of Y 1 . Moreover, when

all the singular values of Y 1 is smaller that τ , we just let ˆ r = 0 . In

the simulation part, we show that the similar performance can be

achieved by using the estimation of rank ˆ r . 

4.2. Coefficient matrix learning 

Given the expression in (35) and the fact that the column sub-

space of L is the same as that of L 1 , the low-rank matrix L can be

represented as L = U p Q , where Q ∈ R 

r×N is the coefficient matrix

associated with the column subspace matrix U p . 

Remark 2. For the coefficient matrix Q , we can rewrite Q =
[ Q 1 , Q 2 ] , where Q 1 ∈ R 

r×m and Q 2 ∈ R 

r×(N−m ) are the coefficient

matrices of the m columns of L in the first step and the remain-

ing (N − m ) columns, respectively. Therefore, the matrix L can be

expressed as 

L = U p [ Q 1 , Q 2 ] P = [ L 1 , L 2 ] P , (38)

where P ∈ R 

N×N is the permutation matrix known in advance.

Since we have already observe the m columns of L , we can get

the estimation of Q 1 from the first step as 

 Q 1 = ̂

 U 

T 
p Y 1 = ̂

 U 

T 
p L 1 + 

√ 

mM / P 1 ̂  U 

T 
p W 1 . (39)

Therefore, we only focus on the estimation for Q 2 in the second

step. 

By denoting the affine map in the second step is A 2 (·) and p 2 
is the number of observations in the second step, the observation

y 2 ∈ R 

p 2 in the second step can be expressed as 

y 2 = A 2 (U p Q 2 ) + n 2 

= S 2 (I � U p ) vec (Q 2 ) + n 2 , (40)

where n 2 ∈ R 

p 2 with E (n 2 n 

T 
2 
) = C 2 , and S 2 ∈ R 

p 2 ×MN is generated

by reforming A 2 (·) . In the following part, we will discuss how

to obtain the estimation for Q 2 and the design of the affine map

A 2 (·) . 
Given the estimated 

̂ U p from the first step, we assume the ex-

pression of ̂ L 2 as ̂ L 2 = ̂

 U p ̂
 Q 2 , where ̂ Q 2 ∈ R 

r×(N−m ) . Based on the

analysis in Section 3 , under the observations y 2 in (40) , the effi-

cient estimation of ̂ Q 2 is given by 

vec ( ̂  Q 2 ) = ( ̂  A 

T 
2 C 

−1 
2 

̂ A 2 ) 
−1 ̂ A 

T 
2 C 

−1 
2 y 2 , (41)

where ̂ A 2 = S 2 (I � ̂ U p ) ∈ R 

p 2 ×r(N−m ) . Here, in the second step, we

assume the difference between col ( ̂  U p ) and col( U p ) is small. Ide-

ally, when col ( ̂  U p ) = col (U p ) , the affine map S 2 with the mini-

mal MSE can be obtained through the optimality condition in (16) .

Specifically, when E (nn 

T ) = σ 2 I p 2 , the optimal S 2 associated with

affine map A 2 (·) is given by 

S 2 = 

√ 

P 2 
r(N − m ) 

I r(N−m ) 

(
I � ̂ U p 

)T 
. (42)

Though the design of the affine map above utilize the approxima-

tion col ( ̂  U p ) ≈ col (U p ) , in the simulation part, we verify that this

approximation is still helpful to improve the reconstruction accu-

racy. Given the affine map in the design in (42) , for the coefficient

matrix ̂ Q 2 , we will have the following estimation by substituting

(42) into (41) , 

 Q 2 = ̂

 U 

T 
p L 2 + 

√ 

r(N − m ) / P 2 W 2 = ̂

 U 

T 
p L 2 + W r , (43)

where W 2 ∈ R 

r×(N−m ) is the noise matrix which is reshaped from

n 2 in (40) . The details of the proposed two-step method is stated

in Algorithm 1 . The estimation result is given by ̂  L = ̂

 U p [ ̂  Q 1 , ̂
 Q 2 ] P ,

where P is the permutation matrix defined in (38) . 
.3. Estimation error analysis 

Before evaluating the estimation error, the following Lemma

rovides the accuracy of the estimated column subspace col ( ̂  U p )

ompared to col( U p ). Denote U p⊥ ∈ R 

M×(N−r) as the matrix which

atisfies U p⊥ U 

T 
p⊥ = I M 

− U p U 

T 
p . We introduce the 

= 

∥∥̂ U 

T 
p⊥ U p 

∥∥
2 

= 

∥∥̂ U 

T 
p U p⊥ 

∥∥
2 

(44)

s the subspace distance defined in [26] . The value of η is ranged

rom 0 to 1. When col ( ̂  U p ) = col (U p ) , we can easily verify η = 0 . 

emma 5. Assume the singular value gap δ = λr −̂ λr+1 , where λr is

he rth largest singular value of L 1 ∈ R 

M×m , and ̂  λr+1 is the (r + 1) th

argest singular value of Y 1 ∈ R 

M×m with Y 1 = L 1 + W s . According to

he Wedin’s Theorem [27,28] , the following bound holds 

̂ U 

T 
p U p⊥ 

∥∥
2 

≤
max { ‖ 

W s V p ‖ 2 , 
∥∥W 

T 
s U p 

∥∥
2 
} 

δ

≤ ‖ 

W s ‖ 2 

δ

= 

√ 

mM 

P 1 

‖ 

W 1 ‖ 2 

δ
, (45)

here Y 1 = ̂

 U p ̂
 �p ̂

 V 

T 
p and L 1 = U p �p V 

T 
p are the SVD of Y 1 and L 1 ,

espectively. 

Given the subspace estimation accuracy in (45) , it is of interest

f evaluate estimation error between L and 

̂ L , which is given in

he following lemma. 

emma 6. Suppose the low-rank matrix L ∈ R 

M×N , and the estima-

ion result ̂  L is obtained through Algorithm 1 . The estimation error is

iven by 

L −̂ L 
∥∥

F 
≤

√ 

mM 

P 1 

(
‖ 

W 1 ‖ F + 

‖ 

W 1 ‖ 2 ‖ 

L ‖ F 

δ

)
+ 

√ 

r(N − m ) 

P 2 
‖ 

W 2 ‖ F , (46)
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Fig. 2. NMSE vs. Noise levels with differen number of observations( M = 20 , N = 

50 , r = 6 ). 

Fig. 3. Averaged mutual coherence vs. Number of observations ( M = 20 , N = 50 ). 
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m  
roof. Given the expression of ̂ Q , we formulate the estimation er-

or in the following form, 

 L − ̂ U p ̂
 Q ‖ F ≤ ‖ ̂

 U p ̂
 U 

T 
p W s + W r ‖ F + ‖ L − ̂ U p ̂

 U 

T 
p L ‖ F 

≤ ‖ ̂

 U p ̂
 U 

T 
p W s ‖ F + ‖ W r ‖ F + ‖ L − ̂ U p ̂

 U 

T 
p L ‖ F 

≤ ‖ W s ‖ F + ‖ W r ‖ F + ‖ 

(
I − ̂ U p ̂

 U 

T 
p 

)
U p U 

T 
p ‖ 2 ‖ L ‖ F 

= ‖ W s ‖ F + ‖ W r ‖ F + ‖ 

(̂ U p⊥ ̂  U 

T 
p⊥ 

)
U p U 

T 
p ‖ 2 ‖ L ‖ F 

≤ ‖ W s ‖ F + ‖ W r ‖ F + ‖ ̂

 U 

T 
p⊥ U p ‖ 2 ‖ L ‖ F , (47) 

here ̂  U p⊥ ̂  U 

T 
p⊥ denotes the projection matrix onto the complemen-

ary subspace spanned by ̂ U p , and U p U 

T 
p is the projection matrix

nto the subspace spanned by U p . 

Therefore, combining (47) and (45) , we can have the error in

46) . This concludes the proof. �

Note that the bound in (46) will hold for any possible noise.

ompared to the MSE when the column subspace is exact, the MSE

n (46) includes one more part, such that 

√ 

mM 

P 1 

‖ W 1 ‖ 2 ‖ L ‖ F 
δ

, which

omes from the error of estimate of column subspace. Using the

roposed two-step method, the necessary number of samples is 

p = mM + r(N − m ) . (48) 

n particular, if we set the m = r, the number of observations is

ust equal to the degrees of freedom of esimated low-rank matrix. 

emark 3. The complexity of the two-step method mainly comes

rom SVD computation Y 1 , i.e., O(Mm 

2 ) . Thus, when m is just sev-

ral times of the rank r , the computational complexity of the pro-

osed two-step method is in a small order. 

. Simulation results 

In this section, we simulate the performance of the proposed

wo-step matrix reconstruction method compared to two non-

daptive methods, i.e., MF [6] and NNM [3] , and one adaptive

ethod, i.e., subspace pursuit (SP) approach [13] . The simulation

arameters are M = 20 , N = 50 , r = 6 . The normalized MSE (NMSE)

s defined as 

MSE = E 

(∥∥̂  L − L 
∥∥2 

F 
/ ‖ 

L ‖ 

2 
F 

)
. 

Here, we assume the power associate with the two steps are

 1 = P 2 = MN. For the simulated methods, each point of the curve

s plotted by averaging the NMSE of 10 0 0 trails. 

.1. The affect of number of observations 

First of all, we illustrate the effect of number of observations on

he reconstruction accuracy in Fig. 2 . We let the number of column

 for the first step is ranged in { r, 1 . 5 r, 2 r, 2 . 5 r} = { 6 , 9 , 12 , 15 } . Ac-

ordingly, the total number of observations are mM + r(N − m ) . In

eneral, when more columns are utilized for the first step, more

ccurate columns subspace can be obtained. As we can see, when

he number of columns for the first step is 1.5 r , the robust perfor-

ance can be achieved. This means that when we let m = 1 . 5 r in

he first step, we can acquire a robust estimation for the subspace

nformation. 

.2. The characteristic of designed affine map 

In this subsection, we compare the affine map of the proposed

wo-step method with the randomly generated affine map. As far

s we know, it is NP-hard to compute the RIP constant for the

iven affine map. Therefore, we turn to compute the alternative

onstant to RIP, namely, averaged mutual coherence defined in
29] , which evaluates the averaged coherence of the columns of

ffine map matrix S ∈ R 

p×MN . Specifically, letting S̄ ∈ R 

p×MN be the

atrix which normalizes the columns of S , the averaged mutual

oherence of S is given by 

a v (S ) = 

∑ 

1 ≤i, j≤MN,i � = j 
tr ([ ̄S ] T 

: ,i 
[ ̄S ] : , j ) 

M 

2 N 

2 − p 
. 

t has been shown that the reconstruction accuracy is related to

he value of μav [29,30] . In Fig. 3 , we evaluate the averaged mu-

ual coherence of proposed affine map compared to that of gaus-

ian random affine map, i.e., [ S ] i, j ∼ N (0 , 1) , ∀ i, j. As can be seen

rom Fig. 3 , the proposed affine map design achieves the lower

veraged mutual coherence compared to the randomly generated

ffine map. Therefore, it could be expected that reconstruction ac-

uracy achieved by the proposed affine map will be higher than

hat of randomly generated affine map. 

.3. The accuracy comparisons with benchmarks 

In Fig. 4 , we compare the performance of proposed two-step

ethod with NNM, MF and SP approaches. We set the number
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Fig. 4. NMSE vs. Noise levels ( M = 20 , N = 50 , r = 6 ). 

Fig. 5. NMSE vs. Number of observations ( M = 20 , N = 50 , r = 6 , σ 2 = 0 . 1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. NMSE vs. Noise levels ( M = 20 , N = 50 , r = 6 ). 

b  

p  

w  

r  

m  

p  

t  

r

5  

 

m  

t  

t  

c  

t  

t

6

 

t  

i  

l  

i  

t  

s  

r  

i  

t  

t  

e

C

A

 

G  

a

of observations for proposed two-step method, NNM and MF

selected from {384, 426, 468}. Since the SP method requires more

observations in order to achieve valid reconstruction, we let the

number of observations for SP be p = 490 . As can been seen that

NNM, MF and proposed two-step method can benefit from the

increasing of number of observations. It is clear that the proposed

two-step method outperforms the NNM, MF and SP. Moreover, the

performance gap is larger when the noise level is low. In partic-

ular, when the number of observations is p = 426 , the proposed

two-step method has a clear performance gap compared to the

benchmarks. This is because the performance of NNM, MF and SP

will be restricted by the number of observations. If the number of

observations is not sufficient, i.e., p = 426 , the accuracy of NNM,

MF and SP will be saturated when the noise level is low. Different

from the saturated phenomenon of benchmarks, for proposed

two-step method, more accurate reconstruction can be obtained if

the noise level is decreasing furthermore. 

In Fig. 5 , we evaluate the performance of proposed two-step

method under different observations compared to the MF, NNM,

and SP. The noise level is set as σ 2 = 0 . 1 . As we can see, all the

simulated methods will benefits from the increasing of the num-
er of observations. Moreover, the proposed two-step method out-

erforms the others. When the number of observations is p = 384 ,

hich is equal to the degrees of freedom of the simulated low-

ank matrix, i.e., (50 + 20 − 6) × 6 = 384 , the proposed two-step

ethod can achieve a robust estimation. This validates the fact the

roposed two-step method only requires the number of observa-

ions that is approximately equal to the degrees of freedom of low-

ank matrix. 

.4. The reconstruction accuracy by using estimated rank information

In this simulation part, we simulate the reconstruction perfor-

ance when we utilize the estimated rank information instead of

rue rank information. As we can see in Fig. 6 , by using the es-

imated rank ˆ r in (37) , the similar performance can be achieved

ompared to the scenario when we utilize the true rank informa-

ion. Therefore, the rank estimation method in (37) is robust for

he low-rank matrix reconstruction under the noisy cases. 

. Conclusion 

In this paper, we investigate the low-rank matrix reconstruc-

ion when the subspace information is known. Under the subspace

nformation, the optimal representation of low-rank matrix is ana-

yzed in order to obtain minimal MSE. In the case that no subspace

nformation is aware, the proposed two-step method can handle

his practical scenario. The first step will obtain the column sub-

pace of the low-rank matrix, and the second step will get the

emaining coefficient information of the low-rank matrix. By us-

ng the observations approximately equal to degrees of freedom of

he low-rank matrix, the simulation results show that the proposed

wo-step method experiences robust performance compared to the

xisting reconstruction methods. 
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