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Abstract—Intelligent reflecting surfaces (IRS) consist of config-
urable meta-atoms, which can change the wireless propagation
environment through design of their reflection coefficients. We
consider a practical setting where (i) the IRS reflection coeffi-
cients are configured by adjusting tunable elements embedded in
the meta-atoms, (ii) the IRS reflection coefficients are affected
by the incident angles of the incoming signals, (iii) the IRS
is deployed in multi-path, time-varying channels, and (iv) the
feedback link from the base station to the IRS has a low data rate.
Conventional optimization-based IRS control protocols, which
rely on channel estimation and conveying the optimized variables
to the IRS, are not applicable in this setting due to the difficulty
of channel estimation and the low feedback rate. Therefore,
we develop a novel adaptive codebook-based limited feedback
protocol where only a codeword index is transferred to the IRS.
We propose two solutions for adaptive codebook design, random
adjacency (RA) and deep neural network policy-based IRS control
(DPIC), both of which only require the end-to-end compound
channels. We further develop several augmented schemes based
on RA and DPIC. Numerical evaluations show that the data rate
and average data rate over one coherence time are improved
substantially by our schemes.

Index Terms—Intelligent reflecting surface (IRS), reconfig-
urable intelligent surface (RIS), software-controlled meta-surface,
limited feedback, adaptive codebook, deep reinforcement learning

I. INTRODUCTION

The intelligent reflecting surface (IRS) is one of the innova-
tive technologies being discussed for 6G-and-beyond [1], [2].
Other terminologies have been employed in literature, such
as reconfigurable intelligent surface (RIS) [3] and software-
controlled meta-surface [4], to represent such tunable surfaces.
An IRS is composed of configurable meta-atoms with tunable
reflection behavior. By fine-tuning the meta-atoms, an IRS can
reflect the incident signals to a desired direction to enhance
the communication system performance in terms of power
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savings, throughput, and other metrics. Compared to a tra-
ditional antenna array with one or more radio frequency (RF)
chains for active relaying/beamforming, the IRS is built of
low cost meta-surfaces with low energy consumption require-
ments for adaptive tuning [4]. These benefits have motivated
active research on utilizing an IRS in communications/signal
processing literature [4], [5].

Most communication and signal processing works have
focused on designing the reflection coefficients of the IRS
meta-atoms considering different performance metrics of in-
terest [3], [6], [7], e.g., sum-rate, power saving, secrecy rate,
etc. However, these works have not given consideration to
the practical reflection behavior of the IRS meta-atoms or the
nature of the channels under which the IRS is deployed. In
this paper, we focus on the problem of controlling the IRS
adaptively considering the practical reflection behavior and
realistic channel environment. We take the first step towards
this direction by focusing on a point-to-point communication
model, commonly used in the IRS literature, e.g., [3], [6], [7],
which we follow to construct a fundamental system model
encompassing practical considerations.

A. Related Work and Shortcomings of Current Methods

1) Practical Reflection Behavior of IRS: Much of the prior
works on IRS reflection coefficient design for communications
have focused on controlling either (i) only the phase shift
with full/lossless signal reflection (i.e., assuming no signal
attenuation upon reflecting from the IRS), or (ii) both the phase
shift and attenuation of reflection, which are independently
controlled from one other. However, it is practically difficult
to implement either of these approaches. First, the full/lossless
signal reflection cannot be realized in practice due to the
inevitable energy loss caused by the dielectric loss, metallic
loss, and ohmic loss [8]. Second, the reflection phase shift
and attenuation cannot be controlled independently because
the reflection behavior is determined by adjusting the tunable
elements inside the meta-atoms. This fact implies that the
IRS reflection phase shift and attenuation are interdependent
as revealed in the physics literature [9], [10]. This interde-
pendency has only been considered in a few works in the
communications area [11], [12].

Another aspect overlooked in prior works is the dependency
between the IRS reflection behavior and the incident angles
of the incoming electromagnetic (EM) waves. This fact was
first revealed in recent work [13], which demonstrates that the
IRS reflection coefficient is sensitive to the incident angles
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of the incoming EM waves. Motivated by this observation,
the authors of [14] propose an angle-dependent reflection
coefficient model for each IRS meta-atom using an equivalent
circuit model. In parallel, the authors in [15], [16] also
demonstrate the reflection response varies with the incident
angle of the EM wave. To the best of our knowledge, the
angle-dependent property of the IRS reflection coefficient has
not been incorporated into uplink/downlink signal transmission
models for wireless communication systems.

2) Communication Overhead for IRS Control under Re-
alistic Channel Environment: To develop solutions for IRS
reflection design, existing works either assume perfect knowl-
edge of the channel state information (CSI) [3], [6], [7],
[11] or estimate the CSI before IRS reflection design [17],
[18]. In both cases, for adaptive IRS control under time-
varying channels, a successive channel estimation at the base
station (BS) and feedback of information from the BS to the
IRS should be conducted. This successive procedure incurs
communication time overhead. The work [19] takes into
account the communication time overhead required for channel
estimation and feedback for the IRS phase shift design and
shows that the average data rate over a channel coherence
time is decreased by the overhead. Nevertheless, in [19], the
practical IRS reflection behavior and successive IRS control
under time-varying channels have not been considered.

To reduce the overhead for IRS control, some recent works
consider a low overhead feedback link from the BS to the IRS
by either employing codebook structures [15], [20]–[22] or
one-bit feedback [23]. The feedback link typically has a low
data rate because the CSI of the feedback link is unknown at
the BS [5]. In general, codebooks are known to provide high
performance gains in limited feedback systems [24], and thus
are widely used in wireless communications standards, such
as Long-Term Evolution (LTE), LTE-Adv, LTE-Adv Pro, and
5G New Radio (NR) [25]. In IRS-assisted communications, a
codebook refers to a set of IRS reflection coefficients, which
are shared at both the BS and the IRS [15], [20]–[22]. The
work [20] considers the codebook construction for uniform lin-
ear arrays (ULA). In [15] and [21], the codebook is constructed
via discrete Fourier transform (DFT) quantization [26] and
random vector quantization (RVQ) [27], [28], respectively. In
[22], the codebook is designed based on RVQ and maximizing
the Euclidean distance among the codewords. In these works,
the BS feeds back a specific codeword index to the IRS, which
the IRS uses to recover the desired reflection coefficients from
the codebook. The work [23] adapts the random perturbation-
based method with one-bit feedback for IRS control, previ-
ously proposed in traditional wireless communications [29].
All of these works, however, directly design the IRS reflection
coefficients without considering the practical IRS reflection
behavior. Furthermore, the codebook approaches [15], [20]–
[22] have not considered an adaptive design of the codebook
for time-varying channels.

B. Our Methodology and Summary of Contributions

In this paper, we consider adaptive IRS control in the
practical setting where (i) the IRS reflection coefficients are
achieved by adjusting tunable elements embedded in the

meta-atoms, i.e., their controllable capacitance, (ii) the IRS
reflection coefficients are affected by the incident angles of
the incoming EM wave, (iii) the IRS is deployed in an
environment with multi-path, time-varying channels, and (iv)
the feedback link from the BS to the IRS has a low data rate.

The joint consideration of the practical IRS reflection behav-
ior and realistic channel environment makes the contemporary
optimization-based methods used for IRS control [3], [6], [7],
[11], [17], [19], which rely on channel estimation, inefficient.
This is because channel estimation in turn requires known
IRS reflection coefficients, which cannot be obtained in a
real-world system since (i) incoming signals in a multi-path
channel have different angles of arrival to the IRS, and thus
experience different reflection responses caused by angle-
dependent reflection behavior of the meta-atoms, and (ii) it is
difficult to measure the incident angles of multiple incoming
signals at the IRS since the IRS is typically a passive device
without active sensors.

For effective IRS control in this practical setting, we propose
a novel adaptive codebook-based limited feedback protocol.
There are several novelties in our proposed protocol. First,
we directly design the meta-atom capacitance values for IRS
configuration, different from the current methods that design
IRS reflection coefficients, some of which may be not feasible
for implementation. Second, we adopt a codebook structure,
where the codebook is a set of capacitance values for IRS
configuration and employed at the IRS. Third, we develop two
adaptive codebook design methods, where the codebook is
updated to account for time-varying channels. These methods
are (i) random adjacency (RA), which utilizes the correlation
across the channel instances, and (ii) deep neural network
(DNN) policy-based IRS control (DPIC), which is a deep re-
inforcement learning-based method. Both of these approaches
only require the end-to-end compound channels from the user
equipment (UE) to the BS (in (7)), which can be readily
obtained at the BS. Thus our IRS control methodology does
not require any expensive estimation/tracking processes for the
channels, UE location, and incident angles.

The contributions of this paper are summarized as follows:
• We introduce a novel signal model that considers the

practical IRS reflection behavior for the IRS-assisted uplink
communications system, where the reflection coefficient of
each IRS meta-atom is a function of the incident angle of
the EM wave and its controllable capacitance.

• We formulate the data rate maximization problem and
discuss the challenges associated with solving the problem
in the practical setting. Motivated by the existence of a
low-rate feedback channel between the IRS and BS and the
requirement of successive IRS control under time-varying
channels, we propose a novel adaptive codebook-based
limited feedback protocol.

• We propose two algorithms for adaptive codebook design:
RA and DPIC. In DPIC, we tailor an actor-critic network
for the DNN policy learning to make it compatible with the
limited feedback protocol. We incorporate the RVQ pro-
cess into the behavior policy, which allows low-overhead
feedback. Further, we develop several augmented strategies
based on DPIC, which incorporate multi-agent learning and
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Fig. 1: The system model consisting of a UE, IRS, and BS in uplink point-to-point communication, where the IRS is controlled by the BS
via a limited feedback link. (a) Depiction of the IRS as two interconnected systems: meta-surface and control board. (b) Equivalent circuit
model of the signal response at each IRS meta-atom.

a hybrid of the RA and DPIC approaches. We analyze the
computational complexity and the total time overhead of
the proposed approaches.

• For simulations, we consider two practical scenarios in
multi-path fading channels: (i) indoor UE with no line-of-
sight (LoS) link to the IRS, and (ii) outdoor UE with a LoS
link. For both scenarios, we evaluate the performances of
the data rate and average data rate over one coherence time,
and demonstrate that RA and DPIC outperform the base-
line. Our simulations also show the superior performance
of our augmented strategies compared to their counterparts.

II. SYSTEM MODEL FOR IRS-ASSISTED UPLINK
COMMUNICATIONS

We begin by formalizing IRS meta-atom reflection behavior
in Sec. II-A. Then, we describe the signal model of IRS-
assisted uplink communications in Sec. II-B.

A. Reflection Behavior of IRS Meta-atoms

An IRS consists of two interconnected systems shown in
Fig. 1(a): a meta-surface and control board. A meta-surface
is an ultra-thin sheet composed of periodic sub-wavelength
metal/dielectric structures, i.e., meta-atoms. The size of each
meta-atom is typically from λ/10 to λ/2 [4], where λ denotes
the wavelength of the EM wave. Each meta-atom gener-
ally contains a semiconductor device as a tunable element,
e.g., positive-intrinsic-negative (PIN) diode, variable capacitor
(varactor), metal-oxide-semiconductor field-effect transistor
(MOSFET) [10]. By adjusting the bias voltages applied to
these tunable elements, we can change the impedances over
the meta-surface to have a desired functionality, e.g., perfect
absorption, anomalous reflection, and polarization of the in-
coming signal. We focus on the reflection behavior, where the
reflected signals from the meta-surface become constructive at
a desired angle/direction, i.e., beamforming.

A control board that is connected to the meta-surface
enables flexible configuration of the tunable elements. A
field programmable gate array (FPGA)-based control board
is generally considered for IRS control due to the flexible
implementation of different logic functions [30]. A control
board adjusts the bias voltage applied to the semiconductor in
each meta-atom and changes the capacitance of the semicon-
ductor, i.e., the tunable element. To adapt to dynamic channels,

the control board can flexibly tune the capacitance over time.
Given a range of potential bias voltage values, the capacitance
Cn[t] at meta-atom n at time t satisfies

Cmin ≤ Cn[t] ≤ Cmax, (1)

where Cmin and Cmax may vary for different types of semi-
conductor devices.

Through tuning the capacitance of the meta-atoms, their
impedance can be adjusted. However, the impedance is
also dependent on the incident angle of the incoming EM
wave [16]. Both of these factors should be considered in IRS
reflection behavior design. To explicitly describe the reflection
behavior of the meta-surface, we will next investigate the
impedance and reflection coefficient at the meta-atom level.1

As an example, we provide the impedance and reflection
coefficient of a meta-atom equipped with a varactor using
its equivalent circuit model depicted in Fig. 1(b). Denote θ`[t]
as the incident angle of the `-th channel path to the IRS.2

Under a far-field assumption where θ`[t] is the same across
all the meta-atoms, the work [14] has verified experimentally
that the impedance of meta-atom n in this equivalent circuit
can be described as

Z(Cn[t], θ`[t]) =

jωLB(θ`[t])
(
RT (θ`[t]) + jωLT (θ`[t]) +

1
jωCT (θ`[t])

+ 1
jωCn[t]

)
jωLB(θ`[t]) +

(
RT (θ`[t]) + jωLT (θ`[t]) +

1
jωCT (θ`[t])

+ 1
jωCn[t]

) ,
(2)

where LT (θ`[t]), CT (θ`[t]), and RT (θ`[t]) are the inductance,
capacitance, and loss resistance of the top layer, respectively,
LB(θ`[t]) is the bottom layer inductance, Cn[t] is the variable
capacitance, and ω = 2πf is the angular frequency of the
incident EM waves. Except Cn[t], all of these parameters
are dependent on the incident angle θ`[t], which makes the
reflection behavior of meta-atom angle-dependent. This phe-
nomenon is also observed in [13], [15], [16].

1Since the physical size of the meta-atom is usually smaller than the
wavelength of the incident signal, the signal response of the meta-atom can
be described by an equivalent circuit model [31].

2In this section, we discuss the angle-dependent impedance (in (2)) and
reflection coefficient model (in (3)) provided in [14] where only azimuth
coordinates of the incident angle are considered. Our proposed signal model
and methodologies can be readily extended to the case including the eleva-
tion angle.
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Considering the impedance discontinuity between the
free space impedance Z0 ≈ 376.73 Ω and the meta-atom
impedance Z(Cn[t], θ`[t]), the reflection coefficient3 of meta-
atom n is [32]

Γ(Cn[t], θ`[t]) =
Z(Cn[t], θ`[t])− Z0

Z(Cn[t], θ`[t]) + Z0
. (3)

The expressions in (2)&(3) reveal two practical considerations
for tuning the meta-atoms.
• Consideration 1. Dependency between ampli-

tude/attenuation and phase shift. The amplitude/attenuation
|Γ(Cn[t], θ`[t])| and phase shift ∠Γ(Cn[t], θ`[t]) of the
reflection are jointly controlled by the semiconductor
with capacitance Cn[t]. In other words, the amplitude
and the phase shift at a meta-atom cannot be controlled
independently, which is also reported in [11]. Thus, it
is beneficial to design the variable capacitance instead
of the reflection coefficient since some combinations of
attenuation and phase shifts may not be feasible.

• Consideration 2. Dependency between reflection coefficient
and incident angle. The reflection coefficient is a function
of the incident angle θ`[t]. This will pose new challenges
for applications of IRS in practical wireless systems with
multi-path and time-varying channels, which will be dis-
cussed in detail in Sec. III-A. This dependency is observed
and explained in [13]–[16], but not yet incorporated in the
canonical signal model for IRS-assisted communications.

We incorporate the above practical considerations into our
signal model and methodology.

B. Signal Model for IRS-assisted Uplink Communications

We consider the IRS-assisted uplink communications with a
UE, a BS, and an IRS, depicted in Fig. 1. The UE is equipped
with a single antenna, while the BS possesses NBS antennas.
We assume a block fading channel model with time index
t = 0, 1, ..., where channels are constant during each block.
Let NIRS denote the number of the IRS meta-atoms. We define
the capacitance vector across the IRS meta-atoms at time t as

c[t] =
[
C1[t], ..., CNIRS [t]

]
∈ RNIRS , (4)

where Cn[t] is the capacitance of the semiconductor in meta-
atom n. We also formulate the reflection coefficient matrix
across the IRS meta-atoms, Φ(c[t], θ`[t]) ∈ CNIRS×NIRS , as

Φ(c[t], θ`[t]) = diag
(
Γ(C1[t], θ`[t]), ...,Γ(CNIRS

[t], θ`[t])
)
,

(5)
where the n-th diagonal entry Γ(Cn[t], θ`[t]) is the reflection
coefficient at meta-atom n ∈ {1, ..., NIRS} given the incident
angle θ`[t]. The reflection coefficient matrix enables us to
incorporate the practical IRS reflection behavior into the signal
model for IRS-assisted communications.

We consider multi-path channels and adopt a geometric
channel model representation [33]. We represent the channel
from the UE to the IRS (i.e., UE-IRS channel) as hUI[t] =∑L[t]
`=1 hUI

` (θ`[t], t) ∈ CNIRS×1, in which hUI
` (θ`[t], t) is the

3In fact, the impedance in (2) and the reflection coefficient in (3) are
dependent on the frequency f . However, since we consider a fixed frequency
with a narrowband of a few tens of MHz bandwidth, we can approximate the
IRS reflection coefficients as constant across f [14], [15] and, thus, do not
consider the dependency of f .

`-th path channel with the incident angle θ`[t] and L[t] is
the number of paths. We assume a narrowband system, where
θ`[t], ∀`, is the same across the utilized frequency band
and consider a single tap channel model. Subsequently, the
received signal at the BS at time t is given by

y[t] =

(
hUB[t] + HIB[t]

L[t]∑
`=1

Φ(c[t], θ`[t])h
UI
` (θ`[t], t)

)
×
√
Px[t] + n[t] ∈ CNBS×1, (6)

where P ∈ R+ denotes the transmit power and x[t] ∈ C
denotes the transmit symbol of the UE, where E[|x[t]|2] = 1.
The noise vector n[t] ∈ CNBS×1 follows the complex Gaussian
distribution CN (0, σ2I), where I denotes the identity matrix
and σ2 is the noise variance. hUB[t] ∈ CNBS×1 is the direct
channel from the UE to the BS (i.e., UE-BS channel) and
HIB[t] ∈ CNBS×NIRS is the channel from the IRS to the BS
(i.e., IRS-BS channel). We define the end-to-end compound
channel in (6) as the effective channel heff(c[t], t) ∈ CNBS×1

given by

heff(c[t], t) , hUB[t] + HIB[t]

L[t]∑
`=1

Φ(c[t], θ`[t])h
UI
` (θ`[t], t),

(7)
which encapsulates all the channels (i.e., hUB[t], HIB[t], and
hUI[t]) and the specific IRS configuration (i.e., c[t]).

III. PROBLEM FORMULATION, CHALLENGES, AND
LIMITED FEEDBACK PROTOCOLS

We first formulate the data rate maximization problem
for IRS control and discuss the challenges associated with
solving it in Sec. III-A. To address the challenges, we propose
a novel adaptive codebook-based limited feedback protocol
for IRS control in Sec. III-B. Finally, we discuss how the
IRS codebook differs from traditional precoding codebooks
in Sec. III-C.

A. Problem Formulation and Challenges

We aim to maximize the capacity of the channel as a
performance metric. Therefore, we formulate the achievable
data rate maximization problem at time t as

maximize
c[t]

R(c[t], t) = log2

(
1 +

P‖heff(c[t], t)‖22
σ2

)
(8)

subject to Cmin ≤ Cn[t] ≤ Cmax, n = 1, ..., NIRS. (9)

The constraint (9) states that each capacitance Cn[t], n =
1, ..., NIRS, should reside in the allowed region discussed in
(1).4 The objective is to adapt c[t] based on the time-varying
channels.

Operationally, we aim for the optimization (8)-(9) to be
solved at the BS since (i) the BS can obtain measurements
and exploit them in deriving the solution for IRS control while
the IRS has no sensing capability, and (ii) the BS usually
has abundant computing resources while the IRS is often not
equipped with powerful processing units. The BS would then

4A discrete capacitance control is sometimes preferred to reduce the
hardware utilization cost. In this paper, we focus on developing methodologies
for continuous control as a general case. Our methodologies can be readily
applied to the discrete control case by quantizing the interval [Cmin, Cmax]
and mapping the continuous capacitance to the closest discrete value.
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generate feedback information for the IRS, used to reconfigure
the capacitance at the meta-atoms via the IRS control board.
However, solving (8)-(9) and tuning the IRS meta-atoms via
the feedback link face the following challenges.

(C1) CSI knowledge requirements of optimization-based meth-
ods. Conventional optimization-based methods to solve
(8)-(9) require the BS to estimate all the channels, hUB[t],
HIB[t], and hUI[t], and incident angles {θ`[t]}` in real-
time, which are encapsulated in heff(c[t], t). However,
channel estimation techniques require known IRS reflec-
tion coefficients, which cannot be obtained in a real-
world system due to the multi-path nature of the channels
and angle-dependent behavior of meta-atoms (refer to
Sec. I-B).

(C2) Dynamic channels and overhead requirements. Adaptive
control of c[t] is necessary to have an efficient IRS
operation in time-varying channels. Such control requires
periodic information acquisition from the BS. The time
overhead of information acquisition should be a small
fraction of the channel coherence time to ensure a rea-
sonable data transmission time.

(C3) Low data rate of feedback link. A feedback link refers
to the data link from the BS to the control board of
the IRS [15]. Typically, the feedback link has low data
rate because the channel state information (CSI) of the
feedback link is unknown at the BS [5]. Therefore, the
BS must feed back only small amount of necessary
information to the IRS.

These challenges render the existing IRS control protocols
ineffective since they mostly rely on either full CSI or channel
estimates, neglect the overhead of information acquisition from
the BS, and overlook the behavior of meta-atoms and the
characteristics of the feedback channel. The main contribution
of our work is developing a methodology to jointly address
these challenges.
B. Adaptive Codebook-based Limited Feedback Protocols for
IRS-assisted Communication

Motivated by the low overhead feedback requirement (see
(C3)), we propose to exploit a codebook structure for IRS
control, where the BS sends only a quantized codeword index
to the IRS. Further, we consider adaptive design of this
codebook based on channel variations. We denote the adaptive
codebook as C[t] = {qm[t]}Mm=1, where qm[t] ∈ RNIRS is the
m-th codeword (capacitance vector) in the codebook and M
is the codebook size. The codebook is stored and its updates
are conducted at the IRS through its control board [15] (e.g.,
see Fig. 1(a)). We propose a novel limited feedback protocol
consisting of four steps conducted per each coherence time
block t depicted in Fig. 2:
Step 1 IRS channel sounding and reconfiguration. While the

UE transmits pilot symbols, the IRS explores all the M
capacitance vectors, i.e., qm[t], in C[t], m = 1, ...,M .

Step 2 Codeword selection at BS. The BS measures the
effective channel heff(qm[t], t) and calculates the data
rate R(qm[t], t) in (8) as the IRS applies qm[t],
m = 1, ...,M . The BS obtains the codeword index
m?[t] = arg max

m∈{1,...,M}
R(qm[t], t).

Fig. 2: Time frame structure of the proposed limited feedback
protocol for IRS-assisted communication.

Step 3 Feedback to IRS and IRS final configuration. The
BS feeds back the index m?[t] ∈ {1, ...,M} to the
IRS. Then, the IRS tunes the meta-atoms with q?[t] =
qm?[t][t] ∈ C[t].

Step 4 Data transmission and IRS codebook update. The
data transmission is conducted during the rest of the
coherence time. During this time period, the IRS
obtains the next codebook C[t + 1] either locally or
with assistance from the BS.

The benefits of our protocol include its (i) simple procedure
for IRS configuration in limited coherence times, (ii) low-
overhead feedback, and (iii) adaptation to dynamic channels.
In regards to (i), our protocol does not require the complicated
processes required for the estimation/tracking of the channels,
incident angles, and UE location (see (C1) in Sec. III-A).
In particular, it only requires partial CSI (i.e., the compound
channel in (7)) for the IRS control. As for (ii), we consider
digital feedback, rather than feeding back continuous vectors
or matrices, which reduces the feedback time overhead (see
(C3) in Sec. III-A). In regards to (iii), we consider adaptive
codebook updates to adapt to the dynamic channels found in
real systems (see (C2) in Sec. III-A).

Careful design of the codebook C[t] is critical to obtaining
high data rates, since the codewords {qm[t]}Mm=1 are the
solution candidates and the maximizer (q?[t] in Step 3) among
them is selected as a solution.5 Shown in Step 4, the IRS
obtains the next codebook C[t + 1] at time t, and therefore
the codebook update can be regarded as a prediction and
refinement problem. Since the channels are in practice corre-
lated across consecutive coherence times, the BS exploits the
previous effective channels estimated up to time t as available
information, denoted by G[t] = {heff(qm[t′], t′)}1≤m≤M,t′≤t,
for the codebook update. We develop our methodology under
the assumption that the BS obtains the effective channels
without any noise. However, for simulations in Sec. V, we
consider the case where the BS measures a noisy version of the
effective channels (i.e., the received pilot signal that contains
noise) to have more realistic results.

We finally reformulate the problem (8)-(9) to be compatible
with the proposed protocol and change the design variable to
the codebook. Because the channels at time t+1 are unknown,
we formulate the problem as a stochastic optimization:

maximize
C[t+1]=

{qm[t+1]}Mm=1

EE[t+1]

[
max

qm[t+1]∈C[t+1]
R(qm[t+ 1], t+ 1)

∣∣∣G[t]
]

(10)

5The data rate performance also depends on the codebook sizeM . However,
M should be limited because of the finite coherence time and non-negligible
IRS reconfiguration time. We assume that M is predetermined and fixed
in the protocol.
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subject to Cmin ≤ qm,n[t+ 1] ≤ Cmax,

m = 1, ...,M, n = 1, ..., NIRS, (11)

where qm,n[t+1] denotes the n-th entry of the m-th codeword
qm[t+ 1] = [qm,1[t+ 1], ..., qm,NIRS

[t+ 1]] at time t+ 1 and
E [t+1] denotes the channel distribution at time t+1, including
the statistics of HIB[t+ 1], hUI[t+ 1], and hUB[t+ 1]. In the
above problem, we aim to obtain the next codebook C[t+ 1]
with the available information G[t] such that the codebook
contains good codewords to maximize the expectation of the
data rate obtained from the best codeword over the next
channel statistics E [t+ 1]. Note that the channel distributions
are not static over time due to temporal environment variations
(e.g., temperature, precipitation, UE mobility, etc.). Also, the
channel distribution E [t+1] is unknown to the BS, which adds
another degree of difficulty to solve (10)-(11). We will propose
low-overhead adaptive codebook designs to solve (10)-(11).

C. Distinction of the IRS Codebook from the Current Art
Precoding Codebooks

In traditional codebook-based wireless communications, an
encoding function and distortion measure are defined, and
the codebook is designed such that the distortion measure
is minimized. When channel vectors are modeled as scaled
versions of array response vectors, codebooks are often con-
structed as a set of particular vector subspaces characterized by
an array manifold structure, such as DFT quantization-based
codebooks [26], LTE/5G NR codebooks [34], [35], beam-
forming quantization-based codebooks [36]–[38], codebooks
with Grassmannian line packing [39], [40], and codebooks for
beam alignment [41]. In [42], [43], adaptive codebook design
methods are proposed based on a specific manifold structure of
the channels. For such codebook construction, the channels or
their statistics are assumed to be known and each codeword
is designed on the complex vector space. However, in our
problem, we do not assume any knowledge of the channel
statistics, and each codeword in the IRS codebook resides
in the NIRS-dimensional hypercube where each entry of the
codeword ranges in [Cmin, Cmax].

The RVQ codebook [27], [28] can be exploited in our pro-
posed protocol, and thus we use it as a baseline. Specifically,
in RVQ design each codeword is randomly generated such
that each entry ranges in [Cmin, Cmax] at each time. Although
this baseline can be operated in the proposed limited feedback
protocol, it would not adapt to the varying channels properly.
Ideally, it is best to update the codebook by predicting how the
optimal solution changes according to the next-time channel
statistics in (10)-(11). Motivated by this, we next propose two
adaptive codebook approaches where the codebook is updated
with the previous decisions and responses.

IV. ADAPTIVE CODEBOOK DESIGN

For adaptive codebook design, we propose a low-overhead
perturbation-based approach in Sec. IV-A and a deep neural
network (DNN) policy-based approach in Sec. IV-B. Then,
we discuss the computational complexity of the approaches
and present a group control strategy in Sec. IV-C. Finally, we
quantify the time overhead and the average data rate over one
channel coherence block in Sec. IV-D.

Algorithm 1 Random adjacency (RA) codebook design in the
limited feedback protocol

1: Input: Ntimestep (the duration of the algorithm), Cmin, and Cmax.
2: The IRS randomly generates the initial codebook C[0] = {qm[0]}Mm=1

within the allowed region in (11).
3: for t = 0, ..., Ntimestep − 1 do
4: Step 1. IRS channel sounding and reconfiguration. The IRS meta-

atoms are tuned following {qm[t]}Mm=1.
5: Step 2. Codeword selection at BS. The BS determines m?[t] =

arg max
m∈{1,...,M}

R(qm[t], t).

6: Step 3. Feedback to IRS and IRS final configuration. The BS feeds
back the index m?[t] ∈ {1, ...,M} to the IRS with total dlog2 Me
feedback bits. The IRS tunes the meta-atoms with q?[t] = qm?[t][t]
for data transmission period.

7: Step 4. Data transmission and IRS codebook update. The IRS
obtains C[t+ 1] according to (12).

8: end for

A. Random Adjacency (RA) Approach

One of the natural ways to construct an adaptive codebook is
to use random perturbation-based methods used in obtaining
the solutions to beamforming design [29], which determine
the current solution by adding a random perturbation to the
previous solution. We accordingly propose a random adja-
cency (RA) approach, which can be viewed as a random
perturbation-based method for codebook design, to solve the
optimization (10)-(11). Since the optimization (10)-(11) is
conducted successively over time in time-correlated channels,
the optimal solutions in adjacent time blocks are expected to be
close to one another. The RA approach exploits this intuition
by generating multiple solution candidates (for the codebook
at time t + 1) around the previous solution. The codebook
resides and is updated at the IRS, which requires no feedback
overhead for the codebook update. The feedback is only used
to transfer the index of the best codeword deployed for data
transmission in each coherence time in Step 3 in Sec. III-B.

Formally, the IRS obtains the codebook C[t+1] = {qm[t+
1]}Mm=1, where the m-th codeword is updated by adding a
random perturbation zm[t] ∈ RNIRS to the previous solution
q?[t] (obtained in Step 4 in Sec. III-B) as

qm[t+1] = clip(q?[t]+zm[t], [Cmin, Cmax]), m ∈ {1, ...,M},
(12)

which we call the RA update for the m-th codeword. Here,
clip(·, [Cmin, Cmax]) is an element-wise clip function ensuring
constraint (11). Each entry of zm[t] is generated from the
uniform distribution U(−δ, δ), where δ is the maximum step
size for the entry update. The RA approach is summarized in
Algorithm 1.

The codebook update by the RA approach incurs a small
computation and communication overhead, which will be
discussed in Sec. IV-C and IV-D. Intuitively, it becomes more
effective as the number of codewords M grows larger since
more random points increase the chance of obtaining better
codewords. However, M is limited due to the non-negligible
IRS reconfiguration time and finite coherence time. This makes
the performance of the RA approach restricted due to the
nature of the randomness and motivates us to develop the next
codebook update algorithm.
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B. DNN Policy-based IRS Control (DPIC) Approach

DNNs have been exploited to capture implicit features in
the observed data. Motivated by this, we propose a DNN
policy-based IRS control (DPIC) approach, aiming to learn
policies for updating the codebook using the history of ob-
servations. In DPIC, the codebook resides both at the IRS
and BS, and the IRS updates the codebook via information
reception from the BS through the feedback link. We consider
that each codeword is updated independently based on its
prior deployments. Henceforth, without loss of generality,
we focus on the updates of the m-th codeword. Note that
having individual codeword updates substantially reduces the
input/output dimension of the DNN as compared to updating
the codebook as a whole (i.e., conducting the learning on the
concatenation of all the codewords as a large vector), which
enhances learning efficiency. We will first describe the overall
procedure for the codeword updates at the IRS and BS in
Sec. IV-B1. Since the codeword update is a successive decision
making process (Sec. IV-B2), we formulate it as a Markov
decision process (MDP) in Sec. IV-B3. We then develop our
learning architecture for training (Sec. IV-B4) and utilization
(Sec. IV-B5).

1) Low Overhead IRS Control via Direction Codebook:
We first introduce a fixed direction codebook D = {dk}Kk=1

where dk ∈ RNIRS , k = 1, ...,K, is a direction vector,
representing the variation of the capacitance vector to be used
for the codeword update. The BS only transmits the index
of a direction vector in D to the IRS, which enables low
feedback overhead for the codeword update. We assume that
D is generated once at the beginning of the policy learning and
shared at both the BS and IRS. For simulations in Sec. V, D is
constructed via RVQ. The BS, as a processing entity, employs
a learning architecture consisting of a DNN policy and a
subsequent quantization process. In the learning architecture,
the BS obtains the vector um[t] ∈ RNIRS as an output of the
DNN policy, and finds the index km[t] ∈ {1, ...,K} through
the subsequent quantization process, such that dkm[t] in D is
the most similar to um[t]. The BS then feeds back the index
km[t] to the IRS, and the IRS uses the index to recover dkm[t]

from D and then updates the m-th codeword as

qm[t+1] = clip(qm[t]+dkm[t], [Cmin, Cmax]),m ∈ {1, ...,M},
(13)

which we call the DPIC update for the m-th codeword.
2) Successive Decision Making for Codeword Update: Our

learning architecture consists of two phases: training phase
and utilization phase. In the training phase, the BS aims to
train the DNN policy to have an improved um[t] over time,
while in the utilization phase the BS exploits the trained DNN
policy without additional training. In both phases, the BS first
determines um[t] with the DNN policy based on the current
information (i.e., the codeword qm[t] in use and the effective
channel heff(qm[t], t)). Subsequently, the BS quantizes um[t]
to get the index km[t] as described in Sec. IV-B4&IV-B5. The
BS then feeds back km[t] to the IRS, from which the IRS
obtains the next codeword qm[t + 1] through (13). The next
codeword affects the subsequent information at the BS (i.e.,
qm[t+1] and heff(qm[t+1], t+1)). The codeword update can

thus be formulated as a successive decision making process
(Sec. IV-B3).

3) Markov Decision Process (MDP) for Codeword Update:
We construct an MDP for the codeword update at the BS learn-
ing architecture with the following state, action, and reward.

State. The state consists of information pertinent to the
environment evolution, defined by

sm[t] = {heff(qm[t], t),qm[t]} ∈ S = R2NBS+NIRS ,

m ∈ {1, ...,M}, (14)

where the real and imaginary parts of heff(qm[t], t) are stored
as separate state dimensions.

Action. The action is the continuous direction vector um[t]
described as

am[t] = um[t] ∈ A = [−δ, δ]NIRS , m ∈ {1, ...,M}, (15)

where each entry of the action is bounded to the maximum
step size, i.e., [−δ, δ] ⊂ R. The action am[t] is used to
determine the index km[t] based on different processes in
training (Sec. IV-B4) and utilization (Sec. IV-B5) phases. The
next codeword qm[t+ 1] is then obtained from km[t] by (13).

Reward. The reward provides an efficacy for desirable
policy learning by evaluating an action at a given state. We
subsequently define the MDP reward as

rm[t] = R(qm[t+1], t+1)−νNclip,m[t] ∈ R, m ∈ {1, ...,M},
(16)

where R(qm[t + 1], t + 1) denotes the data rate measured at
time t+1 using codeword qm[t+1] and Nclip,m[t] denotes the
number of clipped elements/dimensions in the vector qm[t] +
dkm[t] ∈ RNIRS that hit the clipping threshold in (13). In (16),
ν > 0 is a weight parameter to match the order-of-magnitude
of R(qm[t+1], t+1) and Nclip,m[t], which we will investigate
experimentally in Sec. V-E. νNclip,m[t] is added as a penalty
to avoid actions that result in the capacitance vectors outside
of the allowed region. Note that the reward rm[t] is obtained
at the next time t+ 1 since the data rate R(qm[t+ 1], t+ 1)
is calculated at time t+ 1.

Based on the state, action, and reward, the MDP is defined
as a tuple (S,A,Ra

s , P
a
s,s′ , γ), where P a

s,s′ = Pr
[
sm[t+ 1] =

s′
∣∣sm[t] = s,am[t] = a

]
is the state transition probability for

moving from state s to s′ via action a, Ra
s = E

[
rm[t]

∣∣sm[t] =
s,am[t] = a

]
is the reward function, and γ is the discount fac-

tor used to take into account the rewards for the distant future.
4) Training Phase for DNN Policy Learning: We tailor a

deep reinforcement learning (DRL) methodology to train the
DNN policy with the formulated MDP. We assume that the
BS trains MA ≤M different learning architectures, which are
referred to as agents. We consider that each agent is trained
with a single codeword, where the codewords across the agents
are non-overlapping. Thus MA codewords are used during the
training phase of DPIC. Let MA ⊂ {1, ...,M} denote the
indices of the codewords associated with learning agents with
|MA| = MA. We will use m to denote a codeword and its
associated agent interchangeably. We consider that agent m ∈
MA has the DNN policy π(sm[t]; wπ,m), which outputs the
continuous vector um[t] ∈ RNIRS given state sm[t], where
wπ,m is the respective DNN weight parameters.
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Behavior policy. We refer to π(sm[t]; wπ,m) as a target
policy, which is different from the behavior policy that deter-
mines the actual action applied to the environment. The actual
action of the agent m (i.e., dkm[t] in (13)) is determined at
the BS via the two following steps. First, the BS adds the
random noise vector vm[t] to the output of the target policy
π(sm[t]; wπ,m) to have more diverse responses and avoid
getting trapped in local optima during training [44], where
vm[t] ∼ N (0, ε[t]I) with ε[t] denoting the exploration noise
variance. We then use the clip function to confine the output
result to the feasible action space. Second, the BS performs
the quantization process, through which the BS determines the
index km[t] ∈ {1, ...,K}, such that the direction vector dkm[t]

is closest to the output of the first step in Euclidean distance. In
other words, the behavior policy µD,π(sm[t]), yielding km[t]
as an output, is represented as
km[t] = µD,π(sm[t]) = arg min

k∈{1,...,K}

∥∥clip(π(sm[t]; wπ,m)

+ vm[t], [−δ, δ])− dk
∥∥

2
. (17)

DNN policy learning with actor-critic network. For
DNN policy learning, we exploit the actor-critic network
using DNNs as function approximators that can learn policies
in continuous state and action spaces [45]. The actor-critic
network consists of an actor network and a critic network,
where the former selects an action using a policy and the later
evaluates/criticizes the action to guide the actor network to
take better actions over time. First, for a given policy π(·), we
define the action-value function, called Q-function, with the
discount factor γ as

Qπm(s,a) = Eξ
[∑∞

i=0
γirm[t+ i]

∣∣sm[t] = s,am[t] = a, π

]
,

(18)
where ξ encapsulates the state transition probability P a

s,s′

and reward function Ra
s . Using Qπm(s,a), we define the

performance objective [46] as

Jµm(π) =

∫
S
ρµm(s)Qπm(s, π(s; wπ,m))ds

= Es∼ρµm
[
Qπm(s, π(s; wπ,m))

]
, (19)

where Jµm(π) denotes the expected cumulative discounted re-
ward over all the states when the state trajectory is provided by
behavior policy µ. Here, ρµm(s) =

∫
S
∑∞
i=1 γ

i−1p1(s̃)p(s̃ →
s, i, µ)ds̃ is the discounted state distribution where p(s̃ →
s, i, µ) denotes the probability density at state s after transi-
tioning for i time steps from state s̃ under behavior policy
µ, and p1(s̃) is the probability density of the initial state
distribution. The objective is to design the target policy π
(i.e., the DNN parameters wπ,m, m ∈MA), such that Jµm(π)
is maximized. To achieve this, the learning for the DNN
parameters is conducted by the gradient-based update as

wπ,m ← wπ,m − απ∇wπ,mJ
µ
m(π), (20)

where ∇wπ,mJ
µ
m(π) ≈ Es∼ρµm

[
∇wπ,mπ(s; wπ,m)∇aQ

π
m(s,

a)|a=π(s;wπ,m)

]
denotes the deterministic policy gradient

(DPG), the derivation of which is detailed in [46], and απ
is the learning rate.

We define another DNN as a function approximator for
the Q-function, i.e., Q(s,a; wQ,m) ≈ Qπm(s,a), with the

parameters wQ,m, which is used to calculate the gradient in
(20). We obtain Q(s,a; wQ,m) using Q-learning [44], [46] by
minimizing the following loss function

Lm = E
[
(y −Q(s,a; wQ,m))2

]
, (21)

where the target value y is given by y = r +
γQ(s′, π(s′; wπ,m); wQ,m). Here, s′ and r are the next state
and the reward obtained from the environment by taking
action a given state s, respectively. The learning for wQ,m

is followed by the gradient-based update as
wQ,m ← wQ,m − αQ∇wQ,mLm, (22)

where αQ is the learning rate and ∇wQ,mLm = −E
[
(y −

Q(s,a; wQ,m))∇wQ,mQ(s,a; wQ,m)
]
.

Using large and non-linear function approximators, such
as DNNs, for reinforcement learning has been known to
cause learning instability [44]. We make use of the strategies
proposed in [45] to stabilize the learning. First, we use a replay
buffer Bm to save the tuple (sm[t],am[t], rm[t], sm[t + 1])
over time, and conduct the training for π(s; wπ,m) and
Q(s,a; wQ,m) via mini-batch learning with Nbatch sam-
ples, (si,ai, ri, s

′
i), i = 1, ..., Nbatch, randomly chosen from

Bm. This makes the samples chosen for learning uncorre-
lated which leads to learning stability. Second, for updat-
ing Q(s,a; wQ,m), soft target updates are used to improve
learning stability by making the target value y in (21) slowly
varying. This is enabled by constructing two additional DNNs,
called copied networks: the copied policy π(s; wcp

π,m) with
parameters wcp

π,m, and the copied Q-function Q(s,a; wcp
Q,m)

with wcp
Q,m, for m ∈ MA. That is, we obtain the target

value yi (corresponding to the i-th sample) as yi = ri +
γQ(s′i, π(s′i; w

cp
π,m); wcp

Q,m). Through the mini-batch learning,
the gradients in (20) and (22) are approximated as
∇wπ,mJ

µ
m(π) ≈

∑Nbatch

i=1
∇wπ,mπ(si; wπ,m)

×∇aQ(si,a; wQ,m)|a=π(si;wπ,m), (23)

∇wQ,mLm ≈ −
∑Nbatch

i=1
(yi −Q(si,ai); wQ,m)

×∇wQ,mQ(si,ai; wQ,m). (24)

The copied networks are then updated with the soft target
update parameter τ as

wcp
π,m ← τwπ,m + (1− τ)wcp

π,m,

wcp
Q,m ← τwQ,m + (1− τ)wcp

Q,m. (25)

Fig. 3 depicts the workflow for training each agent m. We
have so far focused on the training process of each agent m,
m ∈MA. Prior to training, the BS determines the number of
agents trained, i.e., MA = |MA|. The BS can train as many
agents as possible, i.e., MA = M , or MA < M , while the rest
of the M −MA codewords are updated by the RA update, of
which indices form the setMRA = {1, ...,M}\MA. Training
different numbers of agents leads to different performance
(see Sec. V) and incurs different computation/communication
overhead (see Sec. IV-C&IV-D). The overall algorithm for
training MA agents is given in Algorithm 2.

5) Utilization Phase with Trained DNN Policies: In the
utilization phase, we utilize the trained agents to conduct the
codebook update without additional training of the agents.
Among M codewords, we can select MDPIC codewords to be
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Fig. 3: The workflow for training each agent m in our limited feedback protocol. The agent collects the training data, updates the DNN
policy (actor network) and DNN Q-function (critic network) in the actor-critic architecture via mini-batch learning, selects the action via the
behavior policy, and feeds back the direction index to the IRS.

Algorithm 2 Training MA agents with actor-critic architecture
in the proposed protocol

1: Input. Nepisode (the number of learning episodes), Ntimestep (the du-
ration of each episode), ε0 = (Cmax−Cmin)/5 (the initial exploration
variance), εmin = ε0/300 (the minimum exploration variance) Cmin,
Cmax, MA, and MRA.

2: Initialize wQ,m, wπ,m, wcp
Q,m, and wcp

π,m for the DNN networks.
Empty the replay buffer Bm, m ∈ MA. The direction codebook D =
{dk}Kk=1 is shared at both the BS and the IRS.

3: for e = 0, ..., Nepisode − 1 do
4: Randomly generate the codebook C[0] = {qm[0]}Mm=1 satisfying

(11). Update εe = max{εmin, 0.99εe−1}, if e ≥ 1.
5: for t = 0, ..., Ntimestep − 1 do
6: Step 1. IRS channel sounding and reconfiguration. The IRS

meta-atoms are tuned following {qm[t]}Mm=1.
7: Step 2. Codeword selection and inference at BS. The BS deter-

mines the index m?[t] = arg max
m∈{1,...,M}

R(qm[t], t). Each agent

m, m ∈MA, at the BS forms sm[t] = {heff(qm[t], t),qm[t]}
and determines km[t] = µD,π(sm[t]) using (17), where
vm[t] ∼ CN (0, εeI).

8: Step 3. Feedback to IRS and IRS final configuration. The
BS feeds back m?[t] and {km[t]}m∈MA

to the IRS with
dlog2Me+MAdlog2Ke feedback bits. The IRS tunes the meta-
atoms with q?[t] = qm?[t][t] for data transmission.

9: Step 4. Data transmission, IRS codebook update, and BS
training. The IRS updates C[t+ 1] = {qm[t+ 1]}Mm=1, where
the DPIC update is conducted by (13) for m ∈ MA, and the
RA update by (12) for m ∈MRA. Each agent m ∈MA at the
BS computes rm[t − 1] using (16), stores (sm[t − 1],am[t −
1], rm[t − 1], sm[t]) in Bm, samples (si,ai, ri, s

′
i) from Bm,

and updates the DNN networks through (20), (22), (23)-(25).
10: end for
11: end for

updated by the DPIC update in (13) and MRA codewords to be
updated by the RA update in (12), where M = MDPIC+MRA.
We develop four different strategies with different selections
of MDPIC and MRA:
a) MDPIC = M and MA = 1: a single agent handles M

Algorithm 3 DNN policy-based IRS control (DPIC) approach
in the utilization phase.

1: Input. Ntimestep (the duration of the algorithm), Cmin, Cmax,
MDPIC, and MRA = {1, ...,M} \MDPIC.

2: The IRS randomly generates the codebook C[0] = {qm[0]}Mm=1
satisfying (11). The BS and IRS share D = {dk}Kk=1.

3: for t = 0, ..., Ntimestep − 1 do
4: Step 1. IRS channel sounding and reconfiguration. The IRS meta-

atoms are tuned following {qm[t]}Mm=1.
5: Step 2. Codeword selection and inference at BS. The BS determines

m?[t] = arg max
m∈{1,...,M}

R(qm[t], t). Each agent m ∈ MDPIC con-

structs sm[t] = {heff(qm[t], t),qm[t]} and determines km[t] =
µD,π(sm[t]) by (17).

6: Step 3. Feedback to IRS and IRS final configuration. The BS feeds
back m?[t] and {km[t]}m∈MDPIC

to the IRS with dlog2Me +
MDPICdlog2Ke feedback bits. The IRS tunes its meta-atoms with
q?[t] = qm?[t][t] for data transmission.

7: Step 4. Data transmission and IRS codebook update. The IRS
updates C[t + 1] = {qm[t + 1]}Mm=1, where the DPIC update is
conducted by (13) for m ∈MDPIC, and the RA update by (12) for
m ∈MRA. The BS calculates and stores {qm[t+ 1]}m∈MDPIC

.
8: end for

codeword updates. We call this case as single-agent DPIC
(SDPIC).

b) MDPIC = M and MA > 1: multiple agents handles M
codeword updates. We call this case as multi-agents DPIC
(MDPIC).

c) MDPIC<M and MA =1: a single agent handles MDPIC

codeword updates while MRA = M−MDPIC codewords
are updated by the RA update. We call this case as
RA+SDPIC.

d) MDPIC <M and MA > 1: multi-agents handles MDPIC

codeword updatse while MRA = M−MDPIC codewords
are updated by the RA update. We call this case as
RA+MDPIC.



10

When multiple codewords are updated with multiple agents
in MDPIC and RA+MDPIC, the BS allocates/partitions the
codewords among the agents.6 Let MDPIC with |MDPIC|=
MDPIC denote the set of indices of the codewords updated by
the DPIC update during the utilization phase. We let j[m]∈
MA denote the agent handling the codeword m∈MDPIC.
We take a simple round-robin strategy to allocate the code-
words among the trained agents. If MA≤MDPIC, some of
the agents may handle multiple codewords. If MA>MDPIC,
some trained agents are not used while each of the rest takes
charge of one codeword independently. Utilizing more agents
often improves performance due to the ensemble learning
principle [47]. During the utilization phase, for the m-th
codeword update, the BS determines km[t] by using vm[t] = 0
(no random noise addition) and wπ,j[m] (instead of wπ,m)
in (17). While we refer to the aforementioned four cases
as DPIC approaches, we only refer to MDPIC, RA+SDPIC,
and RA+MDPIC as augmented DPIC approaches (SDPIC is
excluded). The pseudo-code of the DPIC approach is given
in Algorithm 3.

C. Computational Complexity and Group Control
We analyze the computational complexity measured in

number of elementary operations performed by our algorithms
at the BS and IRS in each channel coherence block. We first
consider the RA approach (see Algorithm 1). In line 5, the BS
calculates the data rate with the measured effective channel
over a total of M codewords with O(MNBS) complexity.
In line 7, the IRS updates the codebook with O(MNIRS)
complexity.

We next consider the DPIC approach. The BS employs MA

agents each having four DNNs. For each DNN, we consider a
fully connected neural network with two hidden layers, which
have L1 and L2 neurons, respectively. For the DNN policy and
copied DNN policy, the sizes of the input and output layer are
2NBS+NIRS and NIRS, respectively. For the DNN Q-function
and copied DNN Q-function, the sizes of the input and output
layer are 2NBS +NIRS and 1, respectively. The actions are in-
cluded at the second hidden layer. We first consider the training
phase in Algorithm 2. In line 7, the BS infers km[t] with the
agent m, m ∈ MA. The computational complexity for total
inference with MA agents is thus O(MA((2NBS+NIRS)L1+
L1L2+L2NIRS+KNIRS)), which includes the quantization
process for each inference with O(KNIRS) complexity. In
line 9, the complexity to train the MA agents each with mini-
batch size Nbatch isO(MANbatch((2NBS+NIRS)L1+L1L2+
L2NIRS)), which includes the updates for the DNN policy and
DNN Q-function conducted via back-propagation and for the
copied DNN policy and copied DNN Q-function conducted
via soft target update. At the IRS, in line 9, the codebook
update has the complexity of O(MNIRS). The computational
complexity at the BS and IRS during the utilization phase
is the same as that of the training phase with excluding the
process of training the DNNs.

6Since the agents use identical learning structures, the data rate performance
is mostly affected by the number of employed agents rather than different
codeword-agent allocations among the same number of agents. We will see
in Sec. V that increasing the number of agents improves data rate performance
due to ensemble learning.

From individual meta-atom control to group control.
Since the number of meta-atoms NIRS is typically large,
individual control for meta-atoms would incur high compu-
tational overhead at the BS and the IRS. To further reduce the
computational overhead, we can consider a group control [17],
where IRS meta-atoms are partitioned into multiple groups and
the same capacitance is applied for the meta-atoms belonging
to the same group. We denote the number of groups as
NG, where NG < NIRS. We then focus on controlling NG

capacitance values to configure NIRS meta-atoms over the
meta-surface. This implies that we can reduce the dimension
of the design variables, i.e., capacitance vector and codeword,
from NIRS to NG. Then, the computational complexity is
reduced by replacing NIRS with NG in the complexity formula
that we provided above. Furthermore, due to the group control,
the DNN policy learning can be stabilized since the DNN
policy learning has been successful when the action space
size is not prohibitively large [45]. Due to these benefits, we
incorporate the group control for our simulations in Sec. V.

D. Time Overhead and Effective Data Rate
The implementation of our methods incurs (i) computation

time, (ii) communication time, and (iii) IRS reconfiguration
time overheads. For the computations carried out during RA
and DPIC, it is reasonable to assume that the BS calculates
the data rate over M codewords within the time duration for
M IRS reconfiguration by using its high computing power
and that the IRS updates the codebook within the data trans-
mission time. Also, in DPIC, we assume that the BS with
high computational capabilities can conduct the total inference
within M IRS reconfiguration time and the training in each
coherence time. We accordingly neglect the computation time
overhead and only focus on the communication time and IRS
reconfiguration time.

We define the time overhead Tp as the total time consump-
tion except for data transmission shown in Fig. 2, given by

Tp = MTreconf + Tfeedback + Tfinal. (26)

First, MTreconf denotes the total time for M IRS reconfigu-
ration used in both RA and DPIC approaches, where Treconf

is the time for each IRS reconfiguration. Second, Tfeedback =
B/Rfeedback is the time required for the feedback from the BS
to the IRS, where B is the number of feedback bits during one
coherence time Tc and Rfeedback (bits/s) is the data rate for
the feedback link. Note that B < RfeedbackTc since Tfeedback

should not exceed Tc. For the RA approach, B = dlog2Me for
the feedback of m?[t] ∈ {1, ...,M}. For the DPIC approach,
during the utilization time, B = dlog2Me+MDPICdlog2Ke
for the feedback of m?[t] and {km[t]}m∈MDPIC

. During the
training period of DPIC, B = dlog2Me + MAdlog2Ke.
Lastly, Tfinal denotes the execution time of the final IRS
reconfiguration in Step 3 in Sec.III-B. If the selected index
m?[t] coincides with the last configuration in Step 1, the IRS
does not need to change the configuration, i.e., Tfinal = 0;
otherwise Tfinal = Treconf .

To measure the average data rate during one coherence time
Tc under time-varying channels, we introduce a performance
metric, called effective data rate, according to
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(a) Phase shift ∠Γ(C, θ) (b) Attenuation |Γ(C, θ)| (c) System configuration (top view)

Fig. 4: The IRS phase shift and attenuation data in (a) and (b), and the system configuration in (c).

Reff [t] =
Tc − Tp
Tc

log2

(
1 +

P‖heff(q?[t], t)‖22
σ2

)
, (27)

where Tc−Tp is the actual data transmission time and q?[t] ∈
C[t] is the selected codeword for the final IRS configuration.
The effective data rate captures the tradeoff between the data
rate and the time overhead Tp. As M grows large, the data
rate may increase due to the larger number of reconfigurations.
However, as M increases, Tp also increases and, thus, Reff [t]
may decrease. In Sec. V, we evaluate the data rate and effective
data rate under different M .

V. NUMERICAL EVALUATION AND DISCUSSION

In this section, we describe the simulation setup in Sec. V-A
and the channel model in Sec. V-B. We conduct simulations
for two scenarios: (i) existence of no LoS link between the UE
and IRS in Sec. V-C and (ii) existence of an LoS link between
them in Sec. V-D. The former replicates a scenario with an
indoor UE, while the later corresponds to an outdoor UE.

A. Simulation Setup

1) System parameters: To emulate realistic IRS reflection
behavior, we interpolate/extrapolate the data in Fig. 4 and Ta-
ble 1 of [14], and obtain the phase shift ∠Γ(C, θ) and attenua-
tion |Γ(C, θ)|, which are depicted in Fig. 4(a) and (b), respec-
tively. Then, we obtain Γ(C, θ) = |Γ(C, θ)| exp(j∠Γ(C, θ))
with the ranges of C and θ as (Cmin, Cmax) = (0.4, 2.7)
pF and (0o, 90o), respectively. We follow the same simulation
setup as in [14] to utilize the reflection coefficients. We set
f = 5.195 GHz and consider only azimuth coordinates. We
consider Tc = 5 ms, NBS = 5 and NIRS = 200, where the
number of meta-atoms over the width and height of the IRS
are NIRS,w = 50 and NIRS,h = 4, respectively. We consider a
group control with NG = 10, where (NIRS,w/NG) × NIRS,h

(i.e., 5 × 4) meta-atoms are controlled by each common
capacitance. The distance between adjacent BS antennas is
dBS = λ/2, and the distance between adjacent IRS meta-
atoms is dIRS = λ/10, where λ = c/f is the wavelength
and c is the speed of light. Fig. 4(c) illustrates the system
configuration for our simulations, where the BS, IRS, and UE
are assumed to have the same height [3], [6], [7]. The BS
and IRS are located at xBS = (0, 0) m and xIRS = (90, 30)
m, respectively. The initial UE position xUE[0] is randomly
generated within the circle with radius r = 5 m at the center
point (100, 0) m. The UE is moving with the velocity vUE = 3
km/h and constant azimuth angle η over time, i.e., xUE[t] =
xUE[t − 1] + vUETc[cos η, sin η]T , where η ∼ U(0, 2π) is

generated. We set P = 20 dBm, σ2 = −80 dBm, and
Rfeedback = 106 bits/s. To have more realistic results, we
consider a noisy version of the effective channels in (6).
Also, we set Treconf = 100µs [30], unless otherwise stated.
Therefore, we conduct simulations with different Treconf in
Figs. 5(d)&6(d).7

2) Parameters for the proposed algorithms: For the RA
algorithm, we set δ = (Cmax − Cmin)/5. For the DPIC
algorithm, we set γ = 0.9, ν = 1, Nbatch = 32, and
|Bm| = 5 × 105, m ∈ MA. We consider L1 = 400 and
L2 = 300 for the DNNs with ReLU activation function.
We employ the Adam optimizer for training. We consider
απ = 3 × 10−4, αQ = 3 × 10−3, and τ = 0.005. For the
DNN policy, the input and output size is 2NBS + NG = 20
and NG = 10, respectively. In the output layer, the tanh
function is employed, and the output is subsequently scaled
by δ = (Cmax−Cmin)/4 to be bounded within [−δ, δ]. We set
|D| = K = 2048, where each codeword in D is constructed by
RVQ ranging within [−δ, δ]NG .8 For the DNN Q-function, the
input and output sizes are 20 and 1, respectively. We normalize
the values for the state and action to match with the scale of
the values, such that heff(·) ←

√
P/(σ2NBSNG)heff(·) and

qm ← 1012qm in (14), and am ← 1013am in (15).
B. Models for Channels and Their Variations

We adopt a multi-path geometric channel model [33] for
the IRS-BS, UE-BS, and UE-IRS channels. In this model, a
vector channel h[t] is constructed as the sum of the signals
over multiple paths as h[t] =

∑
` h`[t] where the `-th path

channel h`[t] is constructed with the path gain g`[t] and the
angle (angle of arrival (AoA) or angle of departure (AoD))
θ`[t] as h`[t] = g`[t]ARV(θ`[t]) with the array response vector
ARV(θ`[t]). Subsequently, a matrix channel is constructed
similarly with path gains, AoAs and AoDs of multiple paths.
To model channel variations, we consider that g`[t] evolves
over time according to a first-order Gauss-Markov process
[48], and θ`[t] varies via random perturbation addition given by

g`[t] = ρg`[t− 1] +
√

1− ρ2ν`[t],

7The reconfiguration time of IRS is determined by the characteristics of
the control board and the internal communication between the control board
and the meta-surface. The reconfiguration speed is typically known to be a
few kHz [30].

8Given M , we can determine K experimentally by implementing the agents
with different values of K for a short period of time in the beginning of
the utilization phase, obtaining their corresponding data rates, calculating the
effective data rates using (26)-(27), and choosing the value of K (for the rest
of the utilization phase) that has the highest performance.
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θ`[t] = θ`[t− 1] + ∆θ`[t]. (28)

In (28), the time correlation coefficient ρ obeys the Jakes
model [48], i.e., ρ = J0(2πfdTc), where J0(·) is the zeroth
order Bessel function of the first kind and fd = vf/c is the
maximum Doppler frequency corresponding to the velocity v
of the UE or scatterer. For simulations, we set v = 3 km/h and
accordingly obtain ρ = 0.95. Also, ∆θ`[t] ∼ U(−0.1o, 0.1o),
and we set ν`[t] ∼ CN (0, β[t]) and g`[0] ∼ CN (0, β[0]) with
β[t] denoting the instantaneous large-scale fading factor, which
is defined with Euclidean distance d[t] between two network
elements as

β[t] = β0 − 10α log10(d[t]/d0) (dB), (29)

where β0 = −30 dB is the path loss at distance d0 = 1 m [3],
[6] and α is the path loss exponent.

1) IRS-BS channel: Since the IRS is deployed to have an
LoS path to the BS [4], [5], we model the IRS-BS channel
with the Rician channel [33] as HIB[t] =

√
KIB

1+KIB HIB
0

+
√

1
1+KIB

∑LIB

`=1 HIB
` [t] where KIB = 5. The LoS channel

HIB
0 is characterized by the AoA and AoD, set to 0o and
−60o, respectively. The number of non-LoS (NLoS) paths is
LIB = 10. The variations of the path gain, AoA, and AoD
for each NLoS channel HIB

` [t] are modeled by (28), where
the initial AoA and AoD are generated from U(−90o, 90o).
The large-scale fading coefficient is modeled by (29) using the
fixed distance between the IRS and the BS, and α = 2.

2) UE-BS channel: Assuming that there exists a blockage
between the UE and the BS, we model the UE-BS channel
with only NLoS signals as hUB[t] =

∑LUB

`=1 hUB
` [t], where

LUB = 10. The variations of the path gain and AoA for each
channel hUB

` [t] are modeled by (28), where the initial AoA is
generated from U(−90o, 90o). The large-scale fading factor is
modeled by the varying distance between the UE and the BS,
and α = 3.75.

3) UE-IRS channel: We consider two different scenarios.
In the first scenario, there exists no LoS link between the UE
and the IRS, for which we model the UE-IRS channel with
only NLoS signals as hUI[t] =

∑L
`=1 hUI

` [t] where L = 10.
The variations of path gain and AoA for each channel hUI

` [t]
are modeled by (28), where the initial AoA is generated from
U(0o, 90o). The large-scale fading factor is modeled by the
varying distance between the UE and the IRS, and α = 2.2.
In the second scenario, there exists an LoS between the UE and
IRS, for which we model the UE-IRS channel with the Rician
channel as hUI[t] =

√
KUI

1+KUI h
UI
0 [t] +

√
1

1+KUI

∑L
`=1 hUI

` [t],
where KUI = 1 and L = 10. The LoS channel hUI

0 [t] is
varying according to the UE movement described in Sec.V-A1
modeled via the changing AoA and distance between the UE
and the IRS. The NLoS channel hUI

` [t] is modeled as in the
first scenario.

C. Scenario 1. No LoS Link between the UE and the IRS

Scenario 1 represents an indoor UE, which does not have
a LoS link to the IRS. We first evaluate the performance of
the proposed algorithms in the utilization phase with 2000
episodes, where each episode contains 30 timesteps (coherence

blocks). Each episode has different realizations of the UE-
IRS channel, UE-BS channel, IRS-BS channel, UE initial
location, and UE moving direction. Our baseline method is
the RVQ codebook described in Sec. III-C, denoted by “RVQ”
in the figures. For benchmarking purposes, we consider an
experimental upper bound obtained by conducting 104 random
searches over the solution space [Cmin, Cmax]NG and selecting
the solution maximizing the data rate. The specific configura-
tion of the proposed schemes is MA = 1 for SDPIC, MA = 8
for MDPIC, MA = 1, MDPIC = 1, and MRA = M − 1
for RA+SDPIC, and MA = 4, MDPIC = min{M,MA}, and
MRA = M −MDPIC for RA+MDPIC.

Fig. 5(a) shows the average data rate along the
timesteps over 2000 episodes. The proposed schemes – RA,
RA+MDPIC, and MDPIC – update the codebook adaptively at
every timestep t by using current observations (i.e., previously
used codewords, effective channels, and data rates) to improve
the data rate for the next timestep t+ 1. The performances of
the proposed schemes are improved over time and converge
only within 4-5 timesteps. Overall, as the number of IRS
reconfigurations M increases, a higher data rate is achieved.
Interestingly, RA+MDPIC yields better data rate compared to
that of MDPIC and RA because the multiple trained agents
give good update directions, and RA further improves the per-
formance via random exploration around the previous solution.
Fig. 5(b) shows the data rate along M , where each data point is
averaged over 2000 episodes and 30 timesteps. MDPIC yields
a better data rate than that of SDPIC, due to the advantage
of using multiple agents. Among the methods, RA+MDPIC
yields the best performance as the same in Fig. 5(a). We see
that RA+MDPIC obtains within 10% of the performance of
the experimental upper bound as the number of timesteps and
reconfigurations increases, indicating strong performance.

Fig. 5(c) shows the effective data rate along M . The
effective data rate in (27) captures the tradeoff between the
data rate and the time overhead. As M gets large, the data rate
may increase due to having larger number of reconfigurations;
however, at the same time, a larger M increases the total
time overhead. RA+MDPIC shows the best performance in
effective data rate for any M . We obtain the highest effective
data rate when M? = 2 or M? = 4 depending on the
method. As M grows larger than 2 or 4, the increased time
overhead outweighs the improvement of the data rate, leading
to the decrease of the effective data rate. This finding agrees
with recent results from [19], where the performance of the
overhead-aware metric is degraded as the overhead for the
channel sounding and feedback increases. Fig. 5(d) shows the
effective data rate of RA+MDPIC along M with different
Treconf . For Treconf = 20, 50, 100, 150µs, the best M yielding
the highest effective data rate is M? = 12, 8, 2, 2, respectively.
For larger Treconf , smaller M is preferred since a large Treconf

implies a large time overhead for each IRS reconfiguration.
For smaller Treconf , larger M is preferred since more IRS
reconfiguration increases the data rate. Although finding opti-
mal M? in advance is challenging due to the difficulty of the
analysis on agents’ inferences, we could set a proper range of
M empirically from the value of Treconf .

We next focus on the training phase with 1000 episodes
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(a) Data rate along timesteps (b) Data rate along M
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(e) Effective data rate along episodes

Fig. 5: Performance evaluation of our methodology in Scenario 1. The plots in (a)-(d) correspond to the utilization phase, while the plot in
(e) describes the training phase.

each containing 500 timesteps and M = 8. Fig. 5(e) shows
the effective data rate averaged over 500 timesteps for each
episode. Each data point is a moving average over the previous
100 episodes. For the training, the BS determines the number
of agents being trained, MA. If MA =M=8, all codewords
are dedicated to training the agents, denoted by MDPIC
(MA =8). At the beginning of the training, the performance
of MDPIC is similar to RVQ but is improved over time.
If MA <M , MA codewords are dedicated to training MA

agents while M − MA codewords are updated by the RA
update, which are the cases of RA+SDPIC and RA+MDPIC
(MA = 4). These hybrid approaches use random exploration
that supplements the low initial data rate of MDPIC. The
performance of RA+MDPIC is better than that of MDPIC
despite of using less agents, even after the completion of the
training, which agrees with the result in the utilization phase
in Fig. 5(c).

D. Scenario 2. LoS Link between the UE and the IRS
Scenario 2 represents an outdoor UE with an LoS link to the

IRS, for which we follow the same order of the simulations
and the same configuration for the proposed schemes as in the
previous scenario. While the UE-IRS channel in Scenario 2 is
subject to less variations than in Scenario 1, it still corresponds
to a dynamic environment which is challenging to address,
because the LoS channel between the UE and IRS is different
per episode due to the different UE position and varies over
timesteps due to the UE mobility.

We consider 2000 episodes each containing 30 timesteps
for the utilization phase. Fig. 6(a) shows the average data rate
along the timesteps over 2000 episodes. The performances
of the proposed schemes are improved and converge only
within 4-5 timesteps. RA+MDPIC and MDPIC yield better
performances than other methods by a large margin due to the

exploitation of the multiple trained agents. Fig. 6(b) shows the
data rate along the number of IRS reconfiguration M , where
each data is averaged over 2000 episodes and 30 timesteps.
MDPIC is slightly better than RA+MDPIC, while the opposite
is the case in Scenario 1. One possible explanation for this is
that the agents can learn better in less complex environments;
the channel variations in Scenario 2 are less complex than in
Scenario 1, because the channel is mainly dominated by the
LoS path signal. Thus, relying on more agents, i.e., MDPIC,
may yield better performance. Also, due to this fact, the data
rate performances in Scenario 2 are closer to the upper bound
than in Scenario 1, with MDPIC reaching within 5%.

In Fig. 6(c), MDPIC and RA+MDPIC yield better effective
data rate performances than those of RA and RA+SDPIC,
although an additional feedback overhead is required due to
the DPIC updates. However, RA+MDPIC is slightly better
than MDPIC because less agents in RA+MDPIC require less
feedback overhead for the codebook update. At M? = 2 or
M? = 4 depending on the method, the effective data rate
is the highest, which means that, as M grows larger than
2 or 4, the increased overhead outweighs the improvement
of the data rate. Fig. 6(d) shows the effective data rate
along M with different Treconf . With the same reason in
Fig. 5(d), M? would decrease as Treconf increases, where
M? = 4, 2, 2, 2 for Treconf = 20, 50, 100, 150µs, respectively.
We next focus on the training phase with 1000 episodes each
consisting of 500 timesteps and M = 8. Fig. 6(e) shows the
effective data rate averaged over 500 timesteps per episode.
Each data point is a moving average of the previous 100
episodes. Similar to Scenario 1, RA+MDPIC yields the best
performance during training.

Discussion on comprehensive strategy. Utilizing our
learning-based method, i.e., the DPIC algorithm, is preferred
for both the NLoS and LoS scenarios. In practice, the BS
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Fig. 6: Performance evaluation of our methodology in Scenario 2. The plots in (a)-(d) correspond to the utilization phase, while the plot in
(e) to the training phase.

(a) Group control with NG groups (b) Penalty scaled by ν

Fig. 7: Comparison of the data rate performance with different learning configuration parameters.

may not be aware of whether there exists an LoS link from
the UE to the IRS. The BS can thus select RA+MDPIC
as a comprehensive strategy because it yields a satisfactory
performance in either of the scenarios. RA+MDPIC also has
advantages during the training phase since (i) it only requires
just a few agents to be trained, leading to less burden for
training, and (ii) it exhibits a high performance during the
training phase.

E. Impact of Learning Configuration Parameters

Finally, we investigate the impact of different learning
configuration parameters in the DPIC scheme on the data rate
performance. The simulation parameters/setup are the same as
before, unless otherwise stated. For performance comparisons,
we employ MDPIC and consider Scenario 2 with M = 8.
Fig. 7(a) shows the data rate under different choices of the
number of groups NG with NIRS = 240. With a very large
value of NG (i.e., NG = 20), the learning process does not
result in high performance due to the large action space [45].
With a very small value of NG (i.e., NG = 5), a high
data rate is not achieved either due to the low degree of
freedom for IRS control. The performance is the highest at

NG = 10, which balances the learning effectiveness with the
degree of freedom for the IRS control. Fig. 7 (b) shows the
effect of ν in (16) on the data rate performance. Considering
the data rate ranges from 1 to 10 bits/s/Hz, ν = 0.5, 1, 2, 3
result in the same order-of-magnitude between the data rate
and the penalty value, for which we find the data rate is
notably improved. When trained with ν = 0.1, the agents
tend to output the largest action values so that the updated
capacitance stays at the boundary of the feasible capacitance
region over time. When trained with ν = 10, the agents are
strongly discouraged from outputting the actions that result in
the updated capacitance close to the boundary of the feasible
capacitance region. Thus, with either very small or very large
ν, the training for the agents is ineffective due to limited state
and action exploration. In practice, we can select NG and ν
experimentally by investigating the learning effectiveness, i.e.,
the data rate performance, under different choices of NG and
ν during the training phase of our methodology.

VI. CONCLUSION

In this paper, we introduced a novel signal model that
takes into account the practical IRS reflection behavior. To
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address the design challenges associated with the (i) practical
IRS reflection behavior, (ii) multi-path time-varying channels,
and (iii) low-overhead feedback requirement, we proposed
an adaptive codebook-based limited feedback protocol for
the IRS-assisted communication. We proposed two adaptive
codebook design approaches: random adjacency (RA) and
deep neural network policy-based IRS control (DPIC). Then,
we discussed the computational complexity of RA and DPIC.
Further, we developed several augmented schemes based on
DPIC. Throughout the simulations, we showed that the data
rate performance is improved by the proposed schemes. In
addition, we demonstrated that the average data rate over one
coherence time is degraded when the time overhead for the
IRS reconfiguration and feedback increases.
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