All-Optical Clock Recovery using Stimulated Brillouin Scattering

Ken Demarest

The University of Kansas
Information and Telecommunication Technology Center
Outline

• Various clock recovery techniques
• Stimulated Brillouin optical clock recovery
• Experimental results to date
• Concluding remarks
Transparent optical networks will require optical switches for:

- Synchronization between traffic and switches.
- Demultiplexing time channels in OTDM systems.

Why All-Optical Clock Recovery?

Nonlinear Optical Loop Mirror

Soliton Dragging Logic Gate

Clock in

Data

Data with control

Data

Clock

Timing window
Methods of Optical Clock Recovery

- Opto-electronic phase locked loops
- Mode-locked lasers
- Self-pulsations in laser diodes
- Optical tank circuits
 - Fabry-Perot filters and resonators
 - Stimulated Brillouin scattering (SBS)
Opto-Electronic Clock Recovery

Input Data (optical) → TW-LDA → BPF → PD

Δf

Optical clock → Mixer → Phase comp

f₀/n + Δf (optical)

f₀/n

f₀/n

Rate dependent component
Optical Clock Recovery-Fiber Mode
Locked Ring Laser

Data in

Phase or amplitude modulator

Rate dependent component

BPF

Isolator

Fiber line stretcher

EDFA

Filter

Clock out
Optical Clock Recovery using Self-Pulsating Diode Laser

- The self-pulsation frequency of the amplifier locks to the input bit rate
- Bit-rate dependent
Optical Recovery using Mode-locked Multi-segment Semiconductor Laser
Optical Tank Circuits

Data Filter Clock

Rate and wavelength dependent component

FSR

ω

ω

ω

ω

Information and Telecommunication Technology Center

Lightwave Laboratory
Stimulated Brillouin Scattering

The pump creates a forward propagating acoustic grating. The pump scatters off this grating with a downward Doppler shift.
Brillouin Optical Clock Recovery

Data signal in

Clock signal out

- Downshifts data by phonon frequency (f_{seed})
- Stokes wave provides amplification

Isolator

$10.9\,\text{GHz}$

80

20

Mod

Fiber

f_{data}

f_{clock}

f_{data}

f_{stokes}
Advantages of Brillouin Clock Recovery

• Bit-rate insensitive
• Clock output is stable through long periods of zeros (170 at 10 GB/s)
• Wavelength independent
Experimental Results

Data in

Output clock

1.2 ps relative jitter

Data signal in

Clock signal out

Pump

Stokes

20 km DSF fiber

20.8000 Hz

120.0 m/div 39.7 nV

120.0 m/div 39.7 nV

80

10.9GHz

Lightwave Laboratory
Jitter vs. Signal Power

Data signal in

80

20 km DSF fiber

Pump

Stokes

10.9GHz

20

Clock signal out

Jitter (ps)

Power (dBm)
Jitter vs. Number of Zeros

Diagram showing a system with pump and Stokes, 20 km DSF fiber, and clock signal output. The graph plots Jitter (ps) against Number of zeros.
Conclusions

• An all-optical Brillouin Clock has been demonstrated
• Compatible with all-optical networks
 o Bit-rate independent
 o Wavelength independent
 o Not limited by electronic speeds