
Using Portable Virtualization for Exclusively-Public Computer Users

Jon Volden
University of Kansas

Jacob Marshall
University of Kansas

Walter Goettlich
University of Kansas

Matt Comi
University of Kansas

Sarah Smith
University of Kansas

William Staples
University of Kansas

Perry Alexander
University of Kansas

Drew Davidson
University of Kansas

Abstract

Computing resources have become social and economic
necessities, but the way in which those resources are
accessed is influenced by larger issues of social and
economic inequality. Those who do not have their own
computer to access digital resources must rely on public
computing systems such as those offered by public li-
braries. These users face a unique set of challenges: their
computing lives are resource-limited, transient, and less
private and secure than those who own their computers.

In this work, we investigate usable security and pri-
vacy solutions for those who rely exclusively on public
computers. This work requires re-envisioned threat mod-
els and technical solutions that do not rely on frequently-
made assumptions about computer ownership.

1 Introduction

Many social and economic expectations of modern so-
ciety assume that individuals own a personal computer
and have high-speed internet access. When this expecta-
tion is not met, individuals must rely on shared, public
computers, such as those offered at public libraries. Nu-
merous inequalities stem from this reliance, both in the
suitability of the public computer for social and eco-
nomic expectations, and in threats to the security and
privacy of the exclusive- or primarily-public computer
user. While access to library computers is important,
their current operation does not provide the social func-
tion of a personal computer and thereby disadvantage
users reliant on these systems. One of the key limita-
tions is that the state of the machine is reset between
sessions using reboot to restore software such as Faron-
ics Deep Freeze [4]. Deep Freeze conceptually creates

a base image and restores the base image periodically
(such as when a user logs out of the public computer),
rolling back any changes made during the session. Deep
Freeze gives users a consistent software configuration,
and helps administrators to keep a “clean” image. How-
ever, the rollback is not without negative consequences
for security and privacy tools (and usability in general).
Fundamentally, many of the assumptions of “typical”
personal computer use rely on two key properties: per-
sonalization and persistence. We use personalization to
refer broadly to a user’s ability to customize his or her
computing experience; the user should be able to install
programs necessary to fulfill the task at hand and to con-
figure these tools to the extent available to a personal
computer user. We use persistence to refer broadly to
the ability of a user to maintain data, both in the form of
personalization preferences and data processed as part
of the work that they are doing.

One reality of presenting solutions to exclusively-
public computer users is that the population of such
users tends to be correlated with low socioeconomic
status and relatively low computer literacy skills. As
such, it is unrealistic to expect these users to operate
software programs that deviate significantly from what
they would use otherwise. Our experience in our user
study has shown that most users are familiar with the Mi-
crosoft Office suite, browsers such as Firefox, Chrome,
and Microsoft Explorer/Edge. Even seemingly similar
tools, such as the Google Drive suite instead of the Mi-
crosoft Office, causes difficulty for these users.

In order to address the major considerations outlined
above while still meeting the unique challenges of this
domain, we propose a prototype solution that we call the
PUPS (for personalized user privacy and security). The

1



Session 1

Host OS

Session 2

Host OS

Privacy Appliance Public Computers

Documents 
& 

Data

Workflow 
Software

Initiate workflow

suspend workflow

Guest OS

resume workflow

suspend workflow

Figure 1: The isolated environment on the USB device
allows the user to maintain private data and programs
securely across multiple public-use base computers.

PUPS is manifested as a commodity hardware storage
device (such as a USB key), loaded with customized OS-
level virtualization software and an OS image. When
the user of a public computer needs to begin a session,
they insert the PUPS into the public computer, and boot
into their virtual environment. Since the OS image and
the corresponding software travel on the device, the user
need not rely on third-party infrastructure such as a cloud
service or software on the host system in order to work
in a customized, persistent environment.

2 Overview

The PUPS is designed to offer tools and technologies
that most users have already used. From a hardware per-
spective, the use of a commodity USB key presents a
familiar analogy to users; it is the physical representation
of their personal digital space. By building on virtual
machine technology, users can leverage a familiar guest
environment without worrying about the details of the
host operating system. In our observations, library sys-
tems almost exclusively run Windows operating systems.
The most direct consequence of this observation is that
the guest machine should run Windows as well.

The PUPS Workflow: Figure 1 provides a high-level
outline for how the PUPS can be used throughout several
sessions: The user starts by inserting the PUPS device
into the public host computer. The user then invokes a
custom launcher from the mounted drive, which is visi-
ble as a startup application on the USB-mounted drive.
The PUPS contains the virtual environment and modi-
fied virtual machine, so no software is required on the
host; the launcher scans the local machine for optimal
configuration, then invokes the virtual machine applica-

tion from the USB device. Once the virtual environment
is launched, it will (by default), enter a full-screen con-
figuration to avoid confusing the user between host and
guest applications. The user may freely use applications
and data within the guest environment. When the ses-
sion ends, the user shuts down the guest environment,
retrieves and USB key, and is able to pick up on another
machine.

Deploying a specialized virtual machine via a USB
key helps to restore the key considerations of personal-
ization and persistence: the user has the ability to install
programs as desired within the guest machine without
privileges on the host machine (since those changes do
not impact the security of the host). Furthermore, since
state persists on the USB key, the changes are main-
tained across multiple work sessions and are not subject
to the restore-on-reboot behavior of the host.

The PUPS offers a unique vantage point to install a
number of personalized privacy and security tools that
would otherwise be unavailable to unprivileged users,
relying on the key factors of personalization and persis-
tence. These tools are pre-configured and installed on
the PUPS image, but they can (and in some cases, must)
continue to be updated throughout the lifetime of the
PUPS. As such, there are several benefits to the PUPS
in its current form for security and privacy: The isolated
nature of the virtual machine prevents infection from
the host, and the availability of a persistent environment
re-enables existing state-of-the-art security tools.

3 Technical Details
In this section, we discuss how implementation details
of our system, and discuss some of the protection mech-
anisms that we implemented. A number of recent de-
ployment factors have enabled the opportunity to deploy
a system like the PUPS in a practical setting. In addition
to explaining our implementation effort, we point out
some of these factors.

At its core, the PUPS is a modified version of the
hosted virtual machine monitor QEMU [1]. We took
several steps to adapt QEMU for our use case. The ma-
jority of our efforts involve configuring the virtual ma-
chine monitor to run seamlessly from the USB device, to
leverage features that improve performance without bur-
dening the user, and to disable mechanisms that are not
supported and could confuse or frustrate users. We con-
sidered other open-source alternatives to QEMU, such
as VirtualBox [2]. Consistent with prior work, we found

2



X:\qemu-system-x86_64w.exe
-hda X:\windows10.img
-boot c
-usb -device usb-tablet
-accel whpx
-machine q35
-cpu qemu64
-m 3G
-vga virtio -sdl
-full-screen

Figure 2: Example command to run the QEMU virtual
machine used within the PUPS, where X is the drive
letter assigned to the USB device.

that VirtualBox implemented a number of features that
made it faster than QEMU [3]. However, QEMU met a
number of deployment constraints not offered in other
systems: QEMU can be run without requiring runtime
administrator permissions and needs little configuration
on the host machine to run. However, failure to prop-
erly configure QEMU causes it to run so slowly as to
render the system unusable. Due to the popularity of
virtualization platforms, we believe that these features
will continue to see widespread adoption.

We implemented a small number of software mod-
ifications in order to support a more seamless UI/UX
experience when running QEMU from portable media.
We required full-screen emulation, seamless mouse and
keyboard input, and minimal user interaction required
to begin and end sessions. Along with our timing data
and profile requirements we enable features through
command line parameters that suit our needs.

Many requirements are met with simple static com-
mand line switches. However, minimizing user inter-
action requires custom software to handle the details
for the host/guest session. We use a separate program
to handle details pertaining to the host machine. This
software, simply called launcher, collects information
about the host machine and generates optimal command
parameters for that machine. Some of this information
includes memory size, total CPU cores, USB speed of
current port, internet connection, Windows Hypervisor
availability and others. Users can run the launcher’s ex-
ecutable from the USB device to begin a new virtual
session.

One key enabling technology that underlies our imple-

mentation is the improvement in USB transfer speeds.
For our prototype implementation of the PUPS, we used
the SanDisk Extreme PRO USB 3.1 (Model: SDCZ880-
128G). This product offers an advertised write speed of
380 MB/s and an advertised read speed of 420 MB/s.
Previous work profiled this type of device at lower spec-
ifications (264 MB/s write, 297 MB/s read), which is
consistent with our use case. Nevertheless, these speeds
exceed the performance of many modern HDD hard
drives; the Western Digital WD Black HDDs advertises
read and write speeds of 256 MB/s.

Although we do not consider the selection of USB
drives to be a contribution of our work, we note that
the ready availability of such devices indicates why so-
lutions such as the PUPS are timely; small, external
media can meet the transfer speeds necessary to have
a near-native performance, especially for non-memory
intensive operations.

The primary security goal of the PUPS is to protect
a population of users that typically have a low level of
technical literacy. In addition to providing a platform
that is intrinsically isolated from attacks on the public
host machine, an advantage of the PUPS approach is
that it allows the distributor of PUPS devices to pre-
load the environment with privacy-preserving, security-
enhancing tools. For our prototype deployment, we also
pre-load the browser configurations with more privacy-
conscious options, such as sending the “Do not track”
request and enabling the Privacy Badger extension to
help block privacy-invasive third parties. We note that a
key feature of the PUPS is its ability to admit persistent
customization. As such, users are entirely free to roll
back these protections; the PUPS is non-prescriptive,
but simply enforces a more private-by-default stance.
We note that the software deployed within the virtual
environment deserves significant study in its own right.

4 Evaluation

In this section we evaluate different characteristics of
the PUPS. The characteristics discussed include speed,
size, and complexity of user interaction. Our initial ex-
periments show that although the PUPS does incur per-
formance overhead, we believe that it is acceptable for
the use cases for which it is intended to be deployed: the
PUPS has an average startup and shutdown time under 1
minute, works on the types of machines that are in use as

3



Conf Default +RAM CPU Speed
A 01:01.78 00:53.46 00:51.56 00:19.19
B 00:50.65 00:46.76 N/A 00:15.22
C 00:51.98 01:14.67 00:56.30 00:15.69

Table 1: Results for the performance tests. Note that
AMD Ryzen does not have a CPU profile to test.

public computers, and can withstand common misuse.
To test the applicability of our tool, we considered

three configurations: an Intel i7-8700 @ 3.20GHz, 32GB
RAM, 512GB NVMe, VT-x, USB 3.1 (Conf A), an
AMD Ryzen 5 PRO 2400GE, 8GB RAM, Samsung
240GB SSD, AMD-V, USB 3.1 (Conf B), and an In-
tel i5-7400T @ 2.40GHz, 8GB RAM, Samsung 120GB
SSD, VT-x, USB 3.0 (Conf C).

Conf A, a private development machine, served as our
development testbed for creating and refining the PUPS.
Conf B and Conf C represent two configurations that we
repeatedly saw in real public computer facilities.

Since we expect that the main facilities for providing
public host computers will be public libraries, an impor-
tant design constraint for the PUPS is to ensure that it
runs on the hardware commonly employed by public
libraries.

At a minimum, the QEMU software requires a few
virtualization options enabled. The Intel VT-x or AMD-
V virtualization must be enabled in the BIOS. The host
Windows 10 machine must have Windows Hypervisor
Platform enabled in the Windows Features menu. These
features are standard on all systems manufactured after
2015. All of the machines that we observed in actual
public computer facilities, met these requirements.

The speed of the PUPS is an important concern when
considering end-user usability. In order to find optimal
QEMU settings for speed, basic timing tests, shown in
Table 1, are performed to obtain a baseline duration for
each work session.

We ran four tests on three machines to test key fac-
tors in emulation speed, memory size and CPU profile.
The first three tests were simple startup and shutdown
sequences using different QEMU settings. The Default
test uses recommended settings by QEMU developers
and community, described in Figure 2, that ensure com-
patibility for the widest range of 64 bit computers. The

+RAM test uses the default settings and increases mem-
ory to 6 GB. CPU test uses the default settings and
changes the CPU flag to match the host system, when
available. (Note: AMD Ryzen does not currently have
a QEMU CPU profile.) A Speed test performs a ba-
sic common function like opening and closing a web
browser. For some activities performance is a limiting
factor. Tests show usability is acceptable for the simple
use cases we target but futher optimization is needed.

To test how robust the PUPS is to operational disrup-
tion, we attempt to purposely corrupt the PUPS guest
image by unplugging the USB device during operation.
While this scenario is catastrophic for the work session,
we hypothesizing that such events will happen in prac-
tice due to an impatient user or on accident. To our
surprise, we did not corrupt the guest image in any of
our trials. While we do not believe that pulling a USB
key during operation is ever advisable, we believe that
the setup is at least somewhat robust to corruption.

5 Conclusion

In conclusion, we believe portable, whole-system virtu-
alization is a promising direction for enhancing the secu-
rity, privacy, and utility of exclusively-public computer
users. Our current PUPS implementation constitutes an
promising prototype.

References

[1] Fabrice Bellard. QEMU, a fast and portable dy-
namic translator. In USENIX Annual Technical Con-
ference, FREENIX Track, volume 41, page 46, 2005.

[2] Pradyumna Dash. Getting started with oracle vm
virtualbox. Packt Publishing Ltd, 2013.

[3] Peng Li. Selecting and using virtualization solu-
tions: our experiences with vmware and virtual-
box. Journal of Computing Sciences in Colleges,
25(3):11–17, 2010.

[4] Dale L Lunsford. Virtualization technologies in
information systems education. Journal of Informa-
tion Systems Education, 20(3):339, 2009.

4


	Introduction
	Overview
	Technical Details
	Evaluation
	Conclusion

