
You Can Obfuscate, but You Cannot Hide:
CrossPoint Attacks against Network Topology Obfuscation

Xuanbo Huang†, Kaiping Xue† ∗, Lutong Chen†, Mingrui Ai†,
Huancheng Zhou‡, Bo Luo§, Guofei Gu‡, Qibin Sun†

† University of Science and Technology of China,
{hxb777,lutong98,amr2016}@mail.ustc.edu.cn; {kpxue,qibinsun}@ustc.edu.cn

‡ Texas A&M University, hczhou@tamu.edu; guofei@cse.tamu.edu
§ The University of Kansas, bluo@ku.edu

Abstract
Link-flooding attacks (LFAs) may disrupt Internet connec-
tions in targeted areas by flooding specific links. One effective
mitigation strategy against these attacks is network topology
obfuscation (NTO), which aims to obscure the network map
and conceal critical links, preventing attackers from identify-
ing bottleneck links.

However, we argue that the attackers can still discover crit-
ical links in the presence of NTO defenses. In this paper,
we introduce the CrossPoint attacks to escape the security
protections of state-of-the-art NTO defenses by exploiting
two network traffic features: correlated congestion and statis-
tical disparities. Although NTO defenses create a complex
and seemingly robust virtual topology, distinct information
is still discoverable due to conflicting design objectives and
inherent features of the Internet, resulting in novel side chan-
nels. Through comprehensive experiments, including a mea-
surement study on the Internet, we demonstrate CrossPoint
attacks’ high success rate (80%-95%), minor overhead (10%-
20%), as well as attack stealthiness and feasibility.

1 Introduction

Large-scale botnet-driven distributed denial of service (DDoS)
attacks continue to pose a significant threat to the Inter-
net [2,14,15,31,42]. Despite the prevalence of end-host DDoS
defenses, link-flooding attacks (LFAs) remain a substantial
threat to the robustness of the Internet [19, 35]. LFAs aim
to overwhelm network infrastructure, such as in-line routers
and servers, rendering end-host defenses irrelevant. In re-
cent years, LFAs have caused severe damage. For instance, a
large-scale LFA in 2013 attacked 4 Internet exchange points
between Europe and Asia, leading to numerous sites being
offline for several hours [3, 25]. In 2022, Ithaca College’s
network infrastructure fell victim to an LFA [7]. CloudFlare’s
statistics from the same year indicated a 109% year-over-year

∗Corresponding author: Kaiping Xue, kpxue@ustc.edu.cn

increase in DDoS attacks targeting network infrastructure [2],
underscoring the growing concern over such attacks.

To efficiently launch an LFA, the adversary needs to know
about the topology of the target network. Without this knowl-
edge, an attacker can only “guess” which flows share a com-
mon link, considerably reducing the attack efficiency. Nethide
[29] demonstrates that such “guess” attacks require 5 times
more flows, rendering them less practical. However, once
attackers acquire knowledge of the network topology, they
are equipped to disrupt a considerable volume of legitimate
communication. For instance, the Crossfire attack [19] demon-
strates the potential of topology-probing LFAs against critical
infrastructure across US regions, potentially disabling up to
53% of Internet connections in some states. Therefore, LFAs
consist of a probing stage followed by an attack stage [19,35].
In the probing stage, attackers use reconnaissance tools to
gather knowledge of the network topology and identify bottle-
neck links that are potential targets. During the attack stage,
the attacker coordinates attack flows to flood critical links.

In response, researchers have developed proactive defenses
against attackers during the probing stage [13, 21, 22, 29], as
well as reactive defenses to mitigate LFAs during the attacking
stage [9, 18, 25, 26, 32, 34, 36, 38, 39, 41, 44].

In recent years, proactive defenses, also known as auto-
matic moving target defense (AMTD), have gained increas-
ing popularity and attention in academia and industry [28].
According to a Gartner report [28], AMTD is recognized for
its potential to significantly bolster security through a “de-
fense in depth” strategy. In the industry, several vendors (e.g.,
R6security, Dispel) offer AMTD for dynamic reconfigura-
tion of network infrastructure, topology, and configuration
to enhance the resilience of networks against various cyber
threats [6]. AMTD is also deployed in critical systems [27]. In
academia, researchers have proposed dynamic network topol-
ogy obfuscation (NTO) defenses against LFAs [13,21,22,29].
NTO is an example of AMTD, which manipulates virtual
topology to obscure the true network topology and conceal
bottleneck links. State-of-the-art (SOTA) NTO techniques,
such as NetHide [29] and EqualNet [21], provide strong secu-

1

rity guarantees by reducing the attacker’s success rate to less
than 1%, even when attackers have substantial resources (2-4
times that of a normal LFA).

Although SOTA NTO defenses [13, 21, 22, 29] can create
complex and robust virtual topologies to confuse attackers, it
is still possible to break the defenses. One intuitive approach
is randomly selecting attack flows, such as blind or bottleneck
random attacks [29]. However, these attacks are known to
require substantial budgets against recent NTO defenses and
have low success rates [29]. Another potential attack is to
exploit hardware fingerprints to identify target links [21, 29].
Nevertheless, SOTA defenses are known to defeat similar
attacks efficiently [21]. To our best knowledge, there does not
exist an attack in the literature that achieves a high success
rate with a low cost.

In this paper, we propose CrossPoint attacks that exploit
novel side channels to escape SOTA NTO defenses effec-
tively [13,21,22,29]. We argue that some inherent lower-layer
features of Internet traffic, such as propagation delay (a static
feature) and congestion (a dynamic feature), cannot be com-
pletely concealed by higher-layer obfuscation mechanisms.
Moreover, the usability objective [21, 29] of NTO schemes
that require link failures to be correctly located may be em-
ployed to compromise link identity. A well-crafted attack
may exploit such inherent and robust network features and
the usability functions to compromise the security promises
of NTO defenses and identify critical attack targets.

However, developing such a well-crafted attack is nontriv-
ial. First, since attackers do not have any prior knowledge of
the network, they cannot utilize static features, such as propa-
gation delay, to distinguish virtual or physical links. Second,
since the congestion probing tools are end-to-end, attackers
cannot pinpoint the exact location of congestion and obtain
knowledge of physical links by only measuring congestion.
In this paper, we demonstrate that attackers can tackle these
challenges by introducing statistical and correlation analysis.

First, we present an approach to identifying NTO-crafted
virtual links by exploiting lower-layer static network features
through statistical disparities. Although lower-layer charac-
teristics, such as propagation delay, are difficult to exploit
without prior knowledge, we demonstrate that, due to the us-
ability properties of NTO schemes, attackers with sufficient
bots can identify features of NTO-crafted links that are incon-
sistent with their inherent lower-layer characteristics. These
inconsistencies allow attackers to pinpoint virtual links that
appear more suspicious than others.

Second, we present an approach to discover physical links
by analyzing correlated congestion. Since NTO defenses do
not change underlying routing paths [13, 21, 22, 29], attackers
can observe and measure Internet congestion to identify arti-
ficially concealed physical links. Figure 1 shows an example
of a six-node topology, where link lBC is the attacker’s target.
We demonstrate Nethide’s virtual topology [29] with blue
dashed lines, which protects the bottleneck link lBC with two

independent routes (A-C-D and E-B-F). When congestion
occurs on lBC, highly correlated RTT increases and packet
loss indicates that the two parallel virtual paths utilize the
same physical link. Nonetheless, the challenge arises because
congestion on other links may interfere with the correlation
analysis. To tackle this issue, we introduce a control group
to filter out non-targeted congestion, allowing us to isolate
and identify the specific congestion associated with the tar-
get link. Subsequently, attackers can calculate the Pearson
correlation coefficient (PCC) matrix [10] to measure the simi-
larities among congestion samples and identify the physical
target links shared by each unknown path.

Essentially, the CrossPoint attacks exploit two side chan-
nels (inherent network features and congestion) to challenge
NTO defenses under a black-box network, where the attacker
only uses traceroute and ping as reconnaissance tools.
With extensive experiments, we evaluate the performance
of the CrossPoint attacks and show that they achieve high
success rates (80% - 95%) in identifying bottleneck links at
a small extra cost (10%-20%), even though the network is
protected by SOTA NTO defenses [21,29]. Moreover, even
though we cannot test this attack on the Internet, we have
designed a measurement study to demonstrate the feasibility
and stealthiness of the CrossPoint attacks on the Internet. To
pave the way for improving NTO defenses, we also discuss
countermeasures and future NTO directions.
Contributions To summarize, this paper makes the following
contributions:

1. We identify two fundamental weaknesses of the current
NTO design: first, the routing compatibility leaks infor-
mation regarding physical paths, and second, the usabil-
ity features discover information about virtual links.

2. We present the CrossPoint attacks against NTO defenses.
The attacks exploit usability with statistical disparities
to infer virtual links and discover hidden links with cor-
related congestion of physical paths.

3. We demonstrate the effectiveness of CrossPoint attacks
against state-of-the-art NTO defenses through compre-
hensive experiments, which show a high success rate of
80-95% with a low overhead of 10-20%.

4. Our large-scale measurement study demonstrates the
feasibility and stealthiness of the CrossPoint attacks.

Ethical Considerations. This research aims to evaluate the
effectiveness of SOTA NTO defenses in practice. We never
attacked any real-world network infrastructures outside of the
lab. Our experiments did not introduce any pressure on any
ISP links. We use cloud servers in experiments (Section 6.2)
to introduce real Internet noise instead of sending attack flows.
Our Internet measurement study (Section 6.5) investigates the
feasibility of the CrossPoint attacks with low-rate, benign
probes of 0.36 KB/s ICMP flows.

The rest of this paper is structured as follows: Section 2
outlines background and related works. Section 3 contains the

2

Fig1-当前版

The CrossPoint Attacks – A simple example and our key idea.

Adversarial probesPhysical links

Reveal CrossPointPrepare bot candidates.

Obfuscation paths

A C D

BE F

Protected network.

Congestion

PTO defense tries to hide
shared link (B-C).

Our attack analyzes correlated congestion to reveal hidden
cross points on `parallel’ paths.

Figure 1: A CrossPoint attacker discovers the hidden shared
link by analyzing correlated congestion. We use the same
instance with Nethide [29].

threat model and glossary. Section 4 analyzes the weakness of
SOTA NTO defenses. Section 5 introduces CrossPoint attacks.
Section 6 displays the evaluation results, and Section 7 dis-
cusses countermeasures. Section 8 gives discussions. Finally,
we conclude in Section 9.

2 Background and Related Works

Link-flooding attacks [19,35] aim to target a limited number
of critical links in a network, thereby inflicting substantial
damage within a specific network area. For instance, Kang
et al. [19] showcased how Crossfire attacks [19] could sig-
nificantly disrupt over 53% of communication in some states
by selecting approximately 20 critical links as targets. Conse-
quently, the selection of critical targets within large-scale net-
works assumes paramount importance. To this end, Crossfire
attacks employ probing tools like traceroute to estimate the
importance of network links. Attackers calculate the flow den-
sity of each link by aggregating data from large-scale botnet
probes utilizing traceroute. The concept of flow density is
defined as the quantification of bot traffic transmitted through
a particular link, which can be used to estimate the link’s
routing popularity within the network. Notably, links charac-
terized by high flow density are considered prime targets for
LFAs [19]. However, Crossfire attacks face limitations when
confronted with SOTA NTO defenses.

Network topology obfuscation [13,21,22,29] manipulates
traceroute responses to obfuscate the link’s flow density
to prevent attackers from finding profitable targets. This is
achieved by strategically manipulating probing responses that
present a virtual and resilient topology to potential attackers.
In the virtual topology, attackers are left without a clear set
of critical links to exploit. In essence, NTO schemes com-
pel LFAs to transition from targeted critical-link attacks to
random-target attacks. However, random-target attacks re-
quire a substantial budget and offer no guarantees on the ef-
fectiveness [29]. Another potential solution countering NTO
schemes is exploiting the hardware fingerprints to discern vir-
tual responses from physical ones. However, EqualNet [21]
is engineered to produce virtual responses that are indistin-
guishable from their physical counterparts.

Nevertheless, this paper finds two fundamental weak-
nesses that can be exploited to bypass the obfuscation of
SOTA NTO schemes. First, despite a robust virtual map being
present, the lower-layer network traffic patterns can not be
effectively hidden, allowing attackers to exploit such patterns
to distinguish virtual responses. Second, NTO schemes have
to provide the usability property for benign users, which de-
grades security when attackers launch statistic analysis. We
hope these findings can help enhance the security of NTO
schemes in practice.

3 Threat Model and Glossary

Threat model. We use the same threat model as previous at-
tacks and NTO defenses [19,21,29,35]. In detail, the attacker
has a limited number of bots located outside the target net-
work to locate and congest at least one bottleneck link within
the network. However, the attacker lacks prior knowledge
about the network and can only employ limited reconnais-
sance tools, specifically traceroute, ping. It is assumed
that the network does not prohibit normal ICMP requests and
responses that are defined in RFC777 [30].

Most crucially, we assume that the network is protected by
SOTA NTO defenses, such as Nethide [29] or EqualNet [21].

Additionally, we assume that at least one congestion event
occurs on the target link. However, this assumption is optional
and loose. If this condition cannot be satisfied, CrossPoint
attacks can still work using only the statistical disparities
technique without congestion information. Additionally, our
measurement study indicates that most Internet paths expe-
rience a large number of congestion events, making it more
likely that the bottleneck link will be affected.

Glossary. We give the glossary of definitions in this paper:

• Paths and links. A path is a flow route that may consist
of multiple links.

• Bot-path. A bot can create different flows by altering
destinations, and each flow corresponds to a dedicated
routing path. In the following, we depict different bot-
paths with (b, p)A,(b, p)B, · · · . Under a NTO defense, the
attacker needs to determine whether a bot-path conceals
a profitable link.

• Link capacity. We assume that each bot-path sends the
same volume of traffic during the attack stage. The link
capacity can be represented by the number of available
bot-paths passing through the link.

• Flow density. Flow density is a link attribute represent-
ing the number of bot-paths that pass through it. A link
is considered profitable for the attacker if its flow density
exceeds its link capacity.

• Budget. Budget is the maximum number of bot-paths
that the attacker could employ in the attack stage.

The definitions of link capacity, flow density, and budget are
the same as Nethide [29]. And the bot-path is considered as a

3

flow in Nethide [29].

4 Security Analysis of NTO Defense

In this Section, we present the fundamental weaknesses of
SOTA NTO defenses. Initially, we discuss how the usability
property leads to a decline in security, ultimately resulting in
statistical disparities in inherent and robust network features
that help identify virtual links. Secondly, with unchanged rout-
ing paths, the observation of correlated congestion can assist
in discovering physical links. These two weaknesses enable
CrossPoint attackers to expose bottleneck links for flooding.
In the following subsections, we delve into the respective root
causes of these weaknesses.

4.1 The Statistical Disparities
The Statistical disparities refer to the static differential fea-
tures between virtual and physical networks that higher-layer
obfuscations cannot change. Although static features cannot
be used to identify virtual or physical links directly, we have
discovered a vulnerability stemming from the usability prop-
erty of NTO schemes when attackers have sufficient bots to
perform statistical analysis.

Security analysis on Nethide [29]. We briefly summarize
the Nethide design detail for the next step of the analysis.
Nethide formalizes usability as the optimization objective and
formalizes security as hard constraints, represented by the
optimization problem:

Max. ∑
f∈F

(w1Acc(f)+w2Uti(f))

s.t. Security constraints,

where f is a bot-path (a flow in Nethide). Acc(f) calculates
the similarity between virtual and physical paths, representing
the accuracy of using virtual links to make routing decisions,
while Uti(f) calculates the probability of correctly locating
link failures with virtual paths. The security constraints are
solid requirements that some links must be concealed.

In SOTA NTO defenses [21,29], the security property takes
precedence over usability. And the usability is achieved as a
best-effort function. However, achieving the optimal usability
objective can lead to undesired outcomes: the security is com-
promised. To comprehend this, it is essential to describe the
approach for attaining the highest usability objective while
ensuring security. For example, consider a scenario with three
links, A, B, and C, where link B is a bottleneck and must be
hidden. Without the usability objective, defense schemes are
free to conceal any links in A, B, and C, or all of them, to pro-
vide good obfuscations. However, when under the objective
to maximize the usability functions, i.e., Acc(f) and Uti(f),
hiding any links leads to these two objective decreases mono-
tonically [29]. That is because removing any physical links

in the network leads to inaccuracies in making routing de-
cisions and locating link failures. Therefore, the best choice
to maximize the usability is to hide link B without A and C,
since it maintains the highest accuracy in terms of Acc(f)
and Uti(f) for the other two links. To summarize, concealing
non-bottleneck links like A and C does not contribute to meet-
ing security constraints but decreases the usability objective.
Therefore, the solver of the designed model tends to conceal
the least number of links to satisfy the security constraints.
Thus, our first observation is that the usability objective re-
sults in virtual links having a high probability of concealing
bottleneck links, making identifying virtual links crucial in
discovering critical targets.

Furthermore, since this design tends to conceal the least
number of bottleneck links, an attacker can identify inherent
features that show different statistical results from others. In
practice, Nethide omits important nodes to offer near-optimal
solutions, which means virtual paths appear shorter than phys-
ical paths in traceroute responses. However, the unchanged
propagation delay may discover the actual length of the path.
For example, empirical evidence shows that a long propa-
gation delay indicates a long Internet path [5], but the prob-
ing results show the long path contains only a few nodes.
Consequently, the attacker can guess that the path has been
obfuscated. Nonetheless, since the network is a black box,
it is challenging to establish the relationship between path
length and propagation delay and determine whether the path
is virtual or physical.

However, when attackers has sufficient bots to launch sta-
tistical analysis, they can identify relatively suspicious virtual
links. In the case of path lengths and propagation delay, the
attacker calculates one-hop-delay defined as RT T/Hops, in-
dicating the relationship between propagation delay and the
number of nodes along the paths. Even though the attacker
does not know the actual relationship between path length and
propagation delay in the target network, they can extract paths
that are more suspicious than others (long propagation delay
but few hops). Figure 2 depicts the statistical results of the
RT T/Hops attribute in 47 different topologies with realistic
RTT settings (refer to Section 6.1 for details). The left Y-axis
denotes the CCDF of RT T/Hops between virtual and physi-
cal paths, while the right Y-axis shows the attacker’s advan-
tage defined as a Bayes probability P(link == virtual|X ≥ k),
which increases as RT T/Hops increases. Therefore, it is pos-
sible to extract some of the virtual links against Nethide.

Security analysis on EqualNet [21]. Similar to Nethide,
EqualNet provides best-effort usability to enable benign users
to debug link failures within a virtual topology effectively.
However, the difference is that EqualNet guarantees accurate
link failure within a subnet. To achieve this, EqualNet ran-
domly assigns virtual nodes IP addresses within the same
subnet as their physical nodes [21]. Nevertheless, similar to
how propagation delay leaks the real path length, subnet-level
IP addresses may also unintentionally expose information

4

0 100 200 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

s

P (X k | p_link)
P (X k | v_link)

0 100 200 500 600 700
0.5

0.6

0.7

0.8

0.9

1.0

At
ta

ck
er

 A
dv

an
ta

geatk_adv

300 400
X = RTT / Hops

Figure 2: Statistical disparities of the physical propagation
delay / virtual path length against Nethide in 47 different
topologies. The attacker’s advantage is a Bayes probability
defined as P(link == virtual|X ≥ k).

about virtual links as a static feature. In this case, CrossPoint
attackers treat all virtual nodes that have the same subnet pre-
fix as one physical node. While this approach aggregates two
physical nodes that share the same subnet prefix erroneously,
it is enough to give a coarse-grained identification of virtual
nodes and links, which can be used in the next step with
correlated congestion to discover physical links accurately.

4.2 The Correlated Congestion
As the underlying routing paths remain unchanged under
NTO defenses, it is possible to use information from lower-
layer routing to identify links [13, 21, 22, 29]. In this study,
we leverage correlated congestion to extract physical link
information under NTO defenses.

Network congestion occurs when data transmission de-
mands surpass the available bandwidth of a device, leading to
significant delays and the possibility of packet loss [8]. It is
rare for unrelated congestion events from different network
locations to demonstrate similar congestion characteristics,
due to the multifaceted nature of typical congestion determi-
nants, such as unpredictable onset times, varying capacities of
output queues, the arbitrary magnitude of burst traffic, and the
diversity in router buffer sizes. Thus, congestion events with
highly similar features observed at two points may indicate
a common source, such as the same network device. This
phenomenon, known as correlated congestion, serves as a
valuable tool in pinpointing bottleneck links within a network.
Many congestion control efforts already utilize correlated
congestion to enhance performance, such as applications of
multipath-TCP [23, 33, 40]. Therefore, it is possible to reveal
physical links through correlated congestion events.

5 CrossPoint Attacks

5.1 Attack Overview
We assume an attacker has n bot-paths (defined in the glos-
sary), and the target link’s capacity is c, where c < n. The
classic Crossfire attacks [19] can select sufficient bot-paths
passing through the target with traceroute reconnaissance

in the absence of protections. However, NTO defenses [21,29]
obfuscate the traceroute responses to prevent Crossfire at-
tacks. As a result, a Crossfire attacker will find there are only
n′ (n′ << c) bot-paths passing through each link, making it
impossible to flood any links with sufficient bot-paths. There-
fore, the goal of our attack is to identify the remaining c−n′

bot-paths passing through the target.
The straightforward method is to randomly select the re-

maining bot-paths as blind or bottleneck random attacks
[21, 29]. However, they are ineffective due to the protections
of NTO defenses [29], achieving less than 1% success rate
with 400% of the budget. Another potential method is to uti-
lize hardware fingerprints to identify virtual and physical links.
However, state-of-the-art NTO defense [21] can completely
defend against such attacks.

CrossPoint attacks identify the remaining c−n′ bot-paths
with statistical disparities and correlated congestion. Fig-
ure 3 shows an overview of our attacks. First, the attacker
collects basic routes and delay information on the virtual map.
Second, the attacker makes a coarse-grained classification of
bot-paths based on statistical disparities to infer virtual bot-
paths (i.e., it hides something, potentially the target). Third,
the classified virtual bot-paths are used to observe correlated
congestion. In this step, we introduce control group to judge
whether congestion happens on the target. If targeted conges-
tion is found, the RTT samples are sent to other bot-paths,
and correlations are calculated. A high correlation from a
virtual bot-path means that it has a high probability of hiding
the target link [23, 33, 40], making it suitable for flooding the
target link.

To summarize, CrossPoint attacks have the following steps:

1. Attack preparation. The attacker has a bot-path set
S = {(b, p)A,(b, p)B, · · ·}. To begin the attack, each bot
collects basic information such as propagation delay and
routing paths, to construct the (virtual) link map.

2. Detecting virtual links with statistical disparities. The
attacker utilizes static features and calculates statistical
results, then the attacker outputs the virtual bot-path
set Ssort , where relatively more suspicious bot-paths are
prioritized over others.

3. Identifying physical links with correlated congestion.
The attacker coordinates selective bot-paths in Ssort to
observe congestion and calculate correlations, cluster-
ing the bot-paths that share the same physical links and
output the bot-path set Sattack for each potential target.

The CrossPoint attacks have two variants: the dedicated
use of statistical disparities or the correlated congestion. The
first variant, named the CrossPoint-SD attack, involves steps
(1) and (2). This attack utilizes random suspicious bots to
launch attacks. On the other hand, the CrossPoint-CC attack
involves steps (1) and (3). This attack employs random bots
to observe congestion. To achieve optimal performance, the
CrossPoint-SD/CC attack combines both the SD and CC side

5

STEP 1: Attack Preparation:
Probing Protected Virtual Map.

STEP 2: Detecting Virtual Links
with Statistical Disparities (SD).

STEP 3: Identifying Physical Links
using Correlated Congestion (CC).

Long
RTT

Few
hops

Attacker probes a virtual map, where bottle-
neck links are concealed by defenders.

The statistical disparities help identify some
virtual paths that might hide the bottleneck links.

Suspicious bots

The highly-correlated congestion helps revealing
exact physical links hiding in these virtual paths.

Share link A. Share link B.

Attacker’s probed route under protectionActual routing paths (unknown)

(Unknown)
Physical map

The probed virtual map. Bots

B

A

The CrossPoint Attacks – A simple example and our key idea.

Adversarial probesPhysical links

(c) Reveal CrossPoint(b) Bot candidates.

Obfuscation paths

A C D

BE F

(a) Protected network.

Congestion

PTO defense tries to hide
shared link (B-C).

Using analysis on correlated congestion to reveal hidden
cross points on `parallel’ paths.

Figure 3: CrossPoint attacks consist of three steps. Firstly, each bot-path collects virtual routing paths and the propagation
delay. Then, the attacker performs coarse-grained classification on virtual paths using statistical disparities. Finally, the attacker
determines the attack bot-paths using correlated congestion.

channels with steps (1), (2), and (3).

5.2 Step 1: Attack Preparation

This step is the same as the Crossfire attack [19]. During
this phase, each bot gathers essential information, including
routing data, propagation delays, and available bandwidths,
to prepare for attacks. To start this process, each bot sends
traceroute probes to various potential destinations (other
bots or public servers). The traceroute results are a se-
ries of IP addresses assigned to routers’ interfaces, establish-
ing a (virtual) map of network links. For each destination,
bots can gather their available bandwidth through tools like
Pathneck [17]. Next, each bot sends a series of ping mes-
sages (typically 10-20) to measure the propagation delay of
each path. Then, the attacker computes the flow density for
each network link and organizes them in descending order
of flow density magnitude. Without NTO defenses, attackers
can select the top-k critical links with the highest flow den-
sities for their attacks. However, when NTO schemes are in
place, the collected link map is virtual, and the top-k links may
not be ‘critical’. Consequently, CrossPoint attacks proceed to
uncover natural critical links through subsequent stages.

5.3 Step 2: Detecting Virtual Links

CrossPoint attacks utilize the inherent features of the Internet
(e.g. propagation delay, subnet addresses) to identify some
virtual links crafted by NTO defenses. Since attackers face an
unknown network without any prior knowledge, they cannot
determine the value of these features that indicate whether a
link is virtual or physical. As discussed in Section 4, Cross-
Point attacks extract relatively more suspicious bot-paths with
statistical analysis to identify virtual links.

Identify virtual bot-paths against Nethide [29]. For each
bot-path denoted as (b, p)i, we have the propagation delay
represented as ti, and the length of the traceroute path rep-
resented as hi. As elaborated in Section 4, we employ the
concept of the one-hop delay to estimate the relative likeli-
hood of a path being virtual. To compute the one-hop delay

for each bot-path, we use the formula ti/hi (propagation de-
lay/number of hops). Subsequently, the attacker arranges all
bot-paths in a descending order based on the magnitude of
their respective one-hop delays. This results in the formation
of a sorted set denoted as Ssort , where bot-paths with higher
one-hop delays are consequently considered more suspicious.

Identify virtual bot-paths against EqualNet [21]. For
each bot-path denoted as (b, p)i, we employ the concept of
bot-path IP similarity as a metric to measure the likelihood
of concealing bottlenecks. First, we define address similarity
as the count of IP addresses with the same subnet. Subse-
quently, the bot-path IP similarity is determined as the max-
imum address similarity observed within the routing paths.
Following the computation of IP similarity for all bot-paths,
we subsequently arrange the botnet set, denoted as Ssort , in a
descending order based on their IP similarity values, which
furnishes a descending sequence that reflects the likelihood
of hiding bottlenecks in the virtual paths.

Finally, the attacker outputs Ssort , where the suspicious
bot-paths are prioritized over others. Attackers can use these
bot-paths in the next step to examine the critical links.

5.4 Step 3: Identifying Physical Links

Once the suspicious bot-paths containing virtual links have
been identified, the next step is to identify the hidden physical
links. As discussed in Section 4, NTO defenses only manip-
ulate traceroute responses without altering the underlying
routing paths. Therefore, our attacks utilize congestion in
physical routing paths to expose hidden links. Specifically,
correlated congestion on different paths can indicate that they
share a common bottleneck [23,33,40]. As Figure 3 shows, at-
tackers can cluster the unknown bot-paths with the correlation
analysis of observed congestion samples.

However, the congestion location is a challenge. First, the
ping probes are end-to-end, making it difficult to pinpoint the
link where congestion occurs. Second, simultaneous conges-
tion could happen on different links, which may pollute the
correlation results. Therefore, CrossPoint attacks introduce
the concept of control groups to help locate congestion.

6

Control-Group

(B, P) -A

(B, P)-B

(B, P)-C

Test-Sample

C-group ineffective

C-group effective
T-sample positive

t

t

t

Delay/ Loss

Negative or
positive

Effective only
all the members
observe similar

congestion

Internet

Internet

(�, �)�

Server 1

(�, �)�

Server 2-5

Web
Server A

Web
Server B

Target Link

ICMP Ping
10 PPS

ICMP Ping
10 PPS

Individual Bot C
Abnormal OHD

Nethide Protected Traceroute

Actual Routing

(�, �)�

Control
Group

Test Sample

Web
Server C

Figure 4: Example of using C-groups to distinguish conges-
tion from a certain link.

Locate the congestion. To address this congestion loca-
tion problem, we introduce a concept named control group
comprised of bot-paths that share the minimal number of links
necessary to monitor congestion on specific links. Figure 4
illustrates our idea, in which we assume that the routing paths
of (b, p)A and (b, p)B intersect at a specific link. The objective
for attackers is to determine whether the (b, p)C observed con-
gestion also occurs on this particular link. To achieve this, we
leverage (b, p)A and (b, p)B to establish a control group, essen-
tially serving as a baseline reference. If congestion occurs on
the target link, both (b, p)A and (b, p)B should experience the
same correlated congestion. Consequently, if (b, p)C likewise
observes this correlated congestion, it indicates that (b, p)C
shares the same link with both (b, p)A and (b, p)B.

In practice, two members in the control group may not be
enough. Therefore, the attacker needs to establish a control
group with the following rules:

1. Establish a basic control group with two known bot-paths
that pass through the target link.

2. Augment the control group by introducing bot-paths that
specifically incorporate the target link, to minimize the
count of shared links.

Due to the usability design, SOTA defenses allow a certain
number of bot-paths to retain their physical path, which aids
the attacker in constructing control groups using the above-
mentioned rules. For instance, Nethide [29] permits n′ < c
bot-paths to pass through each link, where c is the link capac-
ity, and n′ is set to a sufficient value in practice to enhance
usability. Similarly, EqualNet [21] utilizes virtual IP addresses
belonging to the same subnet as their physical nodes, which
can also be used to establish C-groups.

Observe the congestion and noise reduction. Since the
Internet is noisy, we adopt a noise reduction technique that
mitigates the impact of RTT jitters and Internet noise. Specif-
ically, each bot sends ping traces at a certain speed (discuss
in Section 6.5) and gains RTT traces. Then, we transform the
RTT sequences into square waves while preserving critical
features. We accomplish this by dividing constant RTT val-
ues into discrete buckets, with the lowest value representing

propagation delay and the highest indicating packet loss. We
define the congestion happening if an RTT sample increases
more than 30% of its propagation delay.

Timestamp synchronization. Correctly analyzing conges-
tion correlation necessitates time synchronization of each bot-
path. However, the timestamp of the ping message is recorded
when bot-paths receive ICMP responses, not precisely when
congestion occurs. Therefore, we adjust the timestamp using
the following correction:

tcorrect = ttimestamp −RT Twhole +RT Ttarget/2,

where RT Ttarget is the delay between the bot and the target.
This correction provides a more precise observation of tar-
geted congestion events.

Quantify the correlation. We define congestion correla-
tion distance to quantify the correlation between the conges-
tion samples of (b, p)A and (b, p)B. Specifically, we calculate
the Pearson correlation coefficient (PCC) [10] between the
two congestion samples, which measures how well the two
samples are correlated. If the correlation coefficient is high,
then the two samples are more likely to be derived from the
same bottleneck.

When attackers observe congestion, they calculate PCC
in the following steps. For a C-group containing n bot-paths,
we denote the k-th bot-path’s RTT sequence of congestion as
bpk(t), t ∈ [t0, tm]. In detail, t0 is the first RTT of a congestion
sample, and tm is the last. Therefore, all the bot-paths’ RTT
sequences are:

X(t) = [bp1(t),bp2(t) · · ·bpn(t)]
T .

Next, we calculate the self covariance matrix as

Cx = E{[X(t)−µx][X(t)−µx]
T}=

c11 · · · c1n
...

. . .
...

cn1 · · · cnn

 ,

where ci j represents the covariance of bpi and bp j, while µx
is the mean vector of X(t). Next, we calculate the PCC matrix
as:

Rx =

c11
σ2

1
· · · c1n

σ1σn

...
. . .

...
cn1

σnσ1
· · · cnn

σnσn

=

r11 · · · r1n
...

. . .
...

rn1 · · · rnn

 ,

where σi is the standard deviation of bpi. Each element in Rx
represents two bot-paths’ RTT similarity during time t. To
find effective congestion, we calculate a distance between the
observed congestion and an ideal congestion sample as

D = Max
i, j≤ n

(∆x −Rx)i j,

where ∆x is an all-ones matrix that represents all the PCC
of each bot-path are 100% similar to each other. We choose

7

0 2500 5000 7500 10000 12500 15000 17500 20000
Geographical distance of servers (km)

0

100

200

300

400

500
RT

T
of

 se
rv

er
s (

m
s)

minRTT from servers
Linear regression

Figure 5: Linear regression of the real-world delay.

the maximum value in (∆x −Rx)i j as the distance because it
describes how dissimilar it is from the ideal one.

Cluster the bot-paths. In determining whether a test sam-
ple conceals the target link, the attacker incorporates the test
sample into the C-group and recalculates the distance, de-
noted as D, within the range of [0,1]. Subsequently, the at-
tacker employs a threshold to assess the correlation between
two instances of congestion. Drawing from the PCC defini-
tion [10], where PCC values within [0,1] nearing 1 indicate
a strong correlation, while values nearing 0 denote a lack of
correlation, we establish a threshold at the midpoint, i.e., 0.5,
to determine whether two samples exhibit correlation.

Given that the distance D is inversely proportional to the
PCC (D ≈ 1−PCC), if D < 0.5, it implies that the test sam-
ple traverses the target link. Conversely, if D > 0.5, the test
sample does not traverse the target link. Given the C-group
congestion traces, each bot-path can calculate the distance
itself to know whether it passes through the target link. Then,
each bot reports its available paths against a certain target to
the attacker’s command and control (C&C) server.

5.5 Implementation Details

This Section provides the implementation details of the Cross-
Point bots and controllers.

Bot behavior. First, each bot sends a series of 10-20 ping
and traceroute messages to determine the propagation de-
lay and the obfuscated traceroute route. It then forwards the
resulting <src, dst, delay, route> structure to the C&C
server and waits for instruction. Upon receiving a command
to observe congestion, the bot rapidly sends ping messages at
a fixed rate of 10 packets per second with the shortest package
length (36 bytes [30]). For each ICMP_response message, the
bot extracts <timestamp, icmp_seq, round_trip_time>
information and records them in a csv format file. The differ-
ence in icmp_seq values allows packet loss detection, while
the round-trip-time facilitates congestion measurement. Then,
if the bot belongs to a C-group, it transmits fractional ping
traces containing a few seconds of correlated congestion to
the C&C server. If the bot has suspicious paths, it receives
fractional traces from C&C server and calculates the corre-
lation. Finally, each bot reports available paths against the
target to the C&C server.

Control-Group

(B, S) -A

(B, S)-B

(B, S)-C

Test-Sample

C-group ineffective

C-group effective
T-sample positive

t

t

t

Delay/ Loss

Negative or
positive

Effective only
all the bots in

probe-set observe
a congestion

Internet
ISP 1 Server 2-4 Target LinkServer 5

Server 1

Obfuscated bots
(changing places)

Internet
ISP 2

Share at
least 4 links

Not share links

Figure 6: Testbed topology. Five servers from different cities
are used to involve noise. Ten bots observe congestion.

(b) Viatel(a) Bics

(c) UsCarrier (d) AS30598

Figure 7: Simulation topologies: (a) Bics comprises 33 nodes
and 48 links; (b) Viatel consists of 88 nodes and 92 links; (c)
UsCarrier has 158 nodes and 189 links; (d) AS30598 contains
226 nodes and 314 links.

Controller behavior. Like conventional DDoS attacks,
CrossPoint attacks are executed via botnets, necessitating
C&C servers to coordinate the attack. The C&C server’s in-
teraction with the botnet encompasses several critical steps:
it first collects probing data from the bots; then, using this
data, it identifies the C-group (Section 5.4). Subsequently, the
server dispatches the congestion traces from the C-group to
each bot and awaits their confirmation on whether the targeted
link is accessible. Once confirmation is received, the C&C
server gives the final order for the bots to launch the attack.

6 Evaluation

Our evaluations consist of four parts. We assess the dedi-
cated and combined performance of two attack variants and
investigate the feasibility of CrossPoint attacks:

1. In Section 6.2, we construct a testbed to evaluate
the performance of the correlated congestion attack
(CrossPoint-CC). This evaluation involves real Internet
noise and congestion from 5 servers on 2 continents.

2. In Section 6.3, we assess the single and overall perfor-
mance of statistical disparities, i.e., CrossPoint-SD at-
tack) and CrossPoint-SD/CC attack, with the implemen-

8

tation of SOTA defenses [21, 29]. This evaluation con-
siders a variety of network topologies, attack budgets,
network robustness, and defense parameters.

3. In Section 6.4, we assess the scalability of CrossPoint
attacks in different scaled network topologies. This eval-
uation contains 7 different topologies

4. In Section 6.5, we conduct a large-scale measurement
study to investigate whether CrossPoint attacks can re-
main stealthy and be employed on the Internet.

We compare our attack with Coremelt [35], Crossfire [19],
and Crossfire-Random attacks [29], against SOTA defenses
including Nethide [29] and EqualNet [21].

6.1 Implementation

Topology. We select representative backbone networks from
the Internet Topology Zoo [24] and CAIDA dataset [1], which
are widely used in NTO evaluations [29]. The topologies and
the corresponding attributes are shown in Figure 7.

Link delay and IP addresses. To emulate realistic link
delays, we use the dataset from the Global-Ping-Statistics
project [5], containing ping data from 247 different servers
globally. We employ linear regression to fit the relationship
between the geographical distance and the delays from the
ping dataset, as illustrated in Figure 5. For each link in the
testbed and simulations, we extract the longitude and latitude
of the nodes, calculate the link delay based on the regression
results, and then assign these delays using Linux traffic control
in both the testbed and simulations. We assign IP addresses
to each node using the CAIDA dataset’s ITDK project [1].

Congestion. Congestion occurs when burst traffic exceeds
the capacity of network devices [8, 40]. In our experiments,
we replicate this process to ensure a realistic reproduction of
congestion. To this end, we randomly launch each network
node to send burst traffic. At certain times, this burst traffic
competes for the bandwidth of the network devices, thereby
reproducing short, unpredictable congestion events that mir-
ror real-world congestion processes. Additionally, we also
involve real Internet congestion as noise on our testbed by
using cloud servers in Section 6.2.

Defenders. We implement Nethide [29] and EqualNet [21]
using the OpenVswitch and the Ryu SDN controller to for-
ward and respond to the traceroute messages. We use
the prevalent shortest-path-first routing policy, in line with
Nethide [29] and EqualNet [21].

Nethide [29] employs the optimal solution offered by the
ILP solver [4], which promises a gap of less than 2%. We
vary Nethide’s flow density reduction factor parameter, rep-
resenting different protection levels. EqualNet [21] uses the
strictest obfuscation threshold (τ = 80%).

Attacker. In our experiments, the attacker has n2 candidate
attack bot-paths. The bots are uniformly distributed, in line
with the Nethide configurations [29], and the defenders fully

(a) Distance with Server 2
0.0

2.5

5.0

7.5

10.0

K
D

E
of

 c
on

gs
tio

n

(b) Distance with Server 3

0.0 0.5 1.0 1.5 2.0
(c) Distance with Server 4

0.0

2.5

5.0

7.5

10.0

K
D

E
of

 c
on

gs
tio

n

0.0 0.5 1.0 1.5 2.0
(d) Distance with Server 5

Threshold Correlated congestion Uncorrelated congestion

Figure 8: Kernel density estimation of two kinds of conges-
tion on identifying the target link congestion. Figures (a), (b),
(c), and (d) show the results of servers 2, 3, 4, and 5.

Table 1: Testbed experiment parameters.
SID* Date (2022) Duration Noise Congestion

1 05-18 — 05-24 120.2 h 10K+
2 05-20 — 05-21 29.15 h 163
3 05-22 — 05-24 29.15 h 955
4 05-22 — 05-23 29.12 h 1384
5 05-18 — 05-19 29.12 h 3053

* SID = Server ID, Server 1 and 5 shares several links.

obfuscate all the bots and their paths. However, in each attack,
the attacker can only use a limited number of bots due to
budget constraints, which necessitates revealing sufficient bot-
path information to counter NTO defenses.

6.2 CrossPoint-CC Evaluations

Setup. This Section presents the evaluation of the effective-
ness of the CrossPoint-CC attack. As depicted in Figure 6,
we set up a testbed based on the Abilene topology, which
includes several cloud servers and 10 bots for observing con-
gestion. Notably, the cloud servers do not act as bots or gen-
erate additional traffic that could affect the ISP links. Table 1
summarizes the key details of our experiments. Specifically,
a C-group consists of two servers, a fixed server 1 and a vary-
ing server 2-4, located in different regions to involve Internet
noise. We also consider a scenario with a non-perfect control
group establishment with servers 1 and 5 where overlapped
ISP links more than the target are involved.

Performance of identifying shared links. To assess the
attackers’ effectiveness in identifying shared bottleneck links

9

100% 150% 200% 250% 300% 350% 400%
(a) Attack budget (% of link capacity)

0.0%

25.0%

50.0%

75.0%

100.0%

Su
cc

es
s r

at
e

(%
)

Bics Topology (33 nodes)

100% 150% 200% 250% 300% 350% 400%
(b) Attack budget (% of link capacity)

Viatel Topology (88 nodes)

100% 150% 200% 250% 300% 350% 400%
(c) Attack budget (% of link capacity)

100% 150% 200% 250% 300% 350% 400%
(d) Attack budget (% of link capacity)

AS30589 Topology (228 nodes)

20% 30% 40% 50% 60% 70% 80% 90%
(e) Pecentages of secure links

0.0%

25.0%

50.0%

75.0%

100.0%

Su
cc

es
s r

at
e

(%
)

20% 30% 40% 50% 60% 70% 80% 90%
(f) Pecentages of secure links

20% 30% 40% 50% 60% 70% 80% 90%
(g) Pecentages of secure links

20% 30% 40% 50% 60% 70% 80% 90%
(h) Pecentages of secure links

84% 86% 88% 90% 92% 94% 96% 98%
(i) Flow density reduction factor (%)

0.0%

25.0%

50.0%

75.0%

100.0%

Su
cc

es
s r

at
e

(%
)

84% 86% 88% 90% 92% 94% 96% 98% 100%
(j) Flow density reduction factor (%)

Coremelt Random [32] Crossfire [18] Crossfire Random [26] CrossPoint (SD) CrossPoint (SD+CC)

84% 86% 88% 90% 92% 94% 96% 98% 100%
(k) Flow density reduction factor

84% 86% 88% 90% 92% 94% 96% 98% 100%
(l) Flow density reduction factor

UsCarrier Topology (158 nodes)

Figure 9: The CrossPoint attacks’ effectiveness against Nethide [29] defense mechanism across four network topologies.
Subfigures (a)-(d) illustrate the relationship between the attack success rate and the attack budget; subfigures (e)-(h) demonstrate
how the success rate of CrossPoint attacks varies with the robustness of the network topology; subfigures (i)-(l) depict the success
rate of CrossPoint attacks against varying levels of protection implemented by the Nethide defense.

Table 2: Congestion classification results

Metrics Accuracy Precision Recall F1 score
Fig.7(a) 96.2% 98.3% 94.4% 96.3%
Fig.7(b) 97.5% 98.4% 96.8% 97.6%
Fig.7(c) 97.7% 98.4% 97.3% 97.8%
Fig.7(d) 95.4% 94.2% 97.3% 95.7%

through correlated congestion, we analyze about 3000 inde-
pendent data traces collected from a week-long observation
of congestion events. Within each data trace, the challenge
for attackers is to discern whether the bot-paths have shared
bottlenecks amidst the background of Internet noise. Since
the problem of whether bottlenecks are shared can be a binary
classification problem, we employ Kernel Density Estimation
(KDE) to visualize the classification outcomes.

As depicted in Figure 8, the x-axis represents the values
of D = Maxi, j (∆x −Rx)i j, which differentiate between two
distinct congestion scenarios, while the y-axis indicates their
kernel density. In this representation, blue signifies true pos-
itives (instances where congestion samples genuinely share
bottleneck links), and yellow denotes false positives (instances
without shared bottlenecks). The differentiation between the
two congestion types is clear, suggesting that a straightfor-
ward threshold of 0.5 can effectively classify the samples.

Additionally, we evaluate the classification performance
using four key metrics: accuracy, precision, recall, and the
F1-score, summarized in Table 2. The results demonstrate that
the congestion identification approach presented in this study

achieves a minimum performance of 95% across these met-
rics, validating the practicality of using correlated congestion
for bottleneck link identification within the Internet. Notably,
the identification method outperforms some recent conges-
tion control studies [40] due to the incorporation of time
synchronization and enhanced noise mitigation techniques in
our congestion correlation analysis algorithm.

6.3 CrossPoint-SD/CC Evaluations

Setup. In this Section, we focus on the effectiveness of the
CrossPoint-SD attack and the CrossPoint-SD/CC attack with
comprehensive experiments considering topology, budget, net-
work robustness, and protection parameters.

Metric. To assess the effectiveness of the attack, we employ
the attack’s success rate as our evaluation metric. An attack
is considered a success if the attackers manage to identify at
least c bot-paths traversing a link, where c denotes the link
capacity. To ensure reliability, we replicate each experimental
condition 1,000 times, contributing to the data presented in
Figure 9 and Figure 10.

Experiment 1: attack budget v.s. success rate. For LFA
adversaries, understanding the correlation between attack bud-
get and success rate is important. To this end, we design an
experiment to evaluate the success rates of CrossPoint attacks
alongside various other LFAs against NTO mechanisms. In
this experimental setup, attackers are constrained to choose
a limited number of bot-paths (defined as their budget) from

10

100 150 200 250 300 350 400
(a) Attack budget (% of link capacity)

0.0%

25.0%

50.0%

75.0%

100.0%

Su
cc

es
s r

at
e

(%
)

Bics Topology (33 nodes)

100 150 200 250 300 350 400
(b) Attack budget (% of link capacity)

Viatel Topology (88 nodes)

100 150 200 250 300 350 400
(c) Attack budget (% of link capacity)

100 150 200 250 300 350 400
(d) Attack budget (% of link capacity)

AS30598 (226 nodes)

20% 30% 40% 50% 60% 70% 80% 90%
(e) Pecentages of secure links

0.0%

25.0%

50.0%

75.0%

100.0%

Su
cc

es
s r

at
e

(%
)

20% 30% 40% 50% 60% 70% 80% 90%
(f) Pecentages of secure links

Coremelt Random [32] Crossfire [18] Crossfire Random [26] CrossPoint (SD) CrossPoint (SD+CC)

20% 30% 40% 50% 60% 70% 80% 90%
(g) Pecentages of secure links

20% 30% 40% 50% 60% 70% 80% 90%
(h) Pecentages of secure links

UsCarrier Topology (158 nodes)

Figure 10: The CrossPoint attacks’ effectiveness against EqualNet [21] defense mechanism across four network topologies.
Subfigures (a)-(d) illustrate the relationship between the attack success rate and the attack budget; subfigures (e)-(h) demonstrate
how the success rate of CrossPoint attacks varies with the robustness of the network topology.

their botnets to initiate attacks, aiming to flood at least one
link, which necessitates a critical set of attack flows traversing
the targeted link. However, NTO defenses may obscure the
physical link information for each bot-path, complicating the
attackers’ efforts. Under these conditions, the Crossfire attack
is unable to pinpoint the target link and its associated attack
flows. Conversely, Crossfire+Random and Coremelt+Random
strategies employ random bot-paths to mitigate some shortfall,
while CrossPoint-SD and CrossPoint-SD/CC attacks lever-
age statistical disparities and a combination of these with
correlated congestion to identify the requisite attack flows.

Figures 9(a)-(d) illustrate the success rates of various LFAs
against the Nethide defense and their relationship to budget.
Similarly, Figures 9(a)-(d) depict these success rates against
the EqualNet defense. In both experiments, the x-axis repre-
sents the budget, scaling from 100% to 400% of link capac-
ity, while the y-axis denotes the attack success rate, ranging
from 0 to 1. According to the results, the success rates for
most attack methodologies (except Crossfire) tend to esca-
late with an increase in the attacker’s budget. Notably, the
CrossPoint-SD/CC attack shows a high success rate with
a minimal additional budget, significantly surpassing other
LFAs, and the CrossPoint-SD method outperforms other ran-
dom selection-based strategies. Both CrossPoint attacks show
good performance because they exploit statistical disparities
and correlated congestion, which are challenging for NTO
defenses to hide effectively.

Moreover, the success rate of CrossPoint-SD/CC attacks
shows consistency across different network topologies, achiev-
ing high success rates with an extra budget of 10% to 20%,
demonstrating the general applicability of statistical dispari-
ties and correlated congestion in CrossPoint strategies. Never-
theless, the CrossPoint approach is not without its limitations.
It invariably entails additional budget expenses in the range
of 10%-20%. As inferred from the analysis in Section 6.2,

this can be attributed to the attacker’s approximately 95%
accuracy in analyzing correlated congestion, leading to poten-
tial minor inaccuracies in flow judgment based on correlated
congestion that necessitate a compensatory budget increase.
Compared with the higher cost implications of random attack
strategies, an extra expense of 10%-20% remains an afford-
able proposition for attackers.

Experiment 2: Topology robustness v.s. success rate. In
addition to the budget, the success rate of LFAs is also influ-
enced by network robustness. To understand the relationship
between various robustness parameters and LFA performance,
we design experiments that vary the link capacity parameters
to change network robustness. Given that the flow density
on each link is intrinsic to the topology and not readily alter-
able, adjusting link capacities allows us to control the number
of bottleneck links, thereby presenting networks of differing
robustness. For instance, a link inherently routing only 10
flows (due to the topology’s design) becomes secure to flood-
ing if its capacity is set to 11. We can control the proportion
of links susceptible to LFAs by varying the link capacities
across different topologies. For example, setting a robustness
parameter x = 95% implies that only 5% of the network’s
links are vulnerable to LFAs, posing a significant challenge
for attackers to accurately target one of these susceptible links
within the virtual topology.

Figures 9(e)-(h) and 10(e)-(h) depict the relationship be-
tween the success rates of LFAs against the Nethide [29] and
EqualNet [21] defenses across a spectrum of topological ro-
bustness settings. In these trials, we maintained a constant
budget parameter at 120%. The x-axis in these figures denotes
the topological robustness parameter, which varies from 20%
to 95% secure links. As the proportion of secure links grows,
the difficulty of achieving a successful LFA correspondingly
increases. According to the results, in most scenarios, only
the CrossPoint-SD/CC attack consistently maintains a high

11

25 50 75 100 125 150 175 200

Network Scale

0

500

1000

1500

2000

2500

3000

3500

B
ot

-P
at

hs
 n

ee
de

d
fo

r e
xp

os
ur

e

Abilene Bics

Viatel

Ion

UsCarrier
Cogentco

Tinet

R2 = 0.966

CrossPoint-SD/CC
Linear Fit

Figure 11: CrossPoint attacks’ scalability across different
sizes of topologies.

success rate in topologies with high robustness parameters,
whereas the efficacy of other attacks reduces as robustness
increases. This is because the reduction in vulnerable targets
further enhances the defensive advantage, making it difficult
to discover the true bottleneck link among the created virtual
links. At the same time, the effectiveness of random attack
strategies declines due to the increase in the number of invalid
flows. Nevertheless, the CrossPoint-SD/CC attack remains
largely unaffected, as the congestion information it leverages
is independent of the topological robustness.

Experiment 3: Protection levels v.s. success rate. The
protection levels of defense mechanisms may also influence
the effectiveness of LFAs. To explore the impact of different
protection level parameters on LFA performance, we conduct
experiments that adjust the protection level settings of defen-
sive mechanisms. Specifically, Nethide [29] employs a flow
density reduction factor (FR) to vary protection levels across
the network topology, depicted as

FR = 1− Avg.FDvirtual

Avg.FDphysical
.

The FR value indicates the topology’s security level; a higher
FR suggests enhanced security, making it increasingly chal-
lenging for LFA attackers to accurately discern the intended
attack target and select the corresponding attack flows. On the
other hand, EqualNet [21] utilizes an obfuscation parameter τ

to denote different levels of protection. According to Equal-
Net, the obfuscation parameter τ can be adjusted up to 80%;
hence for EqualNet, our evaluation focuses on the boundary
of LFA performance under the strictest condition.

6.4 Scalability
To evaluate the scalability of CrossPoint attacks, we conduct
experiments with seven real network topologies (Table 3)
from the Internet topology zoo [24].

We explore several evaluation schemes to assess the scala-
bility of CrossPoint attacks. The most intuitive approach is
to study the success rate of attacks under different network
scales. However, the success rate may not be the most suitable
metric for understanding the scalability of attacks. This is be-
cause the success rate is closely linked to the attack budget,

Table 3: Topology used in scalability experiments

Topology Nodes Edges Topology Nodes Edges

Abilene 11 14 Ion 125 146
Bics 33 48 UsCarrier 158 189
Tinet 53 89 Cogentco 197 243
Viatel 88 92

and maintaining a constant budget for scalability evaluations
across varying topological scales makes nonsense. For in-
stance, deploying 1000 bots in a small 10-node network might
invariably lead to successful attacks, rendering such experi-
ments on smaller topologies somewhat trivial. Conversely, a
limited number of bots might not provide meaningful insights
into the effectiveness of attacks on larger networks.

Therefore, our experiment focus shifts towards the required
budget to achieve a specific success rate as a measure of
scalability. Specifically, we study the number of bot-paths
that attackers must reveal against defenders to attain a 90%
success rate within different topologies. This approach allows
us to better understand the resource demands attackers need
to make as network sizes and complexities increase, offering
a more practical understanding of attack scalability.

Figure 11 illustrates the number of bot-paths that need to
be disclosed by CrossPoint attacks to achieve a 90% success
rate across networks of varying scales. With the increase in
network scale, there is a corresponding rise in the requisite
number of bot-paths for CrossPoint attackers. In particular, the
required bot number for CrossPoint-SD/CC attacks appears to
grow linearly with the size of the target network. To validate
this, we fit the required bot number and the network size
into a linear model, as shown in Figure 11, and evaluate the
goodness-of-fit with the R2 coefficient [16]. The R2 value
of 0.966 confirms the linear relationship between the attack
resources and the network size.

In practice, the required attack resource also remains af-
fordable to the attackers. For example, attacking a network
with about 200 nodes necessitates the disclosure of about
3000 bot-paths. Given the distributed nature of DDoS attacks,
3000 bot-paths is a manageable figure for attackers, especially
considering that each bot may handle 100+ paths and report
the results to the attackers.

In summary, the proposed CrossPoint attacks are highly
scalable in that the required attack resource (bot-paths) in-
creases linearly with the size of the target network. The Cross-
Point attacks could pose practical threats to large-scale net-
works, as long as the attacker has a sufficient budget.

6.5 Measurement study
Setup. We conduct a measurement study on the Internet to
understand the feasibility of our attacks. Our study took place
from May to November 2022 and utilized 6 senders and 20
public receivers. We observed at least 120 paths and sent

12

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
(a) Congestion frequency (K / day)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

of
 p

at
hs

 (1
00

%
)

1.0 2.0 3.0
0.1
0.2
0.3
0.4

Average congestion
Minimal congestion
Maximal congestion

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00
(c) 24-hour distribution (30-min, UTC)

0.00

0.05

0.10

0.15

Pe
rc

en
ta

ge
 (1

00
%

)

Asia rush hour
AS-NA
AS-AS
NA-NA
NA-EU

AS-NA AS-AS NA-NA NA-EU
(b) Duration distrubution (path)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (1

00
%

)

0.74 0.68
0.54

0.24

0.24 0.29

0.29

0.55

0.2-0.3s 0.2-0.5s 0.5-1s >1s

Figure 12: Measurement study of congestion. (a) CDF of the congestion frequency;
(b) congestion duration distribution on four path groups; (c) a 24-hour congestion distribution on four path groups. AS = Asia,
NA = North America, and EU = Europe.

almost 290 million ping packets, obtaining approximately
100.8 GB of aggregated data. Our senders were located in
6 cities globally, while the receivers consisted of industry
and academia, including public DNS servers, universities,
and worldwide organizations, on different continents. Each
sender sends ping probes at a 10 packet-per-second speed,
approximately 2.88 Kbps, which will not add pressure to any
Internet links and servers.

Separate host-level congestion. Since our study relies
on end-to-end delay probing, it’s possible that the observed
increase in delay might not solely indicate network link con-
gestion but could also include host-level congestion, such as
a busy destination server. Therefore, to refine our analysis,
we design a method to exclude this host-level congestion. If a
correlated delay increase is detected on all sources targeting
the same server, this pattern might indicate a server-related
slowdown. We examine cases where all sources to a particu-
lar destination report correlated congestion and classify these
congestion events as host-level issues rather than Internet
congestion.

Feasibility of CrossPoint attacks. Figure 12(a) illustrates
the aggregated results of the congestion frequency’s cumula-
tive density function (CDF) on all paths. Notably, on average,
68% of the paths experience more than 1K congestion events
per day. Even on the best days, half of the paths still incur at
least 700 congestion events, which indicates an average inter-
val of two minutes between congestion events. Furthermore,
the results indicate that about 40% of Internet paths encounter
10K congestion events per day on average. These findings
suggest that the Internet provides ample congestion resources
that attackers can exploit to conduct CrossPoint attacks. It
may take only a few hours to prepare for an attack on most
links, even when the network performs optimally. Therefore,
in practice, a CrossPoint attacker can launch a 24-hour obser-
vation on the Internet to collect sufficient congestion samples
of a hidden link in most network paths. It is important to note
that this time can be further shortened, as demonstrated in
Figure 12(c), where some Internet paths exhibit a specific
‘rush hour’ around a certain time, during which the attacker
can gain more useful congestion data.

Stealthiness of CrossPoint attacks. Given that congestion
can occur suddenly, it may be necessary to employ a very high

0 10 20 30 40 50 60 70 80 90 100

Simutanous congestion number

40%

50%

60%

70%

80%

90%

100%

Su
cc

es
s r

at
e

(%
)

Budget 110%
Budget 120%
Budget 130%
Budget 140%

Figure 13: Performance of fake congestion defense against
CrossPoint attacks.

sampling rate to fully capture instances of congestion in real-
world scenarios. However, in this study, we demonstrate that
even if an attacker uses a lower congestion detection sampling
rate to maintain stealth, such as 10 PPS (≈ 2.88 Kbps), they
can still observe most network congestion events.

As depicted in Figure 12(b), we present four examples
of intercontinental link congestion, revealing that most net-
work congestion durations last for more than 0.2 seconds.
Consequently, at a sampling rate of 10 PPS, the attacker can
differentiate between network noise generated by a single
packet and network congestion involving at least two packets.

7 Countermeasure

Since the CrossPoint attacks exploit congestion events to tar-
get their attack flows on specific physical links, a conceivable
defense strategy is to deflect these attack flows by intention-
ally creating fake congestion events across various network
links simultaneously. For instance, the defenders could craft
correlated fake congestion on two distinct network links; bot-
paths observing these correlated congestion events might mis-
takenly believe that they pass through the same physical link
and send attack flows to them. However, this misidentified bot-
path cannot contribute to attacks against the target, reducing
the effectiveness of the attack.

To implement the fake congestion defense, the defenders
follow three steps: (1) To generate congestion in a specific de-
vice, defenders can either delay incoming packets temporarily
or inject burst traffic into buffer queues. The latter, injecting
burst traffic, is more practical as it reproduces the natural
congestion process without necessitating modifications to

13

network devices. (2) To ensure that the artificial congestion
events appear correlated, each network device must have the
same bandwidth and receive the same volume of burst traf-
fic simultaneously. Finally, (3) to deceive the attackers, the
defenders must strategize on the timing and locations for
generating fake congestion. Given the unpredictability of the
attacker’s target and timing, a practical approach for defend-
ers is to create correlated congestion across random network
devices periodically.

In this paper, we evaluate the effectiveness of fake conges-
tion defense against CrossPoint attacks within the AS30598
topology, which comprises 226 nodes and 314 links. The de-
fense strategy involves the use of Nethide [29] to protect the
network while simultaneously generating various amounts
of fake congestion through burst traffic injection. Figure 13
illustrates the correlation between the attacker’s success rate
and the number of simultaneous fake congestion events. Our
experiment results indicate that as the number of simultane-
ous fake congestion events increases, the attacker’s success
rate decreases for all budget levels. This trend suggests that
amplifying the number of links involved in fake congestion
creation generally boosts defense effectiveness.

While this defense appears to be reasonably effective, how-
ever, it comes at a relatively high cost. Implementing this
defense requires generating a significant amount of simultane-
ous fake congestion, which results in substantial burst traffic
injection and may impact legitimate users. Firstly, creating
short-term congestion on a device requires a considerable vol-
ume of burst traffic; for instance, injecting 20 Gb of data into
a 40 Gbps queue could only congest the device for about 0.5
seconds. Moreover, achieving simultaneous fake congestion
demands the involvement of a large number of network de-
vices. For example, the results suggest that engaging around
90 devices in simultaneous fake congestion generation is
necessary to decrease the success rate of CrossPoint attacks
by 50%. Secondly, existing congestion control mechanisms
are sensitive to congestion [12, 20, 37]; the fake congestion
could activate TCP flows’ congestion avoidance mechanisms,
thereby reducing the throughput for legitimate users. As a re-
sult, bridging the gap between the concept of fake congestion
defense and its practical implementation remains a challenge.

8 Discussion

Enhancing CrossPoint attacks. In scenarios where conges-
tion events are infrequent or absent, attackers can either ex-
ploit existing statistical disparities patterns or proactively
craft congestion. For instance, they might adopt approaches
akin to SDN CrossPath attacks [11], where selected bots are
orchestrated to dispatch short-term burst flows to random
places while remaining stealthy [43].

Future design of NTO schemes. The CrossPoint attack
highlights a fundamental issue in current NTO designs: while
NTO strategies can conceal critical information at the upper

layer, lower-level network traffic characteristics are inherently
difficult to obfuscate, challenging the creation of defenses that
align with upper-layer strategies. Nonetheless, introducing
lower-level obfuscation mechanisms is possible. For exam-
ple, fake congestion defense. However, a major challenge
associated with fake congestion lies in the trade-off between
maintaining benign user throughput and achieving defensive
efficacy; a large amount of fake congestion can decrease user
throughput, whereas a limited number of fake congestion
might fall short of providing robust defense. To tackle this
challenge, one potential NTO strategy could integrate upper-
layer obfuscation algorithms, network topology, traffic pat-
terns, and other attributes to strategically create fake conges-
tion at key points to minimize the impact on legitimate users.
Moreover, other network traffic characteristics that influence
security should also be considered. For instance, propaga-
tion delay can leak information about path length. Therefore,
future NTO schemes should avoid using short virtual paths
to substitute long physical paths in detailed obfuscation al-
gorithms. To sum up, future NTO designs should carefully
balance the integration of various obfuscation techniques and
considerations of network traffic characteristics to enhance
security without impacting user experience.

9 Conclusion

Crosspoint attacks exploit inherent Internet features to es-
cape SOTA NTO defenses with a high success rate and a
low extra cost. Besides, our measurement study substantiates
the practical feasibility and stealthy nature of these attacks.
Consequently, although NTO defenses may succeed in obfus-
cating links, they fall short in concealing the entire network
map due to incomplete obfuscation measures on inherent fea-
tures. To enhance the future security of NTO schemes, we
also discuss potential countermeasures. We hope this work
could stimulate increased focus on the development of more
robust NTO schemes to counteract LFAs effectively.

10 Acknowledgements

We thank all anonymous reviewers and our shepherd for their
valuable comments and suggestions. This work of Xuanbo
Huang, Kaiping Xue, Lutong Chen, Mingrui Ai, Qibin Sun
was supported in part by the National Natural Science Founda-
tion of China under Grant No. 62372425 and No. U19B2023,
and Youth Innovation Promotion Association of the Chinese
Academy of Sciences (CAS) under Grant No. Y202093.

References

[1] The CAIDA UCSD IP Prefix-to-AS mapping in 2008,
2022. accessed: June, 2024.

14

[2] DDoS attack trends for 2022 q2, 2022. accessed: June,
2024.

[3] The DDoS that knocked spamhaus offline, 2022. ac-
cessed: June, 2024.

[4] Gurobi mathematical programming solver, 2022. ac-
cessed: June, 2024.

[5] Wondernetworks: A day in the life of the Internet, 2022.
accessed: June, 2024.

[6] Ciso panel: The future of cyber is automated moving
target defense., 2023. accessed: June, 2024.

[7] Cyberattack causes ic Internet connection to cut out.,
2024. accessed: June, 2024.

[8] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed,
Mohammad Alizadeh, and Hari Balakrishnan. Toward
formally verifying congestion control behavior. In pro-
ceedings of the 35th ACM SIGCOMM Conference, pages
1–16, 2021.

[9] Cristina Basescu, Raphael M. Reischuk, Pawel Szala-
chowski, Adrian Perrig, Yao Zhang, Hsu-Chun Hsiao,
Ayumu Kubota, and Jumpei Urakawa. SIBRA: Scal-
able internet bandwidth reservation architecture. In pro-
ceedings of the 23rd Network and Distributed System
Security Symposium (NDSS), pages 1–16, 2016.

[10] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Is-
rael Cohen. Pearson correlation coefficient. In Noise
Reduction in Speech Processing, pages 1–4. Springer,
2009.

[11] Jiahao Cao, Qi Li, Renjie Xie, Kun Sun, Guofei Gu,
Mingwei Xu, and Yuan Yang. The CrossPath attack:
Disrupting the SDN control channel via shared links. In
proceedings of the 28th USENIX Security Symposium,
pages 19–36. USENIX, 2019.

[12] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control: Measuring bottle-
neck bandwidth and round-trip propagation time. Queue,
14(5):20–53, 2016.

[13] Xuyang Ding, Feng Xiao, Man Zhou, and Zhibo Wang.
Active link obfuscation to thwart link-flooding attacks
for internet of things. In proceedings of the 19th IEEE
International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pages
217–224. IEEE, 2020.

[14] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and
Michael Bailey. Bohatei: Flexible and elastic DDoS de-
fense. In proceedings of the 24th USENIX Security Sym-
posium, pages 817–832. USENIX Association, 2015.

[15] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime
robust malicious traffic detection via frequency domain
analysis. In proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 3431–3446. ACM, 2021.

[16] Stanton A Glantz, Bryan K Slinker, and Torsten B Nei-
lands. Primer of applied regression & analysis of vari-
ance, ed, volume 654. McGraw-Hill, 2001.

[17] Ningning Hu, Li Li, Zhuoqing Morley Mao, Peter
Steenkiste, and Jia Wang. Locating internet bottlenecks:
Algorithms, measurements, and implications. ACM SIG-
COMM Computer Communication Review, 34(4):41–54,
2004.

[18] Min Suk Kang, Virgil D Gligor, Vyas Sekar, et al.
SPIFFY: Inducing cost-detectability tradeoffs for per-
sistent link-flooding attacks. In proceedings of the 23rd
Network and Distributed System Security Symposium
(NDSS), pages 53–55. ISOC, 2016.

[19] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. The
crossfire attack. In proceedings of the 34th IEEE Sym-
posium on Security and Privacy (S&P), pages 127–141.
IEEE, 2013.

[20] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In proceedings of the 30th ACM SIGCOMM, volume 15,
pages 1–2. ACM, 2015.

[21] Jinwoo Kim, Eduard Marin, Mauro Conti, and Seung-
won Shin. Equalnet: A secure and practical defense
for long-term network topology obfuscation. In pro-
ceedings of the 2022 Network and Distributed System
Security Symposium (NDSS). ISOC, 2022.

[22] Jinwoo Kim, Jaehyun Nam, Suyeol Lee, Vinod Yeg-
neswaran, Phillip Porras, and Seungwon Shin. Bot-
tleNet: Hiding network bottlenecks using sdn-based
topology deception. IEEE Transactions on Information
Forensics and Security (TIFS), 16:3138–3153, 2021.

[23] Min Sik Kim, Taekhyun Kim, Yong-June Shin, Simon S
Lam, and Edward J Powers. A wavelet-based approach
to detect shared congestion. IEEE/ACM Transactions
on Networking (TON), 16(4):763–776, 2008.

[24] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys
Bowden, and Matthew Roughan. The internet topology
zoo. IEEE Journal on Selected Areas in Communica-
tions (JSAC), 29(9):1765–1775, 2011.

15

[25] Soo Bum Lee, Min Suk Kang, and Virgil D Gligor.
Codef: Collaborative defense against large-scale link-
flooding attacks. In proceedings of the 9th ACM Confer-
ence on Emerging Networking Experiments and Tech-
nologies (CoNext), pages 417–428, 2013.

[26] Christos Liaskos, Vasileios Kotronis, and Xenofontas
Dimitropoulos. A novel framework for modeling and
mitigating distributed link flooding attacks. In proceed-
ings of the 35th IEEE International Conference on Com-
puter Communications (INFOCOM), pages 1–9. IEEE,
2016.

[27] Carl C. Manion. The emerging moving target defense
market - what you need to know, 2023. accessed: June,
2024.

[28] Carl Manion Mark Pohto. Gartner emerging tech: Se-
curity — tech innovators in automated moving target
defense, 2023. accessed: June, 2024.

[29] Roland Meier, Petar Tsankov, Vincent Lenders, Laurent
Vanbever, and Martin Vechev. NetHide: Secure and
practical network topology obfuscation. In proceed-
ings of the 27th USENIX Security Symposium (USENIX
Security), pages 693–709. USENIX, 2018.

[30] J. Postel. Internet Control Message Protocol, 1981. RFC
777, Accessed: June, 2024.

[31] Ryan Rasti, Mukul Murthy, Nicholas Weaver, and Vern
Paxson. Temporal lensing and its application in pulsing
denial-of-service attacks. In proceedings of the 36th
IEEE Symposium on Security and Privacy (S&P), pages
187–198, 2015.

[32] Nagarathna Ravi, S. Mercy Shalinie, and D. Danyson
Jose Theres. BALANCE: Link flooding attack detection
and mitigation via hybrid-sdn. IEEE Transactions on
Network and Service Management (TNSM), 17(3):1715–
1729, 2020.

[33] Dan Rubenstein, Jim Kurose, and Don Towsley. Detect-
ing shared congestion of flows via end-to-end measure-
ment. IEEE/ACM Transactions On Networking (TON),
10(3):381–395, 2002.

[34] Jared M Smith and Max Schuchard. Routing around
congestion: Defeating ddos attacks and adverse network
conditions via reactive bgp routing. In proceedings
of the 39th IEEE Symposium on Security and Privacy
(S&P), pages 599–617, 2018.

[35] Ahren Studer and Adrian Perrig. The coremelt attack.
In proceedings of the 14th European Symposium on
Research in Computer Security (ESORICS), pages 37–
52. Springer, 2009.

[36] Muoi Tran, Min Suk Kang, Hsu-Chun Hsiao, Wei-Hsuan
Chiang, Shu-Po Tung, and Yu-Su Wang. On the feasi-
bility of rerouting-based ddos defenses. In proceedings
of the 40th IEEE Symposium on Security and Privacy
(S&P), pages 1169–1184. IEEE, 2019.

[37] Jingyuan Wang, Jiangtao Wen, Chao Li, Zhang Xiong,
and Yuxing Han. Dc-vegas: A delay-based tcp conges-
tion control algorithm for datacenter applications. Jour-
nal of Network and Computer Applications, 53:103–114,
2015.

[38] Juan Wang, Ru Wen, Jiangqi Li, Fei Yan, Bo Zhao,
and Fajiang Yu. Detecting and mitigating target link-
flooding attacks using sdn. IEEE Transactions on De-
pendable and Secure Computing (TDSC), 16(6):944–
956, 2019.

[39] Lei Wang, Qing Li, Yong Jiang, Xuya Jia, and Jian-
ping Wu. Woodpecker: Detecting and mitigating link-
flooding attacks via sdn. Computer Networks, 147:1–13,
2018.

[40] Wenjia Wei, Kaiping Xue, Jiangping Han, David SL
Wei, and Peilin Hong. Shared bottleneck-based con-
gestion control and packet scheduling for multipath
tcp. IEEE/ACM Transactions on Networking (TON),
28(2):653–666, 2020.

[41] Jiarong Xing, Wenqing Wu, and Ang Chen. Ripple:
A programmable, decentralized Link-Flooding defense
against adaptive adversaries. In proceedings of the
30th USENIX Security Symposium, pages 3865–3881.
USENIX, 2021.

[42] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang
Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qianqian Li,
Mingwei Xu, and Jianping Wu. Poseidon: Mitigating
volumetric DDoS attacks with programmable switches.
In proceedings of the 27th Network and Distributed
System Security Symposium (NDSS), pages 1–18. ISOC,
2020.

[43] Jing Zheng, Qi Li, Guofei Gu, Jiahao Cao, David K. Y.
Yau, and Jianping Wu. Realtime ddos defense using cots
sdn switches via adaptive correlation analysis. IEEE
Transactions on Information Forensics and Security
(TIFS), 13(7):1838–1853, 2018.

[44] Huancheng Zhou, Sungmin Hong, Yangyang Liu, Xi-
apu Luo, Weichao Li, and Guofei Gu. Mew: Enabling
large-scale and dynamic link-flooding defenses on pro-
grammable switches. In proceedings of 43rd IEEE Sym-
posium on Security and Privacy (S&P), pages 1625–
1639. IEEE Computer Society, 2022.

16

	Introduction
	Background and Related Works
	Threat Model and Glossary
	Security Analysis of NTO Defense
	The Statistical Disparities
	The Correlated Congestion

	CrossPoint Attacks
	Attack Overview
	Step 1: Attack Preparation
	Step 2: Detecting Virtual Links
	Step 3: Identifying Physical Links
	Implementation Details

	Evaluation
	Implementation
	CrossPoint-CC Evaluations
	CrossPoint-SD/CC Evaluations
	Scalability
	Measurement study

	Countermeasure
	Discussion
	Conclusion
	Acknowledgements

