
Security Issues and Challenges in Service
Meshes – An Extended Study

Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

EECS Department, ITTC
University of Kansas
Lawrence, KS USA

{daltonhahn, drewdavidson, alexbardas}@ku.edu

Abstract. Service meshes have emerged as an attractive DevOps so-
lution for collecting, managing, and coordinating microservice deploy-
ments. However, current service meshes leave fundamental security mech-
anisms missing or incomplete. The security burden means service meshes
may actually cause additional workload and overhead for administrators
over traditional monolithic systems. By assessing the effectiveness and
practicality of service mesh tools, this work provides necessary insights
into the available security of service meshes. We evaluate service meshes
from two perspectives: skilled system administrators (who deploy opti-
mal configurations of available security mechanisms) and default config-
urations. Under these two models, we consider a comprehensive set of
adversarial scenarios and uncover important design flaws with contra-
dicting goals, as well as the limitations and challenges encountered in
employing service mesh tools for operational environments.

Keywords: Service Mesh, DevOps, Containers, Consul, Istio, Linkerdv2

1 Introduction

The widespread enthusiasm of large enterprises for microservice system archi-
tectures [3], where many lightweight containers are managed and deployed via
automation tools [32], is unmatched by an evaluation of their security. A number
of academic works have examined the security of individual containers [8,51,61].
However, service meshes that manage microservice clusters, remain largely un-
studied. This work focuses on microservices, due to the promise of a more adapt-
able, and flexible large-scale system deployment structure [3,39,54,67]. The de-
sign philosophy underlying microservices is to refactor monolithic applications
into collections of distinct components that collaborate at scale [40].

Service meshes ease the complexity of managing microservice architectures by
allowing the administrator to express the structure and relationships between
services using configuration files [26, 38]. In contrast to traditional means of
structuring system components via documentation (or knowledge shared by se-
nior system architects), service meshes explicitly indicate dependencies between
components. State-of-art service mesh tools such as Consul [23], Istio [35], and
Linkerdv2 [31] launch collections of microservices automatically, ensuring that

ar
X

iv
:2

01
0.

11
07

9v
1

 [
cs

.C
R

]
 2

1
O

ct
 2

02
0

2 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

microservices are deployed once dependencies are available. Furthermore, these
tools automate service discovery, the process of locating and binding services
together. Service discovery is a non-trivial process under the DevOps [3, 5, 59]
ideology to support a variety of flexible deployments. As such, service discovery
uses a decentralized model where dependencies are satisfied dynamically.

The purpose of service mesh tools is to provide a layer of abstraction over
microservice launch and service discovery. In doing so, service mesh tools carry
the responsibility of orchestrating deployments securely. The decentralized na-
ture of service meshes requires special care to ensure that malicious actors do
not overwhelm cluster formation. In addition to attack vectors that are new to
the service mesh domain, traditional system compromise remains a possibility.
The goal of our work is to assess how well modern tools meet these challenges.

In studying service mesh security, we discover that misconfiguration issues
and lack of security mechanisms enable numerous attacks. We view these as
consequences of design flaws in service mesh security. When facing these attacks,
service meshes either offer no defense or require significant manual intervention
on the part of the system administrator. The latter effectively undermines a
core goal of service meshes: ease of automation. As such, our study suggests
that service meshes should be redesigned to support security best-practices.

Current practices such as infinite-lifetimes and shared encryption keys [28]
indicate that the design of service meshes has overlooked important security
concerns. Nonetheless, deployment of immature service meshes is growing in
production environments [7, 11–14, 41, 66]. Aside from maturity concerns, con-
figuring and maintaining these tools may come at a high cost to administrators,
sometimes even greater than their original workflow demanded. Moreover, the
context-dependent scope and implementations of service meshes are so diverse
that establishing a meaningful comparison between different tools is difficult.

Despite the building importance of defending service meshes, we are unaware
of any systematic assessment of their security. To the best of our knowledge, this
paper presents the first study to specifically focus on existing security mecha-
nisms in service meshes. Our assessment indicates although service mesh tools
embrace known consensus protocols such as RAFT [53] or extend membership
protocols such as SWIM [10], their security implementations and maintenance
mechanisms are incomplete, or even non-existent. Additionally, we discovered
that even though service mesh tools advertise their security contributions, they
are either not enabled by default, or are left to third-party tools to implement.

Our contributions can be summarized as follows:
– We present the first study to examine the security design and analyze the

available security mechanisms within current service meshes
– We propose a relevant threat model to the service mesh domain and assess

the effectiveness of existing tools to mitigate these threats
– We assess the impact and the effort of utilizing available security features in

current service mesh tools

The remainder of this paper is structured as follows: Section 2 introduces back-
ground while Section 3 covers our threat model and the experimental design.

Security Issues and Challenges in Service Meshes – An Extended Study 3

Consul Quorum

Service to Service
Communication

Cluster
Communication

Consul Server

Consul Client

Consul Leader

Virtual Machines
Platform

Serf Membership
Protocol

Heartbeat
Messages

RAFT Election
Protocol

Vote
Submission

(a) (b) (c)

Fig. 1: Model Consul Service Mesh – Using Consul, the creation and operation of a
model service mesh are shown. (a). RAFT elections occur periodically among Consul
servers to determine cluster leadership. (b). Proxies present on each node route cluster-
and service-level communications to nodes. Proxies may be installed on a variety of
platforms including virtualized, containerized, and physical machines with little re-
striction on operating system [1]. (c). The Serf membership protocol occurs with high
frequency to send heartbeat messages among nodes to track health and membership.

Section 4 presents both our experimental evaluations (idealized in Section 4.1
and default Section 4.2). Related work appears in Section 5, Section 6 includes
potential future work and we present our concluding thoughts in Section 7.

2 Background

Microservice architectures consist of a complex web of narrowly-scoped, interact-
ing services in place of a monolithic architecture. This structure better enables
incremental changes, resilience to cascading failures, and quicker update/release
cycles [5,16,62] at the cost of complexity; it is a significant challenge to maintain
synergy between services. Additionally, systems such as Kubernetes [42] provide
a framework to deploy, scale, and manage microservices quickly, magnifying the
need to coordinate services. Service meshes seek to address this gap between fast
deployments and collaborating webs of microservices. In this section, we describe
some of the enabling tools and design concepts that underlie service meshes.

Service Discovery and Management: Service meshes enable a service to
be registered to a cluster, discovered dynamically by other dependent services,
and to have configuration state maintained. We note that some alternative tools
provide service discovery and management capabilities, but are not classified
as service meshes. In particular, Alibaba’s Nacos [18], uses the Domain Name
System (DNS) to collect, register and maintain a list of available services [52].
The concepts of service discovery and registry, have been present in distributed
computing since the Hadoop-era [15], but have seen a return to fulfill the needs
of connecting services in microservice architectures.

Service Mesh Tools: Consul, Istio, and Linkerdv2 are the current state-of-art
service mesh tools with full, production-ready releases. A major cause of com-
plexity in coordinating services is to determine cluster membership and node

4 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

Kubernetes Master

Linkerd Proxy

Kubernetes Proxy

Service Messages

Kubernetes Msg.

TLS

Kubernetes Master

Kubernetes Proxy

Kubernetes Msg.

Standalone Kubernetes Linkerdv2 Service Mesh Add-on

Responsibilities
•Cluster Management
•Cluster Encryption
•Cluster Access Control

Responsibilities
•Service Message Encryption
•Traffic Shaping
•Service Access Control

Cluster
Access Control

Cluster
Encryption

Service Access
Control

Fig. 2: Linkerdv2 Service Mesh Structure – A Linkerdv2 service mesh works only with
Kubernetes. An established Kubernetes cluster provides the “Cluster Access Control”
security mechanism, but leaves “Cluster Encryption” to third-party tools. Linkerdv2
provides “Service Message Encryption” through TLS and “Service Access Control”
through the inherited Role-Based Access Control from Kubernetes.

operation status. Consul implements the Serf [29] membership and node health
protocol (an extension of SWIM [10]) and the RAFT consensus protocol. The
basic process is illustrated in Figure 1. Leveraging the cluster membership logic,
Consul creates a membership hierarchy to organize the permissions that mem-
bers of the cluster possess to take action within the cluster. The Consul quorum
is responsible for maintaining a consistent membership registry and holding clus-
ter elections for the cluster permission hierarchy.

Istio and Linkerdv2 both require an underlying Kubernetes platform to pro-
vide cluster membership logic. In contrast, installation of Consul is supported on
a range of operating systems and architectures as well as virtualized and physical
instances [1]. Without a previously created and configured Kubernetes cluster
of pods; collections of containers with shared resources [44, 46], Istio and Link-
erdv2 are unable to provide any of their promised features or security benefits.
Figure 2 shows how an existing Kubernetes infrastructure may be augmented
by overlaying the Linkerdv2 service mesh on top. However, by imposing the
initial requirement of a properly installed, configured, and secured Kubernetes
infrastructure, in addition to the overhead of configuring and maintaining the
service mesh, Istio and Linkerdv2 demonstrate a higher burden on system ad-
ministrators than that of Consul. In contrast to Consul, Istio and Linkerdv2 do
not maintain a hierarchical structure for permissions and state management, in-
stead, they rely upon a star topology-like system where the Kubernetes master
controls the cluster’s pods either remotely, or locally, and sets the configuration
and permissions of specific members within the cluster.

Service Mesh Security: The paradigm shift from monolithic systems to mi-
croservice systems has caused a change from intra-service issues to inter -service
issues. This transitions the burden of security from within the operating system

Security Issues and Challenges in Service Meshes – An Extended Study 5

of a machine to across network connections. Issues previously addressable by
trusted security measures within the operating system must now be addressed
with network-level security measures. These issues include the need to protect
cluster-level communications, service-level communications, and access permis-
sions, both at the cluster-level as well as the service-level. Within monolithic
applications, membership is addressed within software design and all software
components are “members” of the larger system through the architectural design
of the software. However, in microservices, the software application is divided
and fragmented into functional components which must then be connected via a
network medium, necessitating a network-level solution. Service-to-service com-
munications within monolithic applications could be sent via RPC or to com-
ponents listening on the machine’s loopback address. In contrast, the nature of
microservice architectures and their involved entities (containers, virtual ma-
chines, or physical machines) require secure network communications to relay
service-level messages.

3 Threat Model and Experimental Design

To evaluate the security of modern service mesh tools, we used Consul as a model
for service mesh design and implementation. We constructed a proof-of-concept
environment using Consul to conduct our experiments. We consider the available
security mechanisms for administrators and examine a deployment utilizing all
available mechanisms as well as one using default configurations. Under these
setups, we conduct a series of active attacks and report our results. We also
present a comparison of available and default security mechanisms within Istio
and Linkerdv2 and provide our findings. We utilize these findings to frame a dis-
cussion of the shortcomings and overhead system administrators should expect
when attempting to secure service mesh clusters within their infrastructure.

Consul provides a meaningful representation of service meshes and the ma-
turity of these tools. Of the current state-of-art service meshes, Consul is the
most feature-rich and flexible tool available in this domain. As mentioned previ-
ously, Consul can be used with any other tools or forms of virtualization such as
containers or virtual machines whereas Istio and Linkerdv2 are dependent upon
an underlying Kubernetes implementation to provide necessary features for the
mesh. Additionally, as of the writing of this work, Consul appears to be the
most actively developed tool, enjoying the largest number of GitHub contrib-
utors (594) of the tools we encountered, and a comparable number of GitHub
repository stars to the runner-up tool, Istio [24,34]).

Threat Model: The threat model we employ in this work considers common
attacker goals of disruption of services and exfiltration of sensitive data. How-
ever, we also consider adversarial targets that are unique to the service mesh
domain. For example, an attacker may often desire to infiltrate the cluster and
gain privilege rather than destroying the functionality of a system. By infiltrating
the cluster, the attacker may inject malicious service configurations to possibly
redirect benign service requests to externally controlled endpoints. Additionally,

6 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

Datacenter Label UDP ACLs TLS All Mechanisms Combined
as a Secret Encryption (Access Control Lists) Encryption (Datacenter Label, UDP, ACLs, TLS)

Unprivileged Threat D M T — D — —
Client Compromise D M T D M T D M —
Server Compromise D M T D M T D M —
Leader Compromise D M T D M T D M T D M T D M T

Table 1: Adversarial Goals on a Consul Deployment – Presents experimental results
of achieved adversarial goals on a properly configured Consul service mesh deployment.
Disruption: Interruption to service availability. Manipulation: Infiltration or exfiltra-
tion of data to cluster. Takeover: Adversary assumes the leadership position in cluster.

attackers may wish to maintain a position of strength within the cluster’s leader-
ship to gain capabilities to register malicious services within the cluster, remove
defender-controlled resources, and acquire access to more computing resources
for larger scale attacks, such as those executed by botnets. In Table 1, we denote
these high-level goals as Disruption, Manipulation, and Takeover for disruption
to services and cluster activities, tampering of sensitive data via manipulation,
and gaining privilege through service mesh takeover, respectively.

Experimental Setup: We deployed our model cluster upon a Dell R540 server
configured with 128 GB of RAM, Xeon Gold 5117 processor, and 10 TB of SSD
storage. We believe this hardware to be comparable to what would be utilized
in production environments, both in on-site and remote, cloud datacenters.

The proof-of-concept Consul service mesh consists of an initial leader node or
“bootstrapper” responsible for initializing the cluster and connecting the initial
nodes. Alongside the leader node are two server nodes, forming the quorum, and
a singular client node. Using Figure 1 as our model, we manually deployed and
configured these four Consul nodes (one leader, two servers, and one client node).
We utilize only one client node due to the equivalent functionality of subsequent
clients. Due to the architecture of Consul service mesh clusters, it is recom-
mended to have 3 nodes acting as servers (one leader node and 2 server nodes)
to manage the quorum and maintain the cluster state and log files [22]. Nodes
are the main structural components of service mesh clusters, hosting ephemeral
or long-lived microservices on permanent, virtual, or physical instances.

Once installed and configured, we run the Consul application to connect
and register components of the cluster and allow the leadership quorum to be
established. Next, services were connected and the service mesh began routing
cluster requests to their appropriate destinations. Once services were configured,
in order to enable all available security mechanisms for the cluster, the datacenter
label was distributed, UDP encryption key created and distributed, proper node-
level and service-level access permissions set, and TLS certificates created and
distributed appropriately.

4 Evaluation of Modern Service Meshes

In order to examine all aspects of the security of service meshes, we perform two,
parallel evaluations of the studied tools. Under one, we consider an administra-
tor with deep knowledge of the employed tool and its available security mech-

Security Issues and Challenges in Service Meshes – An Extended Study 7

(a) (b)

1. Command-line key generation

2. Adding Base64 key to
configuration file

3. Key read in plaintext
from disk during operation

Node 1 Node 2

Fig. 3: Plaintext UDP Key Storage and Plaintext Transmission of Datacenter Label –
(a). Due to the plaintext transmission of the datacenter label over the network during
the node join process, a packet capture software such as Wireshark [17] can be used
to extract the datacenter label and illegitimately join a target cluster. (b). Shows the
creation of a Base64 UDP encryption key using the built-in Consul key generator and
the subsequent plaintext storage of the generated key.

anisms. We classify this as an “idealized” defense scenario. Second, we study
the employed tools under their default configurations and report our findings
to demonstrate the significant burden placed upon administrators to properly
enable and configure the security mechanisms, or lack thereof, of these tools.

4.1 Evaluation of the Idealized Service Mesh Defender
Under our initial adversarial evaluation, we consider an administrator with deep
knowledge of the available security mechanisms and their correct configuration.
As such, an administrator can leverage these security mechanisms to their great-
est potential. To study how varying degrees of attacker strength can affect the
level of compromise under these security mechanisms, we position the adversary
at different levels of initial compromise. The lowest initial power we consider
an attacker to have is that of an “Unprivileged Adversary” who has not yet
compromised any node within the cluster. The highest initial level of power we
consider is that of “Leader Compromise” where an adversary has the preliminary
position of a node considered to be the leader of the Consul quorum. Under the
assumption of a knowledgeable administrator and the preconditions placed upon
the adversary, we evaluate the experimental results and provide our assessment.

Consul – Datacenter Label as a Secret: The first means of potential defense
we consider within our proof-of-concept Consul service mesh is the datacenter
label. We consider this a potential security mechanism due to the fact that if a
prospective cluster node is configured with a datacenter label that differs from
the target cluster, the prospective node will be denied membership to the cluster.
In order to enable this configuration, a system administrator would be required
to generate a datacenter label and distribute it among all members of the cluster.
Once configured among the nodes, cluster initialization may commence.

As shown in Table 1, under all adversarial scenarios, using strictly “Data-
center Label as a Secret” is insufficient in thwarting attacks against the cluster.
Specifically, when using datacenter label alone, communication messages are ex-
changed in plaintext between nodes of the cluster. Figure 3(a) shows how a

8 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

captured communication packet between two Consul nodes exposes this con-
figuration detail to potential adversaries. Due to the realistic possibility of an
adversary to capture a single packet exchanged between the nodes of the clus-
ter, they may extract the datacenter label from the packet. The malicious join
operation is, subsequently, made possible due to a lack of UDP or TLS encryp-
tion among the nodes of the cluster. Once a member of the cluster, lack of any
additional security measures concedes the ability for an adversary to conduct
any action and command within the cluster without restraint. Due to this, all
high-level attacker goals can be achieved.

Consul – UDP Message Encryption: Next, we consider the Consul service
mesh deployed using UDP message encryption as the sole mechanism of defense.
As shown in Table 1, enabling UDP message encryption thwarts an unprivileged
adversary from achieving any of their goals, but fails to provide protection under
compromise of any cluster members. By enabling UDP encryption, the adver-
sarial joins previously possible are prevented because an attacker is unable to
decrypt packets from the legitimate nodes.

All nodes within a Consul service mesh share the same encryption key. To
exacerbate this concern, Consul, as of the writing of this work, fails to provide
any means of key revocation or rotation. Figure 3(b) shows the plaintext stor-
age of the UDP encryption on disk of all Consul nodes, further demonstrating
how the implementation of this security mechanism has been patched into the
software, rather than accounted for in system design. In order to provide key
rotation within the cluster, even through a separate “recovery” mechanism such
as an SSH [63] session, all nodes must be stopped, configurations adjusted, and
the cluster recreated. Lack of key rotation support deepens the potential damage
of key exposure and burden placed upon administrators. The long-term implica-
tions to maintain a cluster is clearly taxing upon its users. While the managed
services of the cluster may be transient and possibly short-lived, the underlying
service mesh infrastructure is intended to be long-living. Therefore, support for
key rotation capabilities is vital for managing and maintaining a secure service
mesh architecture.

During the lifetime of a Consul cluster secured with solely UDP message
encryption, should a single node be compromised, the entirety of the service mesh
is compromised. Due to the shared key among all nodes, a single compromise
allows an adversary to replicate the key among malicious nodes and join the
cluster or exfiltrate the shared key to other adversarial nodes. Once becoming a
member of the cluster, an adversary is, once again, able to perform any action
within the cluster without restriction. Such actions include creating new service
configurations, removing the current leader node, and reading secrets from the
key/value storage system.

Consul – ACLs: As shown in Table 1, Access Control Lists (ACLs) are highly
effective at thwarting the adversarial goals of manipulation and takeover within
the cluster. However, ACLs prove futile against disruption of cluster activities
and service availability. In order for a system administrator to enable ACLs
as a defense mechanism, extensive permission policies must be created and ac-

Security Issues and Challenges in Service Meshes – An Extended Study 9

25
Attacker
Nodes

Quorum State
STABLE

Consensus
Messages

UNSTABLE
Quorum State

Fig. 4: Disruption Attack – Depiction of a 3 node Consul server quorum. An adversary
can flood the cluster with malicious nodes with the “server” flag to overwhelm the
RAFT consensus protocol within the Consul service mesh. We find that less than 25
attacker nodes were required to disrupt cluster operations and create instability within
the Consul quorum.

cess tokens exchanged using a third-party, secure channel such as SSH. With
a lack of support for distributing security objects safely within Consul itself,
the implementation of ACLs, and subsequently the policies and tokens gener-
ated, demonstrates that security mechanisms within service meshes have been
“bolted-on” to existing software, rather than incorporated into system design.

In order to secure the simple, four node service mesh used for our evalua-
tion, as advised by the Consul tutorials [25], an administrator would need to
generate unique access policies, generate tokens, and distribute and assign the
generated tokens to proper recipients. All of these actions must be conducted
from the single leader node due to the advised “operator-only” policy. Under
the “operator-only” policy, permissions to edit the ACLs are restricted to the
leader, meaning a singular node is responsible for all creation and distribution
of policy materials. In direct contrast to the decentralized, distributed nature
of the service mesh, the security structure implemented has been consolidated
to a single point of control, the Consul leader. Augmenting the burden placed
upon system administrators, the current implementation of Consul ACLs have
no token rotation policy in place. Therefore, either the created access tokens
within the cluster will exist for the lifetime of the cluster, or are revoked after a
period of time, but with no means of redistributing fresh tokens to nodes.

Aside from the difficulty encountered by administrators to simply establish
a secure permissions structure, there is also the potential for adversarial action.
When ACLs are the sole mechanism of defense for a Consul service mesh clus-
ter, they prove ineffective at mitigating adversarial disruption efforts. Due to
implementation of processing access control policies within the service mesh,
unauthorized messages must be confirmed as illegitimate by the cluster. Using
around 25 adversarial nodes, we were able to disrupt operations within the ser-
vice mesh by overwhelming the consensus protocol, see Figure 4. By configuring
the malicious nodes with the Consul server flag, the malicious nodes were able to
generate an overwhelming number of false consensus messages within the cluster,
preventing the benign nodes from operating effectively and maintaining control
of the cluster. The joining of malicious nodes is made possible due to a lack of
UDP or TLS encryption within the cluster, exposing a lack of synchronization

10 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

TLS

Unprivileged
Attacker

Virtual Machines
Platform

Fig. 5: TLS Message Encryption – Encrypting service traffic with TLS prevents an
unprivileged attacker influencing the cluster. However, a leader node compromise allows
an adversary to generate malicious TLS key pairs and exfiltrate them to other adversary
nodes. Once additional adversaries join they may join the quorum and cast votes due
to their server-permissioned certificates.

among the security mechanisms available. While the malicious nodes may be
prevented from taking action due to lack of proper permissions, they may lever-
age scale to overwhelm the cluster. Due to the need to verify the legitimacy of
the packets, computation is expended by the legitimate members of the clus-
ter and may subsequently overwhelm them. By doing this, an adversary may
halt the availability of the quorum and prevent an administrator from creating
new policies or access tokens for the cluster. Despite having no legitimate access
to the cluster, using this process, an adversary may still achieve their goal of
disruption within a cluster when ACLs are utilized as the sole means of defense.

Consul – TLS Message Encryption: In order to protect service-level com-
munication within the Consul cluster, a system administrator may enable TLS
message encryption. To provide nodes the capability to sign messages, they must
first have signed certificates from the certificate authority. When constructing
the service mesh, the administrator would create a certificate authority from
one of the server nodes of the cluster. Afterwards, the certificate authority is
responsible for generating server certificates and client certificates as well. Dis-
tribution of certificates must be completed before the cluster may be constructed
and connected. Additionally, in order to ensure that client nodes may not alter
their configuration and obtain server permissions within the cluster, the “ver-
ify server hostname” flag must be set in all node configurations.

There are many scenarios under which a privileged adversary may still ac-
complish some of their goals once the cluster is constructed and certificates
distributed. However, by enabling TLS encryption, the unprivileged adversary is
unable to maliciously join the cluster, preventing any goals from being achieved
in this case. Despite this, there are no protections for the key/value storage sys-
tem should a client node be compromised due to TLS being the sole mechanism
of defense. Accessing the key/value storage allows an adversary to manipulate

Security Issues and Challenges in Service Meshes – An Extended Study 11

configurations or secrets stored within the cluster. Figure 5 shows how, should
the leader node ever be compromised in the lifetime of the cluster, an adver-
sary may leverage the signing privileges of the certificate authority to generate
illegitimate certificates and keys for malicious nodes.

The implementation of the certificate hierarchy within Consul once again
shows a disconnect between the desired decentralized and distributed nature
of service meshes with a centralized, consolidated security structure. Within
Consul, the only node able to sign certificates of any privilege is the certificate
authority (commonly created on the quorum leader node). Additionally, this
indicates that should the leader node ever be destroyed, unless the certificate
authority key was replicated to other nodes, the cluster has lost the ability
to sign new certificates, once again conflicting with the flexibility goal of the
DevOps ideology. Lastly, a lack of revocation and rotation mechanisms within
Consul itself necessitates a third-party tool such as HashiCorp’s Vault [30] or
SSH be used to distribute fresh certificates to nodes, which triggers the need for
widespread edits to configuration files and application restarts to transition the
service mesh to a secure state once again.

Consul – All Mechanisms Combined: By enabling and combining all avail-
able security mechanisms, Table 1 shows a clear improvement in mitigating ad-
versarial goals. However, employing all mechanisms presents administrators with
a daunting amount of manual configuration. Considering the cost required to es-
tablish a secure model example with trivial functionality, the requirements to
successfully deploy and secure enterprise-level systems is unreasonable. Also, due
to the implementation of the available security mechanisms, should the leader
of the cluster ever be compromised across the lifetime of a cluster, all effort to
construct the service mesh must be repeated in order to redeploy a secure service
mesh state. By lacking necessary revocation and rotation mechanisms, Consul
has limited the ability to construct dynamic service mesh clusters that are re-
silient to compromise events. Due to this, the assumption that nodes will never
be compromised has created dangerous situations for system security where a
single compromised node may result in collapse of the entire cluster’s security.
Service mesh tools, while aiming to fill the niche of microservice architecture dis-
covery, connection, and management, may, in fact, lead to substantial overhead
for administrators who wish to deploy these tools in a secure fashion.

Idealized Istio and Linkerdv2, with Kubernetes: In contrast to the exper-
imental setup of our proof-of-concept Consul service mesh, Istio and Linkerdv2
both require an underlying Kubernetes infrastructure in order to be utilized.
Under a skilled administrator model, we consider the creation, configuration,
and security of Kubernetes to provide the necessary foundation for both Istio
and Linkerdv2. Due to the dependent relationship between Istio and Linkerdv2
with Kubernetes, it is important to consider the mechanisms by which Istio and
Linkerdv2 implement and deploy their security mechanisms and features.

In a similar fashion to Consul, Istio and Linkerdv2, when combined with Ku-
bernetes, implement service-to-service communication encryption through TLS.
Within a Kubernetes cluster, sensitive data such as encryption keys and certifi-

12 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

Nacos Service
Registry

Unprivileged
Attacker

Nacos APIMicroservices
Cloud

Rogue
Configuration Entries

Benign Configuration Entries
and Service Information

No Authentication
Mechanism

Fig. 6: Nacos Attack Scenario – If an unprivileged attacker is able to locate a Nacos API
server running on a publicly routable IP address, they may submit any API requests
to the service registry. A lack of authentication mechanisms within Nacos allows rogue
configuration entries to be submitted to the registry or benign service information and
configurations to be read by the adversary.

cates may be transferred through a secure channel in the Kubernetes control
plane referred to as “Secret Volumes” [45]. Istio and Linkerdv2 utilize secret
volumes to transfer TLS certificates to the pods of a Kubernetes cluster [37,48].
Once the certificate has been successfully transferred, mutual TLS exchanges
may be enabled within Istio and Linkerdv2’s service mesh configurations. In
contrast to Consul’s implementation of ACLs, Istio and Linkerdv2 leverage the
Kubernetes service registry to provide the means for a similar access control sys-
tem through Role-Based Access Control (RBAC) policies. However, similarly to
Consul, establishing meaningful and fine-grained RBAC requires extensive con-
figuration on the part of a system administrator. Istio and Linkerdv2 leverage
RBAC, to secure service authorization and service-level permissions throughout
the cluster. Utilizing the Kubernetes security capabilities, along with the secu-
rity features that Istio and Linkerdv2 make available to administrators, namely
service-to-service communication encryption and role-based access control to
services, the combination of Kubernetes with either Istio or Linkerdv2 creates a
comparative environment to a service mesh deployed using solely Consul. This
comparative service mesh environment provides a similar level of security as
a properly configured and completely implemented set of security mechanisms
available in Consul, however a user is locked into and required to use the Ku-
bernetes platform, eliminating any choice of alternative.

Nacos: While not directly considered a service mesh, Nacos provides many of
the same features as the service meshes considered and has the ability to be
configured in a way to accomplish many of the same high-level goals as service
mesh tools. However, it is important to note that Nacos is technically a ser-
vice discovery and management tool. As of the writing of this work, Nacos is
in version 1.1.4, and is available for public use. However, Nacos has very little,
if any security mechanisms available to its users. As a service discovery and
management tool, Nacos attempts to coordinate, collect, and store information
regarding the services available in a deployed microservice architecture. How-
ever, when using Nacos, there are no protections to the API made available to

Security Issues and Challenges in Service Meshes – An Extended Study 13

users. Due to a lack of authentication, any Nacos server visible on public IP
addresses is vulnerable to adversarial threats. Figure 6 shows how such an at-
tack could be executed against a public-facing Nacos instance. An attacker can
take any number of actions against a Nacos cluster including registering its own
IP address as an instance of the cluster, adding, modifying, or removing service
entries from the service registry, and adding, modifying, or removing configura-
tion entries from the registry. An additional consequence of the ability to view
configurations of the cluster is the fact that credentials may be stored within con-
figuration files in order to coordinate with service consumers the correct method
of authentication. By releasing a publicly available version of the tool before any
security considerations have been implemented, Nacos exposes its consumers to
a range of attacks that they may not be aware of, while offering no means of
protecting themselves using the functionality of the tool. In its current state,
Nacos depends primarily upon external security mechanisms such as firewalls,
subnetting, and other perimeter defenses. However, in microservice architectures
with many components distributed across cloud providers, the boundaries of an
enterprise network are difficult to discern. Often, these boundaries are volatile
and change over time. Due to this, public access to a Nacos cluster can be
found through scanning engines such as Shodan [60] and Censys [4]. Shodan and
Censys both provide keyword searches within service banners as well as port-
oriented searches. Leveraging these capabilities, an adversary could potentially
locate vulnerable Nacos instances by searching for its default port, or keywords
that appear in the Nacos service banner.

Additionally, varying regulations around the world sometimes prevent or dis-
courage the use of encrypted traffic within networks [50]. Also, regulation pres-
sures may impact design decisions, such as the choice to delay development of
encryption mechanisms. According to the Nacos Blog [19], permission control
for configurations, permission control for services, encrypted storage of configu-
ration files, and other security mechanisms are part of planned future software
updates. Due to the skilled system administrator having no security mechanisms
available to them, we consider the assessment of the default configuration to be
the same as the skilled case. Therefore, we will not include a default assessment
of Nacos in Section 4.2.

4.2 Evaluation of Default Service Mesh Configuration

Next, we analyze a “default defender” in which a service mesh is deployed using
the default configuration. While service meshes may have security mechanisms
available to administrators, we now consider the impact that the default con-
figurations have on system security. We frame our experimental evaluation with
Consul, though we observe similar default behavior among other tools.

Consul in Default Configuration: Consul is unique among the service mesh
tools studied in that it provides the functionality of both the service mesh layer
and platform orchestration layer. Table 2 outlines the available security mecha-
nisms of a Consul service mesh, along with which of those mechanisms are en-
abled by default in the cluster. While Consul offers all of the necessary security

14 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

Tool Security Mechanism
Available Enabled Default

Revocation Redistribution
in Tool? by Default? Lifetime

C
o
n
su

l Cluster Message Encryption Yes No ∞ No No

Service Message Encryption Yes No 1 year Yes No

Cluster Access Control Yes No ∞ Yes No

Service Access Control Yes No ∞ Yes No

L
in
k
e
rd

v
2 Cluster Message Encryption No No N/A N/A N/A

Service Message Encryption Yes Yes 24 hours Yes Yes

Cluster Access Control No No N/A N/A N/A

Service Access Control Yes No ∞** No** No**

Is
ti
o

Cluster Message Encryption No No N/A N/A N/A

Service Message Encryption Yes No Ext Tool [36] Ext Tool [36] Ext Tool [36]

Cluster Access Control No No N/A N/A N/A

Service Access Control Yes No ∞** No** No**

K
u
b
e
rn

e
te
s Cluster Message Encryption No* No N/A N/A N/A

Service Message Encryption Yes No 1 year Beta Beta

Cluster Access Control Yes No ∞ No No

Service Access Control Yes No ∞ No No

Table 2: Security Mechanisms in Service Mesh Tools – A summarized view of the
security mechanisms available in each service mesh tool analyzed, which mechanisms
are enabled by default, and additional details about the actual implementations.
∗Pod-to-pod encryption left to third-party implementation [43].
∗∗Inherited from Kubernetes’ Role-Based Access Control system [33,49].

capabilities to administrators, it fails to enable any of them by default and lacks
rotation support for all mechanisms. With an extensive list of configurations
to create and assign, such as node permissions, key creation and distribution,
and certificate hierarchy, the overhead for system administrators is significant.
Within the tutorials Consul provides to their customers, the guidance to con-
figure the security mechanisms is available, but Consul does not enable these
policies by default and places this onus onto the system administrators [27].

Consul – Disruption: Considering a Consul service mesh with default con-
figuration, an adversary is able to take a range of actions in order to achieve
their goals. Specifically, as previously shown in Figure 4, an adversary is able to
flood the Consul quorum with malicious messages disrupting cluster and service
availability. Furthermore, rather than overwhelming the consensus protocol of
the cluster, an adversary can simply remove the benign members of the cluster
through the “force-leave” command in the Consul API. In order to have access
to the Consul API, the adversary must execute a single, unauthenticated com-
mand once a Consul service mesh cluster is located that allows nodes to join
under the default configuration. Using the “force-leave” command, a malicious
user may essentially order cluster members to remove the target node from the
registry. Repeating this process for all nodes that the attacker desires to remove,
an adversary can dismantle the structure of the service mesh and render the
availability of the cluster nonexistent.

Security Issues and Challenges in Service Meshes – An Extended Study 15

Consul – Manipulation: Manipulation of data within a default Consul clus-
ter is trivial once an adversary has joined the cluster. The lack of default access
control mechanisms within a Consul cluster allows an attacker to modify, cre-
ate, or delete any key/value entries within the cluster. Also, an adversary may
create or read any service configurations within the cluster and exfiltrate this
information to external nodes for further actions. With no default mechanism of
limiting reads and writes to the storage, an adversary may observe sensitive data
or configurations and exfiltrate or modify them as they desire. Therefore, un-
der default configurations, sensitive data, or access keys and tokens are entirely
vulnerable when stored within the key/value storage system of Consul clusters.

Consul – Takeover: Extending the possibilities of attack under default Consul
configuration, is the ability for an adversary to assume the leadership position of
the cluster. Due to the election structure of the Consul quorum, combined with a
lack of access control, new members of the cluster may take any cluster actions,
such as issuing the “force-leave” command. Using this command, an adversary
may initiate a removal of the current cluster leader, introduce new malicious
members to the cluster, and attempt to assume the leadership position of the
cluster. Without any security mechanisms to prevent these actions, an adversary
may achieve any goal and any level of privilege in a default cluster. In our
experimentation a takeover attack was executed by creating a malicious node
configured to be a Consul server marked with the “bootstrapper” flag in order to
cause it to request a leadership election. Once this node performed a “join” with
the cluster, the malicious node and the legitimate cluster leader entered a state
of conflict where the quorum failed to decide upon the true leader. When this
state of conflict was reached, the malicious node simply performed the “force-
leave” command on the legitimate node which removed it from the quorum and
the benign members adjusted their perceived leader to the malicious node.

Consul – Configuration Assessment: With the default Consul configuration
lacking active security mechanisms, the responsibility and burden of correctly
configuring these mechanisms is placed upon system administrators. The ex-
tensive manual tasks required to properly secure a cluster create an immense
overhead for administrators. Moreover, the likelihood of mistakes or errors to
occur in large systems due to extensive configurations will be similar to that
of large-scale software packages [2, 21]. With adoption of Consul in production
environments, supporting and maintaining a service mesh infrastructure is a
monumental task.

Aside from the configuration effort of Consul’s security mechanisms, the im-
plementation of these mechanisms demonstrates design inconsistencies with the
DevOps ideology. Consul’s base functionality is designed around a distributed,
decentralized system of connecting microservices. However, the implementation
of its security mechanisms consolidates control to a singular node and restricts
the flexibility of these mechanisms through its lack of rotation capabilities and
lifetime key validity. While Consul is our primary frame of reference, alternative
options in Istio and Linkerdv2 present similar difficulties and challenges under
their default configurations.

16 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

Default Configuration Istio and Linkerdv2, with Kubernetes: As ex-
pressed in Section 2, Istio and Linkerdv2 both depend upon Kubernetes to pro-
vide the underlying platform in order to run their service mesh features. Ku-
bernetes is responsible for providing the overlaid service mesh with cluster-level
message encryption and access control mechanisms. However, Kubernetes fails
to provide cluster-level message encryption, instead, as shown in Table 2, Kuber-
netes leaves the implementation of pod-to-pod encryption to third-party tools.
Also, cluster access control is not implemented by default. Due to this, an un-
knowing system administrator may choose to implement a service mesh such as
Istio or Linkerdv2 with correct configuration of all possible security mechanisms,
but be unaware of the underlying vulnerabilities of a default Kubernetes. The
fragile security structure between these service meshes and Kubernetes creates
a security dependency where tools must implicitly trust one another to pro-
vide their claimed functionality. With such strong trust required between tools,
exploits such as [58,68] show that this relationship can be dangerous.

Considering the default configurations of Istio and Linkerdv2, the level of
manual configuration required from system administrators is significant. As Ta-
ble 2 shows, Istio and Linkerdv2 fail to provide means of securing the cluster-level
functionality, and service-level access control by default. However, Linkerdv2
does enable service-to-service message encryption via mutual TLS by default.
This represents a valuable design decision that adds to the security posture of
the overall service mesh. In contrast, Istio provides administrators the option
of enabling service-to-service message encryption, but fails to enable this secu-
rity mechanism by default. In order to provide the same service-level security,
an administrator would be required to modify configurations of the cluster and
provide additional authentication rules for individual pods and services in order
to provide proper, secure functionality.

5 Related Work

To our knowledge, this work is the first systematic study of the security of
service mesh tools. However, many of the classic issues of security, robustness,
and functionality are present within service meshes, as are several of the attacks
that we proposed (albeit many of these attacks are enabled or amplified by novel
features of service mesh tools). Many of our attacks are inspired by existing
work, and many of the implications of our work build upon previous studies
of microservice security and networked systems. We discuss some of the most
closely related work to our own below.

Microservice Security: Automation and the decentralized nature of microser-
vice security has been observed or utilized by a number of previous works. Ras-
togi, et al. [55] evaluate an automation system for dismantling a monolithic
software deployment into a collection of collaborating microservices in order to
better adhere to the principle of least privilege [57]. Unlike our work, Rastogi, et
al. developed a special-purpose system that uses a static binding to communicate
between microservices, rather than consider the security of 3rd-party tools that

Security Issues and Challenges in Service Meshes – An Extended Study 17

dynamically connect services. Yarygina, et al. [69] note the comparative lack
of security protections for Docker containers, and propose a container security
monitor. In Sun, et al. [65], the authors study how the, often inherent, trust
relationship between deployed microservices may result in the compromise of an
entire system. Further, they propose a system for deploying network security
monitors in microservice environments to detect and block threats to clusters.

A number of previously published works focus on the security of individual
Docker containers, which are frequently used as the enabling mechanism for indi-
vidual microservices. A representative example is Enck, et al. [61], which studies
the risk of deploying containers automatically from 3rd-party container repos-
itories. In Lin, et al. [47] and Martin, et al. [51], the authors examine attacks
and countermeasures to the security of containers, as well as the ecosystems of
repositories and orchestration tools. Our work assumes that individual contain-
ers and repositories are secure, and instead focuses on external threats to the
mechanisms by which microservices interact.

Analysis of Consensus Protocols: Some of the attacks that we propose target
the RAFT protocol used to form a service mesh. Some previous work, most
notably by Sakic, et al. [56], examines the availability and response time of nodes
participating in RAFT. However, previous work does not consider the influence
of an adversary, and is instead concerned with the performance of RAFT in a
purely-benign setting.

The considerable interest around blockchain technologies has driven the de-
velopment of security studying microservice clusters specifically for running con-
sensus protocols, such as Hyperledger Fabric [20, 64]. These studies observe the
threat of sybil attacks on collaborative network services, as does our work. How-
ever, blockchain technology can defeat traditional sybil attacks via proof-of-work
or related protocol-level mechanisms, whereas our attacks require low-latency
communication and collaboration between microservices.

Microservice Attacks: The attack vectors that we present are (to our knowl-
edge) unreported. The actual attacks themselves, and the goals of the adver-
saries that we articulate in our threat model are inspired by previous work on
attacks against more traditional systems. One of the most relevant studies is
that of Cherny, et al. [6], which also proposes the use of microservice containers
as a vector of attacks, thus providing a motivation for services as a target. In
Csikor, et al. [9], the authors study how specially tailored access control policies
crafted by an attacker may result in an exhaustion of cloud resources resulting
in a denial-of-service to a cluster.

6 Actionable Advice and Future Work

Throughout Section 4, we note various design flaws and shortcomings with the
current state-of-art in service meshes. We outline these concerns in an effort to
frame future research for service meshes in a direction that incorporates security
mechanisms that more closely align with the goals and benefits that service
meshes promise.

18 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

Dynamic and Flexible Security: Current tools provide various security mech-
anisms to defend a service mesh, as shown in Section 4.1. Unfortunately, the de-
sign of these mechanism does not align well with the desired goals of the service
mesh itself. For instance, a TLS-based, centralized security approach voids the
decentralization benefits provided by the consensus protocols. Moreover, some
of these security mechanisms are platform-specific and may lock the user into
one environment e.g., Istio’s and Linkeredv2’s dependence on Kubernetes. In or-
der to synchronize the behaviors of service meshes and the protections afforded
through defenses, the security mechanisms should be part of the core service
mesh design. This approach will enable greater flexibility and adaptability while
aligning the main goals.

Synchronized Security Mechanisms: Illustrated in Table 1, the best and
most effective security stance for a service mesh tool is to have all available
security mechanisms enabled and configured in conjunction. However, should
a security mechanism be forgotten, misconfigured, or exploited over time (e.g.,
obtaining the never-changing UDP key in Consul), areas of exploit emerge imme-
diately and the other mechanisms may be rendered futile. To construct better,
more secure service mesh clusters, it is clear that synchronization and redun-
dancy across security mechanisms is necessary. Streamlined security configu-
ration design would provide administrators a simplified experience in creating
secure clusters.

Tailored Security Solutions: Section 4.2 and Table 2 enumerate many short-
comings in the offerings of state-of-the-art service meshes. Many potential attack
vectors for service meshes are either left to third-party tools to implement, or
are not enabled by default within the service mesh. In order to address the
domain-specific security issues for service meshes, security mechanisms and de-
fenses tailored for this unique area are necessary.

7 Conclusions

Due to the increase of deployed microservices, service mesh tools appear to be
an enticing solution to manage and maintain these deployments. However, as
these tools become more popular and are utilized in production environments,
it is necessary to assess the available security mechanisms and their strength
in deterring adversarial efforts. As the initial study of service mesh tools used
for microservice deployments, we examine the three most popular, state-of-art
offerings in the service mesh domain and articulate a threat model tailored to
concerns within the service mesh domain.

Through experimentation, we find that under configuration by a skilled ad-
ministrator, in 10 of the 20 studied scenarios, complete cluster compromise is
possible for an attacker. Further, in 5 additional scenarios, at least one adver-
sarial goal is achievable. Under default configuration, all studied tools, except
Linkerdv2, fail to enable any of their security mechanisms. These results and our
observations in usability of these mechanisms indicate important design flaws in
the security of service mesh tools requiring further research and development.

Security Issues and Challenges in Service Meshes – An Extended Study 19

Acknowledgments

This work is a companion work to that which is set to appear in SecureComm
2020. The contents of this work are meant to provide extended analyses and ad-
ditional cases than were provided in the SecureComm article. The authors would
also like to acknowledge Seena Saiedian for their contributions in proofreading
and revising this work.

References

1. HashiCorp (accessed 06/2020). Download Consul. https://www.consul.io/
downloads.

2. Andrea Arcuri. On the Automation of Fixing Software Bugs. In Companion of
the 30th international conference on Software engineering, pages 1003–1006, 2008.

3. Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices Architec-
ture Enables DevOps: Migration to a Cloud-Native Architecture. IEEE Software,
33(3):42–52, May 2016.

4. Censys. Censys (accessed 06/2020). https://www.censys.io.

5. L. Chen. Microservices: Architecting for continuous delivery and devops. In 2018
IEEE International Conference on Software Architecture (ICSA), pages 39–397,
April 2018.

6. Michael Cherny and Sagie Dulce. Well, That Escalated Quickly! How Abusing
Docker Api Led to Remote Code Execution, Same Origin Bypass and Persistence
in the Hypervisor via Shadow Containers. In BlackHat 17, 2017.

7. Jay Christopherson. Spaceflight uses HashiCorp Consul for Service Discovery and
Runtime Configuration in their Hub-and-Spoke Network Architecture (accessed
02/2020). https://www.hashicorp.com/blog/spaceflight-uses-hashicorp-
consul-for-service-discovery-and-real-time-updates-to-their-hub-and-

spoke-network-architecture/.

8. T. Combe, A. Martin, and R. Di Pietro. To Docker or Not to Docker: A Security
Perspective. IEEE Cloud Computing, 3(5):54–62, Sep. 2016.

9. Levente Csikor, Christian Rothenberg, Dimitrios P Pezaros, Stefan Schmid, László
Toka, and Gábor Rétvári. Policy Injection: A Cloud Dataplane DoS Attack. In
Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos, pages
147–149, 2018.

10. Abhinandan Das, Indranil Gupta, and Ashish Motivala. SWIM: Scalable Weakly-
Consistent Infection-Style Process Group Membership Protocol. In Proceedings
International Conference on Dependable Systems and Networks, pages 303–312.
IEEE, 2002.

11. Kevin Fishner. Consul in a Microservices Environment at Neofonie
GmbH (accessed 02/2020). https://www.hashicorp.com/blog/consul-in-a-
microservices-environment-at-neofonie-gmbh/.

12. Kevin Fishner. How BitBrains/ASP4all uses Consul for Continuous Deployment
across Development, Testing, Acceptance, and Production (accessed 02/2020).
https://www.hashicorp.com/blog/how-bitbrains-asp4all-uses-consul/.

13. Kevin Fishner. How Lithium Technologies Uses Consul in a Hybrid-Cloud In-
frastructure (accessed 02/2020). https://www.hashicorp.com/blog/how-lithium-
technologies-uses-consul-in-a-hybrid-cloud-infrastructure/.

20 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

14. Kevin Fishner. Using Consul at Bol.com, the Largest Online Retailer in the
Netherlands and Belgium (accessed 02/2020).
https://www.hashicorp.com/blog/using-consul-at-bol-com-the-largest-
online-retailer-in-the-netherlands-and-belgium/.

15. Apache Software Foundation. Apache ZooKeeper (accessed 01/2020).
https://zookeeper.apache.org/.

16. Cloud Native Computing Foundation. CNCF Cloud Native Interactive Landscape
(accessed 01/2020). https://landscape.cncf.io.

17. Wireshark Foundation. Wireshark (accessed 02/2020). https:

//www.wireshark.org/.

18. Alibaba Group. Nacos (accessed 01/2020). https://nacos.io/en-us/.

19. Alibaba Group. Nacos Roadmap (accessed 01/2020). https://nacos.io/en-us/
blog/nacos-roadmap.html.

20. Diksha Gupta, Jared Saia, and Maxwell Young. Peace Through Superior Puzzling:
An Asymmetric Sybil Defense. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1083–1094. IEEE, 2019.

21. S. Hangal and M.S. Lam. Tracking Down Software Bugs using Automatic Anomaly
Detection. In Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002, pages 291–301, May 2002.

22. HashiCorp. Consensus Protocol (accessed 02/2020). https://www.consul.io/
docs/internals/consensus.html.

23. HashiCorp. Consul by HashiCorp (accessed 01/2020). https://www.consul.io/
index.html.

24. HashiCorp. Github hashicorp/consul (accessed 02/2020). https://github.com/
hashicorp/consul.

25. HashiCorp. Manage ACL Policies | Consul (accessed 02/2020).
https://learn.hashicorp.com/consul/security-networking/managing-acl-
policies.

26. Hashicorp. Modern Service Networking for Cloud and Microservices (ac-
cessed 01/2020). https://www.hashicorp.com/resources/modern-service-
networking-cloud-microservices.

27. HashiCorp. Secure Consul with ACLs (accessed 02/2020).
https://learn.hashicorp.com/consul/security-networking/production-acls.

28. HashiCorp. Security Model (accessed 02/2020). https://www.consul.io/docs/
internals/security.html.

29. HashiCorp. Serf (accessed 02/2020). https://www.serf.io/.

30. HashiCorp. Vault by HashiCorp (accessed 02/2020).
https://www.vaultproject.io/.

31. Buoyant Inc. Linkerd (accessed 01/2020). https://linkerd.io.

32. Docker Inc. Docker Home (accessed 02/2020). https://docker.io.

33. Istio. Authorization for HTTP Traffic (accessed 06/2020). https://istio.io/
latest/docs/tasks/security/authorization/authz-http/.

34. Istio. Github istio/istio (accessed 02/2020). https://github.com/istio/istio.

35. Istio. Istio (accessed 01/2020). https://istio.io.

36. Istio. Secure Gateways (accessed 06/2020). https://istio.io/latest/docs/
tasks/traffic-management/ingress/secure-ingress/.

37. Istio. Security (accessed 02/2020). https://istio.io/docs/concepts/security/.

38. Istio. What is Istio? (accessed 06/2020). https://istio.io/latest/docs/
concepts/what-is-istio/.

Security Issues and Challenges in Service Meshes – An Extended Study 21

39. Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan
Tilkov. Microservices: The journey so far and challenges ahead. IEEE Software,
35(3):24–35, May 2018.

40. Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan
Tilkov. Microservices: The Journey So Far and Challenges Ahead. IEEE Software,
35(3):24–35, May 2018.

41. Grant Joy. Distil Networks securely stores and manages all their secrets with
Vault and Consul (accessed 02/2020). https://www.hashicorp.com/blog/distil-
networks-securely-stores-and-manages-all-their-secrets-with-vault-

and-consul/.
42. Kubernetes. Kubernetes - Production-Grade Container Orchestration (accessed

01/2020). https://kubernetes.io/.
43. Kubernetes. Kubernetes Docs (accessed 02/2020). https://kubernetes.io/docs/

concepts/cluster-administration/networking/.
44. Kubernetes. Kubernetes Pods (accessed 02/2020). https://kubernetes.io/docs/

tutorials/kubernetes-basics/explore/explore-intro/#kubernetes-pods.
45. Kubernetes. Secrets (accessed 02/2020). https://kubernetes.io/docs/concepts/

configuration/secret/.
46. Ian Lewis. What are Kubernetes Pods Anyway? (accessed 02/2020).

https://www.ianlewis.org/en/what-are-kubernetes-pods-anyway.
47. Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. A

Measurement Study on Linux Container Security: Attacks and Countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference,
pages 418–429, 2018.

48. Linkerd. Automatic mTLS (accessed 02/2020). https://linkerd.io/2/features/
automatic-mtls.

49. Linkerd. Securing Your Cluster (accessed 06/2020). https://linkerd.io/2/
tasks/securing-your-cluster/.

50. Wattie CW Lo and Andre M Everett. Thriving in the Regulatory Environment of
e-Commerce in China: A Guanxi Strategy. SAM Advanced Management Journal,
66(3):17, 2001.

51. Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro. Docker
Ecosystem–Vulnerability Analysis. Computer Communications, 122:30–43, 2018.

52. NGINX. Service Discovery in a Microservices Architecture (accessed 01/2020).
https://www.nginx.com/blog/service-discovery-in-a-microservices-
architecture/.

53. Diego Ongaro and John Ousterhout. Raft Consensus Algorithm. 2015.
54. Claus Pahl and Pooyan Jamshidi. Microservices: A Systematic Mapping Study:. In

Proceedings of the 6th International Conference on Cloud Computing and Services
Science, pages 137–146. SCITEPRESS - Science and and Technology Publications,
2016.

55. Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. Cimplifier: Automatically Debloating Containers. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, pages 476–
486, 2017.

56. E. Sakic and W. Kellerer. Response Time and Availability Study of RAFT Con-
sensus in Distributed SDN Control Plane. IEEE Transactions on Network and
Service Management, 15(1):304–318, March 2018.

57. Jerome H. Saltzer. Protection and the control of information sharing in multics.
Communications of the ACM, 1974.

22 Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas

58. Tara Seals. Dangerous Kubernetes Bugs Allow Authentication Bypass, DoS (ac-
cessed 02/2020). https://threatpost.com/kubernetes-bugs-authentication-
bypass-dos/149265/.

59. Amazon Web Services. DevOps (accessed 01/2020). https://aws.amazon.com/
marketplace/solutions/devops.

60. Shodan. Shodan (accessed 06/2020). https://www.shodan.io.
61. Rui Shu, Xiaohui Gu, and William Enck. A Study of Security Vulnerabilities

on Docker Hub. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, pages 269–280, New York, NY, USA, 2017.
Association for Computing Machinery.

62. A. Singleton. The Economics of Microservices. IEEE Cloud Computing, 3(5):16–
20, Sep. 2016.

63. SSH.COM. Ssh (secure shell) (accessed 02/2020). https://www.ssh.com/ssh.
64. Harish Sukhwani, José M Mart́ınez, Xiaolin Chang, Kishor S Trivedi, and Andy

Rindos. Performance Modeling of PBFT Consensus Process for Permissioned
Blockchain Network (Hyperledger Fabric). In 2017 IEEE 36th Symposium on
Reliable Distributed Systems (SRDS), pages 253–255. IEEE, 2017.

65. Yuqiong Sun, Susanta Nanda, and Trent Jaeger. Security-as-a-Service for
Microservices-Based Cloud Applications. In 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom), pages 50–
57. IEEE, 2015.

66. Randall Thomson. LogicMonitor Uses Terraform, Packer & Consul for Disaster
Recovery Environments (accessed 02/2020). https://www.hashicorp.com/blog/
logic-monitor-uses-terraform-packer-and-consul-for/.

67. Johannes Thones. Microservices. IEEE Software, 32(1):116–116, January 2015.
68. Jack Wallen. Kubernetes ’Billion Laughs’ Vulnerability Is No Laughing Mat-

ter (accessed 02/2020). https://thenewstack.io/kubernetes-billion-laughs-
vulnerability-is-no-laughing-matter/.

69. Tetiana Yarygina and Anya Helene Bagge. Overcoming Security Challenges in
Microservice Architectures. In 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE), pages 11–20. IEEE, 2018.

