
Version Control: Backups and
Improving Workflow

Dalton A. Hahn
Learning Machine Learning

1

Outline

• Version Control
• Methods and Tools

• Git
• Products and Tools
• Process
• Collaboration

• SLIDES: https://ittc.ku.edu/~d987h530/git.pdf
• VIDEO: https://ittc.ku.edu/~d987h530/git_vid.mp4

2

https://ittc.ku.edu/~d987h530/git.pdf
https://ittc.ku.edu/~d987h530/git_vid.mp4

Version Control

• Change tracking in files

• “History” of the changes made to a file

• As you edit the file, Git tracks changes and stores older versions

• Revert back to older versions

• Keep historical record of the changes you’ve made

3

Programming

• Python
• C/C++
• Java

4

LaTeX

• Version Control for papers
• “*.tex” files
• Figures

• *Overleaf can be linked with a GitHub repository

5

Matlab

• Version control for “*.m” files
• Version control data****

****- Size limit, can’t be used
as a database

6

Git

• Software that implements version control
• Tracks changes in files
• Implements functions that simplify collaboration
• Provides mechanisms for splitting development and reincorporating splits

7

Tools

• GitHub - Unlimited private repositories (projects) for academics
• Desktop Application - Graphical User Interface (GUI)

• Sign up for a Github account (https://github.com)
• Download Github Desktop (https://desktop.github.com/)

8

https://github.com/
https://desktop.github.com/

Git Workflow - Basics

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

9

Git Workflow - Basics

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

10

Git Workflow - Basics

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

11

Git Workflow - Basics

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

12

Git Workflow - Basics

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

13

Git Workflow - Basics

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

14

Git Workflow - Basics

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

15

Git Workflow - Working with Collaborators

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

16

Git Workflow - Working with Collaborators

• Initialize Repository/Project
• Publish Repository to Github
--- (Start of Repeat)
• Fetch+Pull Other’s Work
• Do Some Work
• Commit Your Work
• Push Your Work
--- (End of Repeat)

17

Advanced Topics/Techniques

18

“I Broke It”

• Your super productive 4am coding session went great
• You wake up the next morning to test the project
• Nothing works

• Git Revert to pull project back to a previously “good” commit

• Git Checkout to go back and test an old commit

Collaboration – “Branching” the Project

• Jim has a genius idea for a feature for your project

• You want to incorporate this feature, but you’re not sure if Jim’s
“genius idea” will break the main project
• Alternatively, don’t want to clutter the main project with untested features

• Have Jim “BRANCH” the repository and he can work on his changes
there instead of the main branch (master branch)

Collaboration – Working the Branch

• Users must “checkout” the branch before they can make changes

• Return to basic workflow presented in previous slides

21

Collaboration – “Merging” the Branch

• Jim’s genius feature is complete and needs to be incorporated to the
main project

• Create a “PULL REQUEST” and “MERGE” these changes to the main
project

22

Keeping Secrets and Data Out

• Most projects require some data that’s not code

• For ML, this data may be HUGE

• Git ignore files can be used to exclude certain files from being tracked
and uploaded to GitHub

23

Command-Line Interface vs. GUI

• All actions possible in GitHub Desktop can be performed in a
Terminal/Command Line
• For Linux users, you must use the CLI (Command-Line Interface)

• Same exact workflow that was presented in previous slides

24

Conclusions

• Version Control can be used as a backup for project code and
documents
• Used to revert changes back to working conditions
• Changes and files can be tracked and edited by many people in a

group and kept in one central location
• Not limited to just traditional “programming” files
• Matlab, LaTeX, etc.

