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Summary. This paper introduces a new fairness index in open architecture net-
works. The concept can be used to balance the load of self-authority servers and
keep them operating in a fair manner. Properties, such as existence and uniqueness,
of this index are investigated for some typical network structures. By connecting to
von Neumann’s equilibrium concept, the proposed fairness concept can be related
via a pricing duality to an equilibrium index, which uniquely exists in general. We
also investigate the problem of how distributed users can achieve a given set of
target indices. A distributed, low data rate control algorithm is introduced and its
convergence property is discussed.

25.1 Introduction

The altruistic spirit of routing sharing is a key factor that contributes to the
rapid growth of Internet. Nodes in an open architecture network such as the In-
ternet are assumed to participate in the routing of third party traffic whenever
the demand is within their resource capacity limit. However, the hierarchical
architecture of Internet dictates that it cannot be as flat and altruistic as one
may imagine. Only nodes of similar caliber can peer with each other, some-
times through Bi-Lateral Peering Agreements (BLPA). Smaller nodes have
to aggregate their traffic via backbone nodes. This kind of arrangement can
be interpreted as a scheme to ensure fairness in routing contribution. How-
ever, multiple servers could participate in a fair peering without satisfying
pair-wise symmetric conditions. The fairness issue is even more critical for
wireless ad-hoc networks [1]. Unlike hierarchical networks, these networks are
self-organizing and totally distributed in administration. Failure to address
fairness issue could lead to congestions that may prove to be impossible to
recover from. Moreover, unlike servers in a wired network, battery power is
a critical resource for mobile servers. Routing for third party traffic demands
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not only communication channel resources but also consumes battery power.
In [2]fairness issues in such a setting are investigated. In this paper, we report
some of the key results in [2].

We present here a new fairness concept from [2]. An early version of this
concept was first proposed in [3]. We begin by defining concepts of a fairness
index and a perfectly fair solution in Sect. 25.2. The fairness index of a node
is an indicator of its contribution to network routing. The ideal case where
all the nodes have identical fairness indices is an important baseline reference
point, and the corresponding network is called perfectly fair. One can connect
the perfectly fair index with the von Neumann equilibrium by introducing a
duality concept of pricing. The von Neumann equilibrium always exists for a
network.

For implementation considerations, one needs to consider the problem how
nodes in the network can achieve a perfectly fair state. Since each node can
have only a local view of the network status, it is important that the de-
sired state should be achieved through distributed algorithms. The problem
is further complicated by the fact that in such a network, system parameters
are basically unknown. In Sect. 25.3, a simple distributed controller is pro-
posed to achieve a given set of fairness targets. A main result is to establish
the convergence of such a class of distributed controllers. The algorithm can
be extended to provide a heuristic solution to achieve a perfectly fair state
without knowing the value of the perfectly fair index beforehand.

25.2 Fairness Index and Neumann Equilibrium

Nodes in a network tend to send as much traffic as possible into networks
in order to achieve their maximum throughput unless being regulated. This
behavior could lead to severe network congestion and unfairness in common
resource usage. Many investigations use pricing and game theory to find ef-
ficient or fair operating states. By realizing the max-min fairness defined in
[4] or the proportional fairness defined in [5] and [6], network link resources
can be used efficiently. On the other hand, network traffic routing consumes
resources at nodes as well as at links. For nodes peering in a network, it makes
sense to demand that they are contributing to the routing function in a fair
manner. We propose to use a fairness index for each node in a peer-to-peer
network as a measure of whether routing load is shared fairly.

We conceptualize a communication network as a graph (V,E), with the
nodes representing peering servers and an edge connects two nodes whenever
there is a direct, duplex data link between two servers. Each node generates
and consumes traffic data; it also routes traffic on behalf of other nodes.

Label the nodes in (V,E) from 1 to K. For each j, represent by rj the
rate of total traffic generated from node j to the network. Denote the vector
of originating traffic rates, (r1, ..., rK)T by r. A node, j, controls the network
by means of rj .
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For any i �= j, let Mijrj represent the rate of the traffic generated from
node j that is ultimately destined for node i. For all i, define

Mii = 0. (25.1)

Denote by M the K-by-K traffic distribution matrix with non-negative
entries and column sums equal to 1,


0 M12 · · · M1K

M21 0 · · · M2K

... ... ... ...
MK1 MK2 · · · 0


 (25.2)

The traffic from any source-destination pair can be routed over a variety of
paths. We assume that the distributions of traffic into these alternative paths
are arbitrary but known a priori and remain unchanged in a sufficiently long
enough period for the consideration of this problem. Given a traffic distribu-
tion matrix and a set of routing schemes, the distribution of transitory traffic
among intermediate nodes in the networks is fixed accordingly. Let Lijrj de-
note the traffic rate of transitory traffic passing through node i that originates
from node j, and L=(Lij) denote the corresponding K-by-K matrix. L is also
a non-negative matrix with all entries bounded by 1. Moreover, Lr is the col-
umn vector representing the total transitory data traffic rates passing through
each node.

A fairness index for each node is, roughly speaking, the ratio of traffic
directly attributed to the node as a source or destination to the amount of
total traffic it handles. Depending on the economical model one adopts to
account for the utility or the revenue from the traffic, three classes of fairness
indices are defined below, all taking values between 0 and 1.

Definition 1: For a network, (V , E), suppose ri+
∑K

j=1(Mij +Lij)rj > 0,
then the source-weighted fairness index for node i is defined to be the ratio

li =
ri

ri +
∑K

j=1(Mij + Lij)rj
. (25.3)

Otherwise, the index is defined to be 0.
Suppose ri+

∑K
j=1(Mij+Lij)rj > 0, then the destination-weighted fairness

index for node i is defined to be the ratio

oi =

∑K
j=1Mijrj

ri +
∑K

j=1(Mij + Lij)rj
. (25.4)

Otherwise, the index is defined to be 0.
Suppose ri +

∑K
j=1(Mij +Lij)rj > 0, then the combined fairness index or

simply the fairness index for node i is defined to be the ratio

χi =
ri +

∑K
j=1Mijrj

ri +
∑K

j=1(Mij + Lij)rj
. (25.5)
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Otherwise, the index is defined to be 0.
The denominator of these indices accounts for the total traffic handled by

node i. For the source-weighted fairness index, the numerator accounts for the
total data rate generated by node i to the network; traffic received by a node
as final destination is assumed to have no economical benefit to it. One can
interpret the meaning of the numerator term for the other indices accordingly.

Definition 2: A perfectly source-fair solution exists if there is a non-
negative, non-zero rate vector r=(r1, ..., rK)T so that the source-weighted
fairness indices for all nodes are equal.

The concepts of a perfectly destination-fair and perfectly fair solution are
defined similarly.

A perfectly fair solution exists if and only if there is a positive γC and a
non-negative, non-zero rate vector so that

γC(I + L + M)r = (I + M)r, (25.6)

where I stands for the K-by-K identity matrix. One can establish similar
equations for perfectly source-fair or perfectly destination-fair solutions:

γS(I + L + M)r = r, (25.7)

γD(I + L + M)r = Mr. (25.8)

Notice that perfectly fair solutions can be scaled uniformly without affect-
ing their fairness properties. Hence with a proper scalar, a given set of link
and node capacity constraints can always be satisfied.

The existence and uniqueness property of a perfectly fair solution is a nat-
ural question for investigation. For source-fair solution, the question can be
settled by using the Perron-Frobenius Theorem on irreducible non-negative
matrices [7]. The case for the other two types of indices is much more compli-
cated. Mathematically, the issue hinges on finding generalized non-negative
eigenvectors for a pair of nonnegative matrices. However, very little results
have been reported in the literature on this subject. In [2], some existence
and uniqueness properties of these solutions are reported. Furthermore, spe-
cific characterizations are found for networks with special topology.

Examples show that the existence of a perfectly fair solution depends on
system parameters. The non-existence of a perfectly fair solution can be inter-
preted as an indication that nodes in the network are not suitable candidates
for peering agreement. An alternative is to bring in a concept of pricing to
compensate for the lack of perfect fairness. This latter approach makes contact
with an equilibrium concept proposed by von Neumann [8].

A non-negative, non-zero price vector, p=(p1, ..., pK), is introduced for a
network as a dual to the rate vector. The interpretation of the price vector is
that a node can charge according to the traffic it handles, including traffic it
generates, it receives as destination, and traffic it routes for other nodes.
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Denote (I+L+M) by B and let A represent I, M, or I+M, depending on
what type of fairness index is being considered. Introduce 1/β as the minimum
fairness ratio so that for each node i,

β

K∑
j=1

aijrj ≥
K∑

j=1

bijrj . (25.9)

Similarly, for each node, j, define a maximum payment return ratio, 1/α ,
so that for each node j,

α

K∑
i=1

aijpi ≤
K∑

i=1

bijpi. (25.10)

For a more concrete discussion, assume that both source and destination
traffic have economic value, so that perfectly fair index is considered and B
represents I+M. The discussion can be extended to the other two types of
indices as well.

From a fairness consideration, each node, i, sends and receives data traffic
of interest to it, amounting to

∑K
j=1 aijrj=ri +

∑K
j=1Mijrj , while it han-

dles the total amount
∑K

j=1 bijrj=ri +
∑K

j=1(Mij + Lij)rj for the network.
Normalized by the amount of useful traffic it receives, the contribution to a
network by a node is maximal if equality holds in (25.9) for that node. A strict
inequality implies the node enjoys more benefit from the network then nodes
with equality.

For traffic originating from node j, (with rate rj), a total charge of∑K
i=1 bijpi=pj +

∑K
i=1(Mij + Lij)pi per unit rate is incurred by the network

for handling it. On the other hand
∑K

i=1 aijpi=pj +
∑K

i=1Mijpi can be viewed
as the economic benefit generated by the traffic flow to the network. (One can
assume the originating and destination nodes can charge end-users for traffic
handling at a rate that is proportional to the shadow prices.) Hence, if equal-
ity holds in equation (25.10) for a node, traffic from that node can be viewed
as enjoying the most efficient payment return ratio in the network; otherwise
the payment return ratio is not optimal.

It is natural to define a rule requiring that nodes enjoying more routing
benefit from the network than others should not require charges for traffic
handling. Similarly, traffic rate from nodes that do not enjoy the optimal pay-
ment return ratio should be set to zero. Hence, one can adopt von Neumann’s
concept of an equilibrium solution here. That is an equilibrium solution to
(25.9) and (25.10) is a pair of non-negative, non-zero vectors, r and p, sat-
isfying both set of equations for some positive constants, α and β, with the
additional property that if an inequality holds for index i in (25.9) then pi = 0
and if an inequality holds for index j in (25.10) then rj = 0. That is:

{
α
∑K

i=1 aijpi ≤
∑K

i=1 bijpi, and rj = 0 if < applies;
β
∑K

j=1 aijrj ≥
∑K

j=1 bijrj , and pi = 0 if > applies;
(25.11)
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From Neumann’s result (see [8]), one can claim that there always exists a
unique equilibrium value γ for the model discussed here so that α = β = γ.
If a perfectly fair index also exists for the system, then it is equal to or less
than 1/γ .

25.3 Distributed Controller and Its Convergence

Based on the approach first proposed in [9] and further extended in [10], we
present here a tri-state distributed control algorithm that can achieve a pre-
defined fairness index target. This algorithm assumes that each node only has
a local view of the network: it knows the traffic rate it generates, the total
rate of traffic ultimately destined to it, and the total rate of transitory traffic
passing through it. Note that none of the nodes is assumed to know any global
system-wide parameters. Each node computes its fairness index individually,
and updates its originating traffic rate according to the following rule:

ri(n+ 1) =



ri(n)δ if γi(n) > ελi,

ri(n)δ−1 if γi(n) < ε−1λi,
ri(n) else.

(25.12)

In the above algorithm, δ and ε are scalar parameters which control the speed
of convergence. They should satisfy the conditions δ > 1 and δ2 ≤ ε. Moreover,
{λ1, ...λK} denotes a set of feasible performance targets and γi(n) represents
the fairness index for node i at iteration n. For example, if one considers the
destination-weighted fairness index, then γi(n) is defined as:

γi(n) =

∑K
j=1Mijrj(n)

ri(n) +
∑K

j=1(Mij + Lij)rj(n)
. (25.13)

The algorithm can start from any positive initial state (r1(0), ..., rK(0)).
The traffic rates, (r1(n), ..., rK(n)), are adjusted according to 25.12 at each
iteration. Therefore, for any server i the control levels are of the form ri(0)δk

for some integer k. It is shown in [2] that under suitable technical conditions,
the simple algorithm defined by 25.12 always converges to (r∗1 , ...r

∗
K) and {γ∗i }

such that

γ∗i =

∑K
j=1Mijr

∗
j

r∗i +
∑K

j=1(Mij + Lij)r∗j
, and ε−1λi ≤ γ∗i ≤ ελi. (25.14)

Numerical computations were carried out to examine the convergence
property of the tri-state algorithm under different network topologies, sys-
tem parameters, initial values, scalar parameters, etc. Some typical examples
are shown below.

First consider a 6-node network with topology shown in Figure 25.1.
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Fig. 25.1. Topology of a 6-node network.

Assume the traffic distribution, M, and the transitory matrix, L, are set
as follows:

M =




0 0.3433 0.1622 0.2240 0.2740 0.0724
0.1991 0 0.1615 0.2006 0.2915 0.1893
0.1772 0.2063 0 0.0626 0.2072 0.2564
0.1276 0.3604 0.4192 0 0.1923 0.1229
0.1489 0.0605 0.1479 0.1900 0 0.3589
0.3473 0.0295 0.1093 0.3229 0.0350 0




(25.15)

L =




0 0.4332 0.5532 0.5270 0.4876 0.6196
0.6417 0 0.6585 0.6401 0.5477 0.7089
0.6584 0.6100 0 0.7452 0.6119 0.6458
0.5912 0.4218 0.3820 0 0.5433 0.5849
0.5766 0.6217 0.5628 0.5502 0 0.4227
0.1650 0.1941 0.1831 0.1756 0.2459 0




(25.16)

For these parameters, there exists a perfect destination-weighted index,
λ, with value 0.2159. Set δ equal to 1.001, ε = δ2 and set the initial traffic
rate to be [1, 1, 1, 1, 1, 1]T . Under the tri-state distributed control algorithm,
the fairness indices of the nodes converge to γ∗ after 928 iterations, where
γ∗ = [0.2162, 0.2163, 0.2155, 0.2155, 0.2162, 0.2155]T . The trajectories of fair-
ness indices of the six nodes are shown in Figure 25.2.

As stated previously, the tri-state algorithm can also be used to achieve
feasible performance targets other than perfectly fair solutions. As an example,
consider again the previous network. Let a set of performance targets, {λi, 1 ≤
i ≤ K}, be specified by the vector,

λ = [0.2462, 0.1958, 0.2186, 0.2896, 0.2054, 0.1290]T . (25.17)

This set of targets can be attained by setting the traffic rates to rλ =
[0.2, 0.5, 0.3, 0.1, 0.6, 0.8]T . Starting from an arbitrarily chosen initial state,
the fairness index trajectories of all the nodes converge to this feasible target
value under the tri-state distributed algorithm as shown in Figure 25.3.
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Fig. 25.2. Convergence to a perfectly destination-fair solution for a 6-node network.

Fig. 25.3. Feasible performance target convergence for a 6-node network.
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Consider now the 7-node network shown in Figure 25.4. By choosing the
matrices M and L properly, one can find cases where the fairness index ex-
ists. Simulation results show that for a feasible set of performance targets,
the tri-state algorithm always converges to the targeted performance band.
Some simulation results for this network are listed in Table 25.1. (In these
simulations, δ = 1.001 and ε = δ2).

Fig. 25.4. Topology of a 7-node network.

Table 25.1. Convergence results of a 7-node network.

Target 0.1912 0.1986 0.1953 0.1979 0.1921

0.1909 0.1983 0.1949 0.1982 0.1919
0.1913 0.1984 0.1949 0.1979 0.1925

Converged 0.1916 0.1990 0.1956 0.1982 0.1925
0.1908 0.1990 0.1956 0.1975 0.1919

Indexes 0.1909 0.1983 0.1949 0.1982 0.1917
0.1916 0.1983 0.1949 0.1975 0.1922
0.1916 0.1990 0.1956 0.1975 0.1917

No. of Iterations 1348 1305 2953 615 1223

The convergence process is affected by parameters such as the initial traf-
fics rate and the scalars, δ and ε. Choosing these values correctly can speed
up the convergence. Simulation runs were conducted for the previous 7-node
network example. For one set of runs, the initial traffic rates were chosen
independently from an identical distribution. For a second set of runs, the
initial rates were chosen to be identically for all the nodes. Simulation results
show that the algorithm converges faster for runs starting with identical ini-
tial rates, if other conditions are set identically. Effects of the adjusting the
parameters, δ and ε, were also studied. In general, the lager these parameters
are, the faster the convergence rate.
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Table 25.2. Convergence rate under different conditions.

Target δ ε Initial state chosen No. of Iterations

Identically 1223
0.1921 1.001 1.002001

Independently 1954

Identically 4949
0.1937 1.001 1.002001

Independently 5602

Identically 89
0.1921 1.01 1.03

Independently 243

Identically 389
0.1937 1.01 1.03

Independently 536

From the table, the tri-state control algorithm appears to converge rea-
sonably fast. Nevertheless, a weakness for the algorithm is that it requires
the feasible performance target be known beforehand and any invalid target
value will result in a process that never converges. It is difficult to determine
a priori whether a set of performance targets is feasible or not in a large-scale
network. However, a heuristic algorithm exists for reaching a perfectly fair
solution, even if the index value is not known a priori. The basic idea is to
apply the previous distributed algorithm using an estimated index value and
updates the target value if the algorithm does not converge. The target up-
date procedure implies that the algorithm is only partially distributed, since
a central server is needed to exchange and updated target value to all the
nodes. The heuristic algorithm is defined below:

1. Set proper initial values: Set δ and ε, 1 < δ2 ≤ ε, with relatively large
values; set initial target value, γ0, and initial rate vector, r0.

2. Perform the tri-state algorithm until it converges or remains unchanged
at a value outside the target band after a maximal iteration number, κ.

3. If the maximum iteration number is reached, the nodes send their current
index value to the central server. The mean of the current index values is
set as the target value for the next turn.

4. If the tri-state algorithm stops due to convergence to currently set target
zone, the error control parameters are decreased. (One approach is to set
the new value to the square root of the current value.)

5. Re-do the target tracking process using the tri-state algorithm until δ and
ε are decreased to predefined acceptable value δ0 and ε0 respectively.

Numerical computations were carried out to examine the convergence be-
havior of the heuristic algorithm. A 5-node network with a fairness index value
of 0.2462 was studied. Key convergence stages of the heuristic algorithm are



25 A Fairness Index for Communication Networks 399

Table 25.3. Convergence rate of the heuristic algorithm.

Target δ ε Lower bound Upper bound Status No. of Iterations

0.3 1.7320 3.0000 0.1 0.9 Converged 1
0.3 1.3160 1.7320 0.17321 0.5196 Converged 1
0.3 1.1471 1.3160 0.2280 0.3948 Converged 6
0.3 1.0710 1.1471 0.2615 0.3441 Not converged 281

0.2460 1.0710 1.1471 0.2145 0.2822 Converged 4
0.2460 1.0348 1.0710 0.2297 0.2635 Converged 11

.. ... ... ... ... ... ...
0.2460 1.0005 1.0011 0.2457 0.2463 Not converged 761
0.2462 1.0002 1.0005 0.2459 0.2461 Converged 1499

shown in Table 25.3. The target value was initially set to be 0.3. It took 11
outer loops for algorithm to converge to the perfectly fair index value.

Conclusion

A new fairness index for communication networks is introduced in this paper.
This index can be used as a reference point to measure the contribution of
independent, self-authority servers to the networks. Some initial properties
of this index are presented here. However, much remains to be done. Issues
such as how the index can be applied to practical network control and traffic
pricing are of great interest.
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