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ABSTRACT

With the extreme popularity of Web and online social net-
works, a large amount of personal information has been
made available over the Internet. On the other hand, ad-
vances in information retrieval, data mining and knowledge
discovery technologies have enabled users to efficiently sat-
isfy their information needs over the Internet or from large-
scale data sets. However, such technologies also help the
adversaries such as web stalkers to discover private informa-
tion about their victims from mass data.

In this paper, we study privacy-sensitive information that
are accessible from the Web, and how these information
could be utilized to discover personal identities. In the pro-
posed scenario, an adversary is assumed to possess a small
piece of “seed” information about a targeted user, and con-
duct extensive and intelligent search to identify the target
over both the Web and an information repository collected
from the Web. In particular, two types of attackers are mod-
eled, namely tireless attackers and resourceful attackers. We
then analyze detailed attacking mechanisms that could be
performed by these attackers, and quantify the threats of
both types of attacks to general Web users. With extensive
experiments and sophisticated analysis, we show that a large
portion of users with online presence are highly identifiable,
even when only a small piece of (possibly inaccurate) seed
information is known to the attackers.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
systems]: Security and Protection; K.4.1 [Computers and
Society]: Public Policy Issues—Privacy

General Terms

Security, Experimentation, Measurement
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1. INTRODUCTION
The Internet has changed the ways we publish, search

and consume information. Even with the static web, a huge
amount of personal-related content has been made available
online. More recently, various types of online social network
(OSN) products have been introduced to the Internet, which
further promotes the sharing of personal information. In ad-
dition to the great commercial success and social impacts of
the OSNs, they also brought new challenges to the research
community (e.g., [12, 27, 24]). With enormous number of
users and tremendous amount of personal information avail-
able over various online social networks, it is critical to en-
sure that user privacy is well preserved. However, although
many researchers have been working on extracting informa-
tion or learning knowledge from online social networks, very
little research effort has been put so far into the study of
security and privacy issues until very recently [2, 42, 28, 15,
44, 40, 17, 16, 43, 32].

In online social networks, users voluntarily share personal
information within the community under some implicit as-
sumptions that: (1)these information is only accessible to
the targeted readers; (2) one’s true identity cannot be dis-
covered if he/she only provides limited/incomplete profile
information (e.g. an email address and a phone number);
(3) a small amount of information is not significant and the
disclosure will not hurt one’s privacy; and (4) it is very dif-
ficult, if not impossible, to collect and link pieces of infor-
mation scattered over various online social networks or data
sets, and associate them to one’s real identity. Unfortu-
nately, these assumptions are proven to be either false or
at least questionable, in both research literatures and news
reports. Several types of privacy attacks in social networks
have been proposed, such as the structural re-identification
attacks [2, 42, 28, 15, 44, 40], the inference attacks [17, 16,
43], the information aggregation attacks [32, 25], and the
traditional attribute re-identification attacks [19, 14]. Al-
though different types of attacks and countermeasures have
been proposed in recent literature, only a few of them have
been well tested on real data. Moreover, most of the attacks
and corresponding protection mechanisms are based on the
graph topologies of social networks. Privacy attacks that
focus on the attributes are not well studied.

Personal information is scattered over various sources, in-
cluding online social networks and the general Web. We
believe a thorough understanding of the nature of how these
information are distributed and retrievable is the key to an
effectively defense. This paper takes a first step towards
studying private information online, especially the online

37



social networks data. In this paper, we intensively exam-
ine the vulnerability of private information in online sources
as well as the validity of different types of attribute-based
privacy attacks. In particular, we define two types of attack-
ers, resourceful attacker and tireless attacker, based on their
different attack capabilities and strategies. Both types of
attackers obtain small amounts of information about their
targets, known as seed attributes, from external sources and
launch advanced re-identification attacks. The seed informa-
tion could be non-identifiable attributes, such as names of
schools where the target gets degrees. A resourceful attacker
is capable of retrieving a large amount of personal infor-
mation about potential targets from online social network
sites and creating his/her own resource database, and re-
identifies the target by checking the seed attributes against
his/her resource database. On the other hand, a tireless at-
tacker only submits such attributes to search engines, and
tirelessly browses and studies the results for clues. We have
simulated both types of attacks on our database, with 3
million records collected from an online social network and
a phonebook data set, to check their reality and severeness.
From the results, we can see that large portions of users
with online presence are identifiable even with a small piece
of seed information, where the seed information could be
inaccurate. Our simulation also shows that it does not re-
quire extensive resources or efforts to successfully conduct
attributed-based attacks to hurt user’s privacy online.

2. RELATED WORKS
In online social networks, users are sometimes either obliv-

ious about their privacy, or concerned but underestimate the
privacy risks. Surveys and general discussions on social net-
work privacy and security could be found at [21, 5, 41]. In
this paper, we are interested in the nature of user identity
and personal information that are voluntarily released to so-
cial networks, and how such information could be valuable
to attackers. Along this thrust, four types of privacy threats
have been discovered in the literature: (1) an individual in-
formation item (e.g. an identifiable profile image) may be
accessed by adversaries; (2) information items of the same
user may be collected from different sources, and aggregated
to reveal user privacy; (3) values of hidden information items
may be inferred from public information items; and (4) user
identities could be recovered from anonymized data sets. We
briefly cover them below.

2.1 Private information disclosure
Users give out information to trusted social network com-

munity. They also implicitly assume that their information
would stay within the community. Unfortunately, this as-
sumption is not always valid. For instance, messages sent to
an email-based social network may be archived at a reposi-
tory and accessible to the open public [11], stalkers may fol-
low people through social networks [9], gadgets and add-ons
may access users’ profiles [20], code errors reveal user profiles
[3], etc. To further understand how people value their se-
crets and the patterns of information revelation, researches
on user behavior study, user education, or policy/legal issues
have been proposed [19, 14, 4]. For instance, [19] shows that
people value their privacy based on context – i.e., the desir-
ability of the traits in a target group. In this sense, people
may be willing to publicize private information if they feel
they are “somewhat typical or positively atypical compared

to the target group” [19]. Meanwhile, a study of the Face-
book users within the CMU student community shows that,
about 80% of the users adopt identifiable or semi-identifiable
images in their profile, and less than 2% of the users made
use of the privacy settings [14]. In [29, 30], authors pro-
posed a framework that assesses potential privacy risks to a
privacy score, which is computed from the sensitivity of the
disclosed information and the visibility of such information.
Finally, [23] shows that online social networks and applica-
tions leak users’ personally identifiable information to third
parties. In a position paper [37], the author identifies an at-
tack that uses Sybil nodes and search functions to discover
hidden social relationships in LinkedIn.

2.2 Information aggregation
When people participate in online social networks, they

voluntarily release different types of personal information:
name, screen name, telephone numbers, email addresses,
locations, etc. Moreover, when users post messages in fo-
rums, blogs, and bulletin boards, they also disclose small
pieces of private information. However, with the develop-
ment of information retrieval techniques, adversaries could
collect pieces of such personal information of the targeted
user [32]. Though a single piece of such information may
be harmless, it discloses a significant amount of private in-
formation when associated with other pieces of information.
Moreover, adversaries could use evidences such as identi-
cal email addresses, screen names, similar posts, and at-
tribute/structural re-identification attacks to bridge profiles
across different social networks [32, 25]. Particularly, [38,
13, 25] have shown that people are highly identifiable with
very little information, which make cross-network aggrega-
tions quite feasible. In all cases of information aggregation
attacks, private information of the same user from multiple
resources is aggregated and severely hurts user privacy.

2.3 Inference attacks
Aside from voluntary disclosure of explicit personal infor-

mation, [17, 16, 43] study a type of indirect private informa-
tion inference through social relations. [17, 16] notice that
hidden attributes could be inferred from friends’ attributes
using a Bayesian network. They study the factors that im-
pact inference accuracy, and suggest that selectively hiding
social connections or friends’ attributes could help preserve
privacy. More recently, [43] also focuses on social networks
with mixed public and private user profiles. They found
that both friendship links and group membership informa-
tion could be used to infer sensitive hidden attributes. For
instance, membership of a local engineer society discloses
location information of the user.

2.4 Privacy Threats in Published Social Net-
work Data

When social network data sets are published for various le-
gitimate reasons, user identity and some profile information
are often removed to protect the user privacy. Some of the
well-known techniques for this purpose includes k-anonymity
[39, 1], l-diversity [33] and t-closeness [26]. For instance,
in a k-anonymized data set, an individual cannot be distin-
guished by attributes from other k-1 records. Possibilities of
attribute re-identification attacks on publicly available data
sets have been studied in [38, 13, 25]. More recently, in [7]
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authors introduce an attribute-based anonymization method
for social network data.

On the other hand, due to the nature of social network
data, just anonymizing node attributes is not enough. Graph
structure contains significant amount of information which
could be utilized to hurt user privacy, i.e. structural re-
identification attacks. A good survey on structural anonymiza-
tion and re-identification attacks could be found at [45]. No-
tably, [2] first identified the problem that although quasi-
identifiers are removed before publishing, node identities
could be inferred through graph structure. They show that
node identities are vulnerable to both passive and active
attacks. In [35], authors introduce a new metric, namely
topological anonymity, to quantify the level of anonymity
using the topology properties of network graph. [44] intro-
duces neighborhood attacks, in which an adversary knows
the neighborhood subgraph of the target, and tries to re-
identify the user from an anonymized network graph. They
propose an approach to further anonymize vertexes by mod-
ifying edges to construct isomorphic neighborhoods. In [28],
authors define k-degree anonymity : in a k -degree anonymized
graph, each node has the same degree with at least k other
nodes. They also efficiently propose k -degree anonymize
graphs with minimal edge additions and deletions. More-
over, [15] models three types of adversary knowledge that
could be used to re-identify vertexes from an anonymized so-
cial network graph. They tackle the problem through graph
generalization – dividing the graph into partitions and pub-
lishing summarized partition-level data. K-Automorphism
is introduced in [46] to defend against multiple attacks. In
[18], authors propose a graph anonymization approach that
maximally preserves original graph structure and statistical
features. Finally, [31] considers social network as a weighted
graph, in which edge labels are also considered to be sensi-
tive. They propose to protect sensitive edge labels while
keep certain global features of the graph.

3. INFORMATION, VULNERABILITIES AND

ATTACKS

3.1 Information and Vulnerabilities
With the Internet explosion, huge amounts of information

have been made online. Moreover, advances in information
retrieval techniques and Web search engines have enabled
easy access to such information. However, large amount of
personal information is also exposed to public, not always
with the consent of the information owner. In particular, we
believe there are three primary channels for personal infor-
mation disclosure:

Personal information on the general web. In the Web
1.0 era, especially in the early days, personal homepages
sometimes contain large amount of personal information.
Such information is usually published by owners who are
somewhat familiar with the Web. They usually understand
the risks better than the novices, hence, the contents may
be carefully tailored to protect privacy. On the other hand,
some personal information maybe published in sources such
as news, employee directories, etc. Overall, this channel is
better administered although sensitive information could be
disclosed by careless users.

Digitalized public records. With governmental and in-

dustrial efforts, a large amount of public records (e.g. phone
books) have been digitalized and made available online. Many
of them are indexed by commercial search engines, while oth-
ers require a minimum subscription fee for full access – the
barrier is usually low for an adversary to query or even col-
lect the entire databases. Some public information could be
highly personal (e.g. salaries of faculty members in public
universities).

Online social networks. As online social networks get
extremely popular, they become gold mine for adversaries.
Large volume of personal information have been collected
at social network sites for socialization, career development,
and other purposes. As shown in [14], most social network
users are poorly protected and their personal information is
highly accessible. In this way, social network users may be
very vulnerable.

All types of information summarized above are accessi-
ble to adversaries, who strive to collect personal information
about the targeted users. From the adversaries’ perspective,
user information could be categorized as (i) private informa-
tion, (ii) identifiable information, and (iii) non-identifiable
information. In the literature, a lot of work has been done
on the risks associated with (i) and (ii), and on preventing
(i) private information from been disclosed to the Internet.
However, seed information obtained by the adversary (from
offline) is not always identifiable, hence, the attacker’s first
objective is to discover the true identity of the target (i.e.
from category iii to ii).

3.2 Attacker Models
In this work, we define and simulate two types of attack-

ers, resourceful attackers and tireless attackers, with differ-
ent attacking capabilities and strategies.

Resourceful attacker: a resourceful attacker is assumed to
have enough resource (bandwidth, storage, technique, etc)
to construct his/her own database by collecting information
from the Web. The database could be constructed in three
ways: (1) crawling the general web, extracting personal in-
formation from web pages, and storing the data in a local
database; (2) implementing a focused crawler to collect data
from online public record datasets; (3) crawling online so-
cial networks, or downloading research data sets published
by social network sites.

In the information retrieval community, many work has
been done for entity extraction from the “surface Web”, e.g.
[6]. However, to populate a local database requires intensive
crawling of a significant portion of the surface web, which
is very time-consuming. Comparably, collecting information
from public records and online social network user profiles is
more feasible since the information has been concentrated on
such websites. Moreover, considering the user data are usu-
ally published in well-structured templates, resourceful at-
tackers can easily implement niche parsers to extract struc-
tured personal information. One practical obstacle could
be the restriction for massive crawling, which usually vio-
lates the terms of use for most online social networks. How-
ever, with technical assists, e.g. anonymous routing [8], such
crawling is very doable and hard to detect. As such, it is
reasonable for us to assume a resourceful attacker has cer-
tain technical capability to crawl from typical online data
sources.
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With the collected databases, resourceful attackers com-
pare his/her external knowledge about the target with infor-
mation in the database, and search for candidate records for
further examination. Meanwhile, if the target is identified
from one database, it becomes trivial to use the discovered
identity to retrieve more information from other databases.
A real-world example for cross-database attacks is given in
[25]. The example in [25] is a manually executed attack,
but the risk is valid when a resourceful attacker possesses
multiple overlapping databases.

Tireless attacker: a tireless attacker does not have the re-
sources or techniques to create and maintain a local database.
As a compensation, a tireless attacker devotes more time and
labor in the attacking process to maximize the chance of suc-
cess. In particular, a tireless attacker knows some of the at-
tributes of his/her target (seed attributes), and submits such
attributes to search engines, and tirelessly browsing and ex-
amining the results for clues. Due to the size of the Web, the
results returned from search engines are mostly noise, and
the attacker needs to be very patient to discover any useful
information. The chance of success highly depends on the
amount of information provided by the seed attributes. For
instance, if the attacker knows that the target get a Bache-
lor’s degree from a large public university and nothing else,
it is very unlikely to identify the target in tireless attack.
However, if the attacker knows the first name of the target,
and the fact that he/she gets a Ph.D. from a small univer-
sity, the attacker is more likely to discover the true identity
(full name) and more personal information of the target.

Meanwhile, a tireless attacker also tries to search or browse
in social networks, public records, etc. Furthermore, besides
the“brute-force”attack, a tireless attacker can get“smarter”
by constructing advanced queries with his/her knowledge
about the attacker. For instance, if the attacker knows that
the target is currently employed at a university, it is more
likely that the target’s information will be discovered from
webpages within the domain of the university. This type of
“advanced search” functions are provided by all major search
engines.

4. RESOURCEFUL ATTACKERS
In this section, we focus on two types of privacy attacks

(i.e. the re-identification attack and the cross-database ag-
gregation attack) conducted by a resourceful attacker, who
is capable of maintaining a private database of a large vol-
ume of publicly available online user profiles. In our study,
we simulate the power of the resourceful attackers by crawl-
ing user data from two publicly available resources, a social
networking site and an online phone book data repository,
and study the feasibility, difficulty, and the success rate of
resourceful attacks with different types of seed attributes.

4.1 Data Collection
To implement a proof-of-concept attacking mechanism, we

design niche crawlers to collect data from two resources to
simulate the proposed resourceful attacker.

4.1.1 Collecting data from LinkedIn
LinkedIn1 is a professional online social networking site

that provides open access to detailed identifying user pro-
files. We implemented a specialized crawler to retrieve data

1http://www.linkedin.com

Table 1: Seed attributes in the resource database
created by a resourceful attacker.

Name Work Education
FN first name TI title S school name
LN last name AF affiliation D degree

IND industry ST start time
LO location ET end time

T time period

Table 2: Approximate information on attributes.
Attribute Approximation Notation
name initials N.in

school
state S.st
region S.re
country S.ct
continent S.cn

based on the public index of LinkedIn.com, using meth-
ods and technologies that are available to any potential re-
sourceful attacker. We collected approximately 9 million
(8,943,014) user profiles in total in 10 months. The crawled
html profiles are indexed alphabetically by the last name
of profile owners and stored in a MySQL database for fur-
ther offline processing, which includes two major procedures,
data extraction and data cleaning.

Data extraction: The LinkedIn profile contains rich infor-
mation about one’s educational history that is useful in iden-
tifying a target. However, the raw data are in html profiles,
which need to be extracted to reconstruct corresponding
records in the resource database. We implemented a special-
ized parser to do that. Currently, our parser only extracts
data from three fields name, work and education fields, which
contain the most useful information for re-identification. In
the future, we consider to extend our parser to include more
fields such as working experiences. Data from the three
fields are further processed and categorized into 11 seed at-
tributes, as shown in Table 1. For instance, data in name
field are segmented as first, middle and last names. Data in
work field are decomposed to current title, affiliation (e.g.
Software Engineer at XYZ company), industry type (e.g.
Internet, Higher Education, Research), and current location
(e.g. San Francisco Bay Area). Similarly, school name, de-
gree earned, major, degree starting time and ending time,
and the entire degree time period are extracted from educa-
tion field. Please note that one profile may have multiple ed-
ucation records. Also, not all the profiles contain education
information. In some profiles, the education field is either
left blank or hidden from non-registered LinkedIn users.

To simulate the attacks where the attacker only had ap-
proximate information about the target, we consider two
common scenarios. In the first case, the attacker only knows
the initial of the target, and in the second case, the at-
tacker only know the approximate location of the school that
the target has attended. Therefore, we added four new at-
tributes to our seed attribute table, as shown in Table 2.
After cross-checking with the school reference lists, we have
successfully added country and continent information to all
schools and state information to all the US schools, for 80%
of the records.
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Data cleaning: The collected data may have redundant
or ambiguous contents, which makes data cleaning opera-
tions important in data collection. Some of the ambiguity is
caused by inaccurate or wrong inputs of careless users, for
instance, a user mistakenly includes department name or
year of graduation as part of school name. A more common
problem resulting in redundant content is that many uni-
versities are referred by different names. For example, we
noticed University of Cambridge is referred as Cambridge
University instead of its formal name in some profiles. We
corrected this problem by cross-checking with the school ref-
erence lists that contain formal forms for most of the schools.
After a quick browsing of the data, we created manually
coded heuristic rules to map most of the school names to
their formal forms, and removed all the redundant elements
and special characters 2.

Another important processing we took in data cleaning is
to set aside the schools with less than 3 attendees, which
we think are highly likely to be invalid or mistaken entries
(proved by later manual check). After all the operations,
we successfully obtained about 2,466,721 clean profiles, with
3,417,550 clean education records.

4.1.2 Collecting data from online phone books
Many data sets with private personal information are now

publicly available for commercial or administration purposes.
Such information is open to public, unless data owners ex-
plicitly opt out. Residential phone book data is such a re-
source, which has been made online through various sources.
All the online phone book sites list phone numbers and res-
idential locations for free access. For the registered users,
more detailed residential information are also available. More-
over, a few of online phone books even show the names and
addresses of the holders as unlisted phone book entries, for
instance, while the phone numbers are hidden, the owners’
info is displayed on http://www.phonesbook.com.

We assume the resourceful attackers are capable of re-
trieving all types of online data to enrich their resource
databases. Therefore, we crawled residential phone book
entries for three regions, two college towns and one state
capital city3, from an online phone book data repository to
simulate attackers’ knowledge in this category.

After creating his own resource database, the resourceful
attacker is capable of launching two types of attacks, the
re-identification attack and the cross-network attack.

4.2 Re-identification attacks
The re-identification attack is to explore the identity (and/or

other information-of-interest) of the target by linking or
matching the known information about the target to the
data in the resource database. In this section, we first sim-
ulate a number of re-identification attacks over the crawled
LinkedIn data to assess the risk of re-identification attack
against profile data that users voluntarily submitted to on-
line social networks. Then, we employ an information theory
based approach to theoretically estimate the re-identification
risk.

2Due to lack of referencing lists for high schools and lower
level schools, we have to remove all education records at high
school level or lower.
3City names are anonymized as required by double-blind
review policy.

4.2.1 Re-identification attack model
To launch a re-identification attack, the attacker needs to

know some information about the target. It is assumed that
the attacker obtains such knowledge from external resources.
When the attacker obtains offline information about the tar-
get, he expresses this knowledge in the form of seed attributes
that he collects for the resource database.

The attacker’s knowledge about each target varies. In
some cases, the attacker knows only one seed attribute about
the target, e.g. “John has a bachelor’s degree”. In other
cases, the attacker may know more about the target, which
can be interpreted as multiple seed attributes, e.g. “John
graduated from college in 2004”. Sometimes, the knowledge
about the target is not accurate. For example, the attacker
may only know that “John graduated from a school in Mid-
west”. Since the inaccuracy in the name and school location
fields are addressed by the new approximate attributes in
Table 2, we can simulate certain inaccurate inputs in at-
tacker’s knowledge. For instance, the attacker may know
that: “John graduated from a school in Midwest”, which
indicates Attribute SchoolRegion = ”Midwest”.

Therefore, we model the attacker’s knowledge about a tar-
get as an identity-attribute tuple <I, υ1,..., υt>, where I is
the identity of the target, and {υ1,...,υt} are the values of
the known seed attributes {A1,...,At}. For instance, the at-
tacker’s knowledge “John graduated from college in 2004”
can be expressed as:

Identity : I = John
Attribute FirstName : υ1 = ”John”
Attribute EndTime : υ2 = ”2004”

In the defined resourceful attack model, to re-identify the
target, the attacker needs to send the known identity-attribute
tuple into the resource database that is built upon the data
retrieved from online sources. The severeness of such re-
identification attack highly depends on the completeness and
identifiability of the records in the resource database. There-
fore, the first-step approach towards assessing the risk of
such re-identification attack is to study the resource database.
In particular, we explore the identifiability of the crawled
LinkedIn user profiles in our simulated resource database to
assess the re-identification risk.

4.2.2 Assessing risk with profile identifiability
The resource database and the seed information are two

key components for a successful re-identification. Consider
a resource database D with n records, where each record
is associated with one identity. To an attacker, the ideal
case for the resource database is that it is large enough to
contain records of all the targets and each record contains
all information about the target. The ideal case for the seed
information is that it is accurate and adequate to distinguish
the target from records of others in the database. However,
it is very difficult, if not impossible, to meet both conditions
in real-world cases. Therefore, for a resourceful attacker, it
is important to measure the identifiability of the records in
the resource database D.

Definition 1. For a database D whose scheme is D(A1,
..., At), we define the identifiability of a target T in D

as I
{v1,...,vr}
T = k, if T cannot be distinguished from other

k−1 profiles with known seed attributes {attr1, ..., attrr} =
{v1, ..., vr}, where r ≤ t.
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This definition is similar to the k-anonymity concept of
privacy in data publishing, but interpreted from the at-
tacker’s perspective. For each target whose record is in D,
given any adequate and accurate seed information {v1, v2, ..., vt},
his/her identifiability should be 1, which means he/she is
uniquely identified. Typically, since the attacker’s seed in-
formation is limited, the identifiability of a target, k, is much
larger than 1. However, for the attacker, the size of potential
profile set (that may contain the target) under this definition
is successfully decreased from n to k.

To assess the identifiability of D, we further count nk−,
which is the number of profiles that cannot be identified from
at most k other profiles given seed information {attr1, ..., attrr}.
In other words, for every possible value set {v1, ..., vr} in the
seed attribute tuple space R

r,

nk− = sum(I
{v1,...,vr}
T ), for I

{v1,...,vr}
T < k.

Then, we calculate k-or-less proportion p(k) as an indica-
tor of the identifiability of D, where

p(k) =
nk−
n

, for k ∈ [1,max(k)],

and max(k) is the largest k for all possible values of seed
attribute tuple {attr1, ..., attrr}.

Next, we select several seed attribute tuples, and assess
the identifiability of the resource database with crawled LinkedIn
data. First, we simulate the scenario where the attacker only
knows a single seed attribute value about the target. Then
we measured the k-or-less proportion p(k) for each seed at-
tribute in Table 1. The results of three seed attributes, first
name FN , work location LO, and school name S, are shown
in Figure 1(a). In the figure, a slowly growing curve in-
dicates better anonymity, since less people are identifiable
among smaller sets. As we can see from the figure, users’
identifiability shows different patterns for different attribute.
Overall, when the adversary only knows one attribute, most
people cannot be identified among a relatively large set.

Then, we consider the scenario in which a weaker attacker
only knows approximate values of the attributes, as summa-
rized in Table 2. Some of the results are shown in Fig-
ure 1(b), when the attacker knows (i) the first and last ini-
tials (N.in) of the target, but not the name, e.g. the attacker
knows“JD”, not“John Doe”, or (ii) the region where the tar-
get goes to school (S.re), e.g., “the person went to school in
West coast”. As we have expected, knowing approximate
values on an attribute usually gives the adversary very lim-
ited information.

The third type of scenarios that we examine is that the
resourceful attacker knows multiple attributes about the tar-
get. Figure 1(c) shows the population vs. k-anonymity
curves when the resourceful attacker knows (i) first name
and affiliation: <FN, AF>, e.g. “John works at XYZ com-
pany”; (ii) school name and starting time: <S, ST>, e.g.
“the person went to Stanford in 2001”; and (iii) first name,
work location and school name <FN, LO, S>, e.g. “John
went to Berkeley, and now works at New York”. Note that
the k axis is scaled to [1, 100]. As we can see from the fig-
ure, users become very vulnerable when the adversary knows
multiple seed attributes.

We also consider the case where the adversary knows ap-
proximate information on multiple attributes. The right-
most figure in Figure 2(b) shows the population vs. k-
anonymity curve when the attacker knows the states in which

Table 3: Information gain (IG) by knowing a single
seed attribute with precise values.

Category Attribute IG (bit)

Name
FN 13.348
LN 16.461

Work

TI 14.433
AF 12.979
IND 6.405
LO 8.011

Education

S 11.8231
D 1.8336
ST 5.149
ET 5.026
T 7.537

the target goes to school (given that the target goes to at
least two schools), e.g. “the person went to school in Cali-
fornia and Massachusetts”. Obviously, the database is less
identifiable under approximate seed information.

4.2.3 Assessing risk using information gain
To quantify the amount of information provided by an at-

tribute, we further analyze the problem from a information
theory perspective. In our scenario, the goal of the attacker
is to identify the particular record which corresponds to the
target. Without any prior knowledge, all the records are
equally likely to be the target. Hence, to achieve the goal,
the average amount of information that the attacker needs
to collect (i.e. adversary’s expected information gain) is de-
noted as:

E(I(X)) = H(X) = − log2
1

N

where N is the number of records in the database. In our
simulation, E(I(X)) = 21.23(bits), i.e. on average, the at-
tacker needs to obtain 21.23 bits of information in order to
identify a target from our database.

When the attacker knows the value v of attribute attr,
the conditional entropy is denoted as:

H(X|attr = v) = − log2
1

Nattr=v

where Nattr=v is the number of records that satisfy the con-
dition attr=v. On average, the information gain of knowing
attribute A is denoted as:

I(X;A) = H(X)−H(X|A)

= H(X)−
∑

v∈VA

p(A = v)H(X|A = v)

where H(X|A) is the conditional entropy of knowing at-
tribute A. In our settings, an information gain of m bits
indicates that the attacker has successfully discovered that
the target is among N

2m
= 2,466,721

2m
records, on average. In

additions, the attacker will need to further obtain 21.23−m
bits of information in order to exactly identify the target.
Most importantly, if we assume that our data set is a ran-
dom sample of the general population, attackers’ informa-
tion gain will be the same if he obtains the same attribute
in the general population. In that case, H(X) and H(X|A)
increases proportionally, while I(X;A) will remain the same
(statistically).
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Figure 1: Estimate the risk of resourceful attacks.

In Table 3, we show the information gain of the attacker
when he/she knows one seed attribute. As we expected, the
last name carries the largest amount of information, while
first name and school name also carries significant amount
of information. However, knowing one attribute alone is not
enough for the attacker to identify the target, or to narrow
down to a very manageable range. Attribute ln is somehow
an exception, which on average narrows the search to less
than 30 candidates (i.e. H(X|A) = 4.77bit). When the at-
tacker only know approximate information on an attribute,
the information he/she learns from the knowledge is even
less, as shown in Table 4.

In the scenario that the attacker knows multiple attributes,
the information gain is denoted as:

I(X;A1A2) = H(X)−H(X|A1A2)

When two attributes A1 and A2are independent, we should

Table 4: Information gain (IG) by knowing seed at-
tribute with approximate values.

Attribute IG (bit) Attribute IG (bit)
N.in 8.807 S.st 4.795
S.re 2.360 S.ct 1.853
S.cn 1.328

have:

I(X;A1A2) = H(X)−H(X|A1A2)

= H(X)−H(X|A1)−H(X|A2)

Table 5 shows the information gain when the attacker knows
multiple attributes.

4.3 Cross-database aggregation
As we have introduced, a resourceful attacker is capable of

collecting multiple databases from different sources. When
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Table 5: Information gain (IG) by knowing multiple
seed attributes.

Attributes IG (bit) Attributes IG (bit)
<FN, S> 20.316 <S, ST, ET> 16.549

<FN, S.st> 15.068 <FN, S.ct> 12.848
<FN, ST> 16.092 <FN, ST, ET> 17.362
<FN, ET> 15.679 <D, ST, ET> 5.685

the attacker identifies the target (i.e. discovers the full name
of the target) from one of the databases, it becomes trivial
to retrieve relevant records from other databases to learn
more about the target.

In our experiments, we simulate cross-database aggrega-
tion attack by matching LinkedIn data with online phone
book data. We have crawled phone book data for three
cities: two college towns and a state capital city. We try to
link records from both databases by matching full names.
The results are shown in Figure 2. As we can see, approx-
imately 20% of the LinkedIn users from town A could be
identified in phone book, while 14% and 14% of the LinkedIn
users from town B and town C are re-identified, respectively.
According to the literature [25, 13], with known full name
and location information, people are very identifiable. We
are confident that most of the linked records are true pos-
itives (i.e., the two linked records reflect one unique offline
identity). For linked records, the attacker will further learn
the home address and phone number of the user. In many
cases, the attacker also learns the names of the family mem-
bers of the user.

In cross-database aggregation attacks, when a resourceful
attacker identifies a target using attribute-reidentification
attacks on one of his databases, it is likely that he can learn
more information about the target. In our experiments, we
only collected information about users whose phone num-
bers are listed. As we have mentioned, there are websites
(e.g. http://www.phonesbook.com/) that publish addresses
of users who opt to exclude their information from the phone
book. From our observation, this websites contains 20%
more user records than the phone book data set we crawled.
Meanwhile, with a small fee, the attacker could subscribe
to various databases that collect personal information from
public and commercial records. Therefore, a resourceful at-
tacker has great potential to become more powerful than we
have demonstrated in this work.

We can also see that the phonebook size is much larger in
state capital C, which shows that a relatively larger popula-
tion who do not have LinkedIn accounts (or configured their
accounts as private), but are still visible in the phone book.
In this case, although these users are not actively releasing
their information online, or are successfully protecting their
online identities, unfortunately, their personal information
is still accessible from online sources.

5. TIRELESS ATTACKERS

5.1 Tireless Attackers
Tireless attackers do not possess a local database of per-

sonal information, as a compensation, they devote their time
and energy. In our simulation, the tireless attacker knows
some (non-identifiable) attributes about the target. The at-
tacker queries a Web search engine (we use Google in our

(a)

(b)

(c)

Figure 2: Cross-database aggregation for three
cities.

experiments) with the known attributes, and examines the
results returned by the search engine for any clue.

To simulate tireless attacks, we have randomly sampled
50,000 users from education and healthcare industry, in-
cluding faculty, students, researchers, doctors, etc. We sim-
ulated tireless attacks on different combinations of known
attributes. In Figure 3, we show the success rate when the
tireless attacker knows the target’s: (1) first name and the
name of last school that the target attended <FN, S>; (2)
last name and school <LN, S>; (3) first name and current
affiliation <FN, AF>; (4) last name and current affiliation
<LN, AF>; (5) names of two schools, knowing that the tar-
get has attended two or more schools <S, S>; and (6) school
name, degree and year of graduation <S, D, ET>. When
the full name of the target was discovered in a returned web
page in the form of “John Doe” or “Doe, John”, we treat the
result as positive. An attack is successful when at least one
positive result is found in the top 200 results returned from
the search engine. Please note that in tireless attacks, we
exclude all the results from LinkedIn, i.e., an attack is suc-
cessful only if the target is re-identified from non-LinkedIn
sources.

Figure 4 and Figure 5 give more insights on tireless at-
tacks. Figure 4(a) shows a histogram of the number of pos-
itive results for successful attacks when the attacker knows
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Figure 3: Success rate of tireless attackers.

the first name and affiliation of the target <FN, AF>. Fig-
ure 5(a) shows the same histogram for <FN, S> case. We
do observe a significant portion of targets who have been
re-identified from multiple websites (excluding LinkedIn).
Meanwhile, no victim has been re-identified from more than
20 websites. Figure 4(b) and Figure 5(b) show a histogram
of the rank of the first positive result for successful attacks
of the <FN, AF> and <FN, S> cases, respectively. We
observe that most of the positive results came from top 10
results, which indicates that a tireless attacker does not need
to be very “tireless” to achieve a successful attack. On the
other hand, we also observe that positive results do not al-
ways come in top 2 search results.

To further validate the successful attacks, we have manu-
ally checked 200 randomly-sampled positive results for each
type of attacks. We have discovered that around 70% of
them were true positives that also contain further personal
information about the target. Meanwhile, we do have some
false negatives. For instance, in the <LN, AF> attack, we
have found a few pages of conference program committee
members. They contain the name of the school, and a per-
son with exactly the same name as the target, but affiliated
with a different school or organization. Another major cat-
egory of false positive appears when the name “Doe, John”
is discovered in the context of “Jay Doe, John Smith”.

Last but not least, when the targets are identified in tire-
less attacks, we continue the attack by issuing new queries
using their identity (i.e. full name) and known attributes.
For most of the cases, we can easily discover more sources
(again, excluding LinkedIn) that contains further informa-
tion about the target. A major reason is that we use the
LinkedIn user profiles from education and healthcare do-
mains as seeds, and such users are more active on the Inter-
net.

5.2 Smart Tireless Attackers
Regular tireless attackers use a simple textual combina-

tion of all the known attributes as the query to be sent to
search engines. However, existing web search engines sup-
port not only free text queries, but also advanced queries
(e.g. Google Advanced Search4). Tireless attackers can get
smarter by utilizing such functions. In our simulation, when
the tireless attacker knows the affiliation of the target (e.g.
this person works at XYZ University), it is highly likely that
information about the target could be found in the employ-
ers’ domain (e.g. xyz.edu). A smart attacker first queries

4http://www.google.com/advanced search
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Figure 4: Results of successful tireless attacks with
seed attribute tuple <FN, AF>.

the search engine (e.g. Q=“XYZ university”) to get the offi-
cial website of the employer, which is usually included in the
top 3 returned results. The attacker then issues an advanced
query, which contains textual terms and a domain constrain.
The textual terms include the other known attributes about
the target (e.g. first name “John”), while the domain con-
strain forces to search within the employer’s domain (e.g.
“site:xyz.edu”).

We simulate smart tireless attacks for the case with seed
attribute tuple <FN, AF> (i.e., the attacker knows the first
name and current affiliation of the target). We have simu-
lated attacks for 10,000 users, randomly sampled from the
50,000 records that we used for regular tireless attacks. Fig-
ure 6 shows the simulation results of such smart tireless at-
tacks. As we can see, the re-identification rate of smart
tireless attacks is lower than the re-identification rate of
regular tireless attacks. It means that, in at least 50% of
the successful regular tireless attacks, the targets are iden-
tified from information sources other than websites of their
workplaces. When we further look into the successful smart
tireless attacks, we observe that most of them are true posi-
tives. Moreover, as we can see from Figure 6(b), on average,
the rank of the first positive result is higher in smart tireless
attacks. Therefore, smart attacks are more effective – less
effort is required for the attacker to browse and examine the
results. For both regular and smart tireless attacks, we can
see that most of the users are either identified in top re-
sults, or never identified. It means that when the user is not
“highly visible”, his/her information is most likely buried in
the massive amount of online information and becomes in-
visible. However, consider the fact that only a small portion
of the general population have disclosed their information
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Figure 5: Results of successful tireless attacks with
seed attribute tuple <FN, S>.

on the Web, people with an online presence is still highly
distinguishable.

6. ANALYSIS AND REFLECTION
Information. We have observed a large amount of per-
sonal information available over the Internet. Each informa-
tion item may include both identifiable and non-identifiable
attributes. Not all such information is published by the
owner (of the identity), or with the consent of the owner.
For instance, we have observed webpages such as news sto-
ries published by the employer. Moreover, the user might
be completely unaware that his/her information has been
accessible and searchable over the Internet. From the sim-
ulation results, we can see that it is very difficult, if not
impossible, to completely hide one’s online identity in the
Internet age.

On the other hand, we have introduced an information-
theory-based approach to evaluate the values of personal in-
formation items to the attackers. We believe that the results
will help users determine the types and amounts of informa-
tion to be published on personal and social networking sites.

Vulnerability. We have simulated the data collection
process of resourceful attackers. We can see that personal
information could be easily collected by attackers, especially
from social networking or public record sites, where infor-
mation is published in well-structured templates. On the
other hand, automatically and accurately extracting large
amounts of structured information from free (unstructured)
text is not an easy task. Named-entity extraction [10, 6]
is a very hard problem. Although we have seen successes
in controlled datasets or for popular entities that appear on
many web contexts, the general problem of arbitrary entity
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Figure 6: Results of successful smart tireless attacks
with seed attribute tuple <FN, AF>

extraction is still far from being solved. In particular, diver-
sity of web documents and limited evidences (e.g. a user’s
phone number only appears on one webpage) make it very
difficult to precisely extract and collect large amounts of en-
tities from the web. However, we have shown that it takes
little effort for a human attacker to exploit search engines
to locate webpages containing such information.

Next, with the simulation results of resourceful and tire-
less attackers, we have shown that people with web pres-
ences are highly identifiable, even with very limited or
approximate information. Moreover, information from mul-
tiple resources could be linked to provide more information
to the attacker. A major reason behind the phenomenon is
that many people do not have a web presence, as confirmed
by our cross-network aggregation attacks. On the contrary,
people with web presence are very likely to appear in mul-
tiple sources. In this sense, we have a group of people who
are more active on the Web, while the mass majority of the
population mostly remain silent online. As a result, the on-
line population becomes very identifiable. There appears to
be a dilemma: if we have more people online, the identity of
the existing users will be better “shadowed” than they are
right now. However, in this way, we may put more people
under risk.

Attacks. Recent advances in information retrieval tech-
niques are shown to be a double-bladed sword – they provide
great functions to the users, but also reveal their private
information to attackers with sufficient capabilities and re-
sources, or strong wills. Intuitively, we can interpret the
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goal of the attacker as taking a piece of seed information as
input against large data that are available online to success-
fully find a hit.

Ideally, if the seed is precise and adequate and the data is
large enough to guarantee that it contains the target, the at-
tack will always succeed. While the results are constrained
in reality, the attacker manages to increase his chance and ef-
ficiency by meeting the conditions at his most. The first (and
often hidden) assumption is that the focused data should be
large enough to contain data of a particular target. In the
resourceful attack, the focused data is the resource database
created by the attacker, which in turn motivates the long-
term and multi-source data collection. The second condition
that affects the success rate of the attack is the identifiabil-
ity of the user with the seed information (in terms of either
seed attributes or search terms). In the tireless attack, it
is assumed implicitly that the related data should be in the
high-rank results returned by search engines. This in turn
explains why tireless attack is only effective when the tar-
get is highly distinct against proper search terms (or com-
bination of search terms). The study of the identifiability
will also shed light on how to tailor one’s online presence to
shadow his identity within an indistinguishable group.

7. CONCLUSION
A large amount of personal information has been made

available over the Internet. The advances in information
retrieval technologies provide powerful Web search engines
to legitimate users. However, they also provide adversaries
with a convenient access to the abundant personal informa-
tion on the Web.

In this paper, we have studied personal information that
is disclosed to the Web through various sources, especially
through online social networks. We also analyze the vulner-
abilities in information and possible attacks. In particular,
we have presented two types of attackers: the resourceful
attackers and the tireless attackers. We assume that an at-
tacker possesses a small piece of“seed” information about his
target. A resourceful attacker searches local database with
data collected from various online sources, including social
networks and online public records. On the other hand, a
tireless attacker queries web search engines with his seed
information, and untiringly examines the results. We have
simulated both attacks with real data collected from online
social networks and phonebook, and quantitatively analyzed
the results. From the results, we can see that large portions
of users with online presence are very identifiable, even with
a small piece of seed information, and the seed information
could be inaccurate. We also show that it does not require
extensive resources or efforts to successfully conduct such
attacks.
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