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Abstract—The core of the smart grid relies on the ability
of transmitting realtime metering data and control commands
efficiently and reliably. Secure in-network data aggregation
approaches have been introduced to fulfill the goal in smart
grid neighborhood area networks (NANs) by aggregating the
data on-the-fly via intermediate meters. To protect users’ privacy
from being learnt from the fine-grained consumption data by the
utilities or other third-party services, homomorphic encryption
schemes have been adopted. Hence, intermediate smart meters
participate in the aggregation without seeing any individual
reading, nor intermediate or final aggregation results. However,
the malleable property of homomorphic encryption operations
makes it difficult to identify misbehaving meters from which
false data can be injected through accidental errors or malicious
attacks. In this paper, we propose an efficient anomaly detection
scheme based on dynamic grouping and data re-encryption,
which is compatible with existing secure in-network aggregation
schemes, to detect falsified data injected by malfunctioning and
malicious meters.

I. INTRODUCTION

Envisioned as the next-generation power grid, the smart
grid is the modernization of the existing power grid with
advanced bidirectional communication and pervasive com-
puting capabilities. The fundamental goal is to introduce
intelligent electricity generation, distribution, consumption and
management into the conventional power systems. An essential
component of the smart grid is the two-way communication
infrastructure connecting energy consumers and suppliers for
more fine-grained meter readings, real-time status reports,
dynamic pricing and control. However, along with all the
advantages, the smart grid with improved communication and
computation capabilities inevitably introduces new security
and privacy risks [1], [2]. With forged power consumption
data or electricity price, attackers can remotely turn on or off
electronic devices in target households or trigger imbalanced
power supplement, causing power outages and tremendous
damages [3]. Moreover, fine-grained usage data collected by
smart meters contains rich information about energy con-
sumers. For example, personal information such as current
location or distance traveled can be revealed to the smart meter
when charging an electric vehicle [4]; usage patterns of electric
appliances derived from high-frequency energy consumption
data can be utilized in user profiling attacks to depict a
consumer’s demand profile [5]. Such information becomes the
primary target of adversaries who might launch sophisticated
attacks, such as eavesdropping the communication or compro-
mising smart meters to access the power consumption data of
the victim. Thus, it is critical to transmit metering data from

distributed smart meters to utility’s control center in a secure
and privacy-preserving manner.

In-network aggregation is widely adopted in wireless sensor
networks and proven to be an important primitive to reduce
transporting overhead [6]–[9]. Recently, it is extended to smart
grid NANs to solve the secure data gathering problem. Many
secure in-network aggregation protocols have been proposed to
efficiently route metering data through a set of smart meters
to the collector device of the utility [10]–[13]. Aggregation
operations (e.g., SUM, AVG, etc.) are performed at each
intermediate meter on-the-fly, and thus naturally anonymize
individual meter readings in the aggregated results. For end-to-
end security, homomorphic encryption is adopted. Aggregation
operations are directly applied over the encrypted data to en-
sure that smart meters participating in the aggregation cannot
view intermediate or final aggregation results [10], [11].

However, most of the protocols take a prevention-based
approach to ensure confidentiality, integrity and authenticity
in in-network aggregations. Encipherment and digital signature
techniques are used to prevent the adversary from eavesdrop-
ping or altering messages. Security of such approach heavily
relies on the assumption that the adversary can not break
cryptography system, but it neglects the fact that the adversary
can steal all the associated secret keys to insert or alter output
aggregation results to further tamper with critical smart grid
functions such as load balancing and smart pricing.

Meanwhile, accidental errors may be incorporated into the
aggregation result by malfunctioning smart meters or unreli-
able wireless transmission channel. Unfortunately, there is very
little work that aims at addressing this problem in approaches
other than prevention. To the best of our knowledge, [14] was
among the first to examine this problem with an attestation-
based solution to support an incremental integrity check to
verify the aggregate-so-far results based on homomorphic
signatures. It also suggested to incorporate anomaly detection
at the collector to identify irregular data values that may be
potentially caused by accidental errors or malicious attacks.
However, the centralized temporal outlier detection approach
requires the collector to store a series of individual metering
data over time, which is communication and storage costly.
More importantly, it violates the initial objective of adopting
in-network aggregation – to hide the fine-grained individual
metering data from all the involved parities including the
collector device that reports to the utility.

In this paper, we propose a distributed outlier localization
scheme. Before data aggregation from the individual meters to
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the collector, the aggregation tree is partitioned into multiple
logical groups through dynamic grouping. Each root stores
a queue of historical data for the member meters in the
group. Once the collector detects any abnormal in the final
aggregation result, it recruits multiple roots to identify the
malicious meter within their corresponding sub-tree using a
non-parametric-based approach in a distributed manner. One
extremely challenging issue with this design is that to verify
the validity of each meter reading, the root has to decrypt
stored historical data in the queue, which would inevitably
require key update after the outlier localization for the sake
of privacy. Our scheme only requires sub-trees under suspect
to participant in the outlier localization progress and exploits
re-encryption to avoid system-wide key update.

The rest of this paper is organized as follows: we summarize
related work in Section II, introduce network model, threat
model and secure in-network aggregation approach in Section
III, and present the main schemes of our solution in Section
IV. We evaluate the proposed mechanisms in Section V, and
finally, conclude the paper in Section VI.

II. RELATED WORK

Data aggregation is a critical operation in smart grids.
Motivated by the in-network aggregation solutions in wire-
less sensor networks, several aggregation protocols using
additively homomorphic encryption schemes [10], [11], [15]
have been presented to protect end-to-end data confidentiality
and privacy against malicious or “curious” meters en route.
Meanwhile, several authentication protocols for smart grid in-
network aggregation have been proposed using conventional
PKI-based digital signatures [16], [17] or short signature
schemes based on bilinear maps [13]. However, these solu-
tions are either not compatible with the privacy-preserving
in-network data aggregation or introduce excessive hop-by-
hop verification overhead. Recently, Li et al. proposed an
authentication scheme that supported batch verification based
on a homomorphic signature scheme [14]. However, all these
solutions adopt prevention-based approaches, which can detect
false data injected by network errors or external attackers with
no knowledge of the secrets associated with the encryption and
signature schemes. The focus of our work is on a solution
for efficient detection of falsified data that are injected into
smart grid data aggregation by compromised or malfunctioning
meters. To the best of our knowledge, this is the first work
proposing a solution of distributed anomaly detection that can
be integrated with privacy-preserving in-network aggregation.

III. BACKGROUND AND MOTIVATION

A. Network Model

Wireless mesh has been widely accepted as a promising
communication infrastructure for home area networks and
neighborhood area networks by most US utilities. In this work,
we consider a NAN consisting of hundreds of meter nodes
(e.g., {N1, N2, · · · , Nt} in Fig. 1) and a collector node (e.g.,
N0) which further connects to a utility’s wide area network.
Similar as the other in-network aggregation approaches for

Fig. 1. An example of in-network aggregation in NAN.

smart grid data collection, a spanning tree (e.g., BFST [10],
[11] or MST [13]) is constructed to include all meters in NAN
into a logical aggregation tree (as shown in Fig. 1). When
the collector initiates an aggregation query, each smart meter
will first perform the specified aggregation operation over the
inputs from its child nodes, and then submit the aggregated
result to its parent node.

B. Secure In-network Aggregation

Privacy-preserving aggregation: As aforementioned, to pre-
vent an intermediate meter from seeing plaintext inputs of its
children, homomorphic cryptosystems that support arithmetic
operations on the ciphertext domain are employed to encrypt
the messages. For most of the aggregation tasks, additive-
homomorphism is expected. The addition of two messages
can be obtained by directly performing ciphertext additive
operation to the encrypted messages followed by a decryption
transformation. For example, Paillier cryptosystem [18] was
employed in [10] for privacy-preserving in-network aggre-
gation. In particular, [10] assumed a pair of asymmetric
aggregation keys < PKagg, SKagg >, where each meter node
encrypted individual metering data as Ci = Enc(mi, PKagg).
The aggregation result (

∏
i=1→t Ci) in ciphertext domain can

be represented as an encryption transformation of the addition
of all messages mis, and it can only be decrypted by the
collector with the private aggregation key SKagg .

Signature-based authentication: External attackers and mali-
cious smart meters can tamper the in-network aggregation with
falsified readings. To protect the integrity of the metering data,
several signature-based approaches have been proposed [12]–
[14]. [14] presented a homomorphic signature algorithm based
on a short signature scheme using bilinear pairing. It as-
sumed all the smart meters share a same private signing key
SKsig to generate the signature σi for message mi. Such
homomorphic signatures can be aggregated in a similar way
(e.g.,

∏
i=1→t σi) along with the in-network aggregation of

the ciphertext messages. In the end, the collector can use the
final aggregation signature to perform a batch verification to
check the integrity of the final aggregation result.

C. Threat Model

The secure aggregation approaches introduced above can
effectively defend against two types of attackers: (1) the weak
external attackers who can eavesdrop or alter the messages
transmitted without knowing the secrets associated with the
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aggregation or authentication, and (2) the honest-but-curious
internal attackers who properly follow the protocol with an
attempt to sniff confidential data from the relayed messages.

However, when a strong external attacker compromises
a smart meter, he can take full control of the node. With
all the associated secrets, the attacker can insert falsified
data or alter the aggregation output. Such falsified outputs
are properly encrypted by the homomorphic encryption key
and attached with valid signatures, and thus it is extremely
difficult, if not impossible, to be detected by the prevention-
based approaches. Meanwhile, abnormal readings may be
generated by malfunctioning meters. Similar as the falsified
data, it is indistinguishable from the regular readings after
being encrypted. As the goal of the attack is to significantly
disrupt the aggregation operations with falsified inputs, it
is reasonable to assume the falsified data transmitted by a
compromised meter is significantly different from the actual
values. Although the attacker might insert a value slightly
deviating from the true value to avoid being detected, such
falsified data has less impact on the target application.

D. Challenges and our solution

In this work, we aim to efficiently detect falsified data
that is intentionally or accidentally inserted into in-network
aggregation and further identify the compromised or mal-
functioning smart meter. As the metering data is collected
at a high frequency, we believe the actual readings from
consecutive observations should be highly correlated in time
domain. Therefore, we propose an extended kernel density
estimator based mechanism to detect false inserted data as
temporal outliers.

Kernel density estimator [19] originally used for anomaly
detection in wireless sensor networks (WSN) cannot be di-
rectly applied to smart grid in-network aggregation. Data in
WSN is in the cleartext form and accessible by the detector
node (i.e., the sink or neighboring sensor nodes) directly,
however in our aggregation scenario, data is encrypted and
aggregated from neighbor nodes as well as the intermediate
nodes. Moreover, even if the collector is allowed to recover
the final aggregation result, it is restricted to see the individual
metering data as it is hidden by the aggregation.

Therefore, we design a revised aggregation scheme to
support the transmission and storage of individual metering
data at selected verifiers as time-series data for detection while
not breaking the security and privacy promises, and a re-
encryption scheme to preprocess the encrypted data on-demand
for the detector where the kernel density estimator is deployed.
To reduce the computation and communication overhead at the
collector, we also propose a light-weight dynamic grouping
scheme to divide the aggregation tree into connected logical
groups and employ the root as the verifier for each group.
Details of the schemes will be explained in Section IV.

IV. PROPOSED SOLUTIONS

In this section, we propose an efficient and reliable anomaly
detection protocol for secure in-network aggregation in smart

Fig. 2. An example of dynamic grouping: the dotted areas are groups and
the dark nodes are the root.

grid NAN. It consists of a light-weight grouping scheme,
a revised in-network aggregation and in-group incremental
verification scheme, a data re-encryption scheme, and an
group-based anomaly detection scheme.

A. Light-weight dynamic grouping

Previous signature-based authentication protocols [12], [14]
are centralized approaches in which the collector is assumed
to verify the authenticity of final and intermediate aggregation
results. Since intermediate aggregation results are not trans-
mitted to the collector in the aggregation, the incremental
verification that checks the integrity of aggregate-so-far results
will inevitably increase the computation and communication
overhead at the collector. If we further incorporate anomaly
detection at the collector, the overhead will become intolerant.
As such, we employ a light-weigh dynamic grouping scheme
as shown in Fig. 2, which is also widely used in WSN (e.g.,
[20]), to divide the aggregation tree into multiple groups for
distributed verification and anomaly detection.

The idea is to employ a grouping function F such that each
node can calculate its probability of becoming a root with
its own topological variables and compare with a pre-defined
threshold Tr to decide if it is selected as the root of a group.
For example, in Fig. 2, node Ni calculates Fi > Tr, it then
determines itself as the root and all other nodes below itself but
not grouped yet as its group members. The grouping decisions
are made in a bottom-up fashion. Once the root of a group is
determined, an intra-group ID is assigned to each member.

For the grouping, we expect all the groups are of approxi-
mately a same size to balance the verification load. We need to
store the historical metering data for all group members at the
root, therefore a small group size is desired. Considering the
communication overhead of multihop transmission, although
the transmission frequency is much smaller than the aggre-
gation frequency, we still prefer a short tree. With all these
considerations, we suggest a grouping function

Fi =

(
1− 1

e(αθ
hi+βni)

)γ
where ni and hi are the number of current members and the
current height of a node i, respectively. α, β, θ, and γ are the
parameters to indicate the impact of ni and hi to the grouping
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decision. For a preferred grouping function, when ni and hi
are too large or too small it should vary slowly, but when ni
and hi approach to the ideal group size and height, it should
give strong indication. Therefore, if we select the ideal n = 10
and h = 3, the suggested parameter setting is α = 0.06, β =
0.3, γ = 6, θ = 3. By adjusting the value of these parameters,
we can affect the formation of the group.

With the newly constructed logical groups, we expect to
distribute the verification and detection load from the collector
to the root of the groups. So, the root needs to store time-series
data for each group member. The data will be collected during
regular aggregations. Since the data is still encrypted with the
public aggregation key, if the root does not collude with the
collector (to disclose the data or obtain the secret aggregation
key), the privacy of individual metering data is retained. When
the root receives a request for verification, it first launches
an in-group incremental verification based on the aggregation
signatures, similar as in [14]. If the intermediate aggregation
result is proven to be valid, it calls for in-group anomaly
detection to further examine the input of each member. Before
sending the to-be-examined input and the historical data to the
selected detector node, the data needs to be preprocessed (i.e.,
re-encrypted) so that it can be recovered by the detector (we
will explain this in section IV.C).

B. Revised in-network aggregation

Secure in-network aggregation requires both the encryption
algorithm and the signature algorithm are additive homo-
morphism. In the data pre-processing for anomaly detection,
we further require the encrypted data supports re-encryption
operation to allow the verifier (i.e., the root of the group) to
transform the metering data that is originally encrypted under
the public aggregation key into a form that can be recovered
by the detector’s private key. In this work, we use an ElGamal-
based scheme to achieve additive homomorphism, which can
also be integrated with the collusion resistant re-encryption
scheme [21] based on bilinear maps.

Here we briefly explain the encryption and re-encryption
schemes: for an additive cyclic group G and a multiplicative
cyclic group GT of prime order q with a bilinear map e :
G × G → GT , select a random generator g ∈ G of prime
order q and Z = e(g, g) ∈ GT .

Key Generation
1) Select a random a ∈ Z∗q to generate the aggregation key

pair < SKagg = a, PKagg = ga >;
2) Select a random s ∈ Z∗q to generate the signature key

pair < SKsig = s, PKsig = gs >;
3) For a detector di, select a random vi ∈ Z∗q to generate

the detection key pair < SKd = vi, PKd = gvi >;
4) Generate the re-encryption key RKagg→d = gvi/a ∈ G.

Encryption
1) Select a random r ∈ Z∗q ;
2) For a message m, map m to M = Zm ∈ GT ;
3) Encrypt the message with PKagg: C = (Zr ·M, gra).

Decryption

1) Decrypt the ciphertext C with SKagg: compute Zr ·
M/e(gra, g1/a) = Zr ·M/e(g, g)r = Zr ·M/Zr;

2) Reversely map M ∈ GT back to m.
Re-encryption

1) With RKagg→di = gvi/a, any root can change a ci-
phertext under PKagg into a ciphertext for a detector
di: from C = (Zr ·M, gra), compute e(gra, gvi/a) =
e(g, g)rvi = Zrvi ;

2) The new ciphertext C ′ = (Zr · M,Zrvi) can be de-
crypted by di under vi as M = Zr ·M/(Zrvi)1/vi .

Signing
1) For a plaintext m, create the signature σ = (gm)s.

Verification
1) Check if e(σ, g) = e(gm, gs) = e(gm, PKsig) based on

the bilinearity property.
With the above scheme, we slightly change the in-network

aggregation and data signing process in [14] to make it fit
into our scenario. Here we briefly illustrate the process with
an example: as shown in Fig. 2, the leaf node Nx encrypts
its own reading into Cx, generates the signature σx for mx,
and sends the tuple < Cx, Cox , σox > to the parent meter
Nz . Here, as Nx is the leaf node, we have Cox = Cx and
σox = σx.

The intermediate node Nz gets the to-be-aggregate cipher-
texts Cx, Cox , Cy and Coy as well as the corresponding
signatures from its children. Therefore, Nz can compute
Coz = Cx · Cy · Cox · Coy and σoz = σz · σox · σoy , and
outputs the tuple < Cz, Coz , σoz > to node Ni. Note that, for
anomaly detection purpose, each intermediate node needs to
store the individual data from its child nodes for a pre-defined
period of time.

So on so forth, when the collector receives the tuple <
Cw, Cow , σow > from Nw and the ones from Nt and Nh,
it aggregates the final result C = CwCow · · ·ChCoh and σ =
σowσotσoh . After decrypting C to get cleartext m the collector
checks the integrity using batch verification as follows:

e(σ, g)
?
= e (gm, PKsig)

If the batch verification succeeds, the collector will report
the aggregated data in the NAN to the utility. However, if the
aggregated result significantly deviates from the normal range,
it indicates some falsified data has been inserted. Thus, it will
follow the incremental verification scheme [14] to identify
logical groups with invalid outputs.

C. Group-based anomaly detection

Through the incremental verification, we can identify the
groups whose intermediate aggregate result has been tampered
by the falsified data in a top-down pattern. Once locating
such group, we will call the group-based anomaly detection
to examine the input from each group member. The anomaly
detection is pairwise: it involves the root of the group, serving
as the verifier, and a randomly selected neighbor node with
light-weight kernel density estimator installed, serving as the
detector.
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1) Data collected at the verifier: According to the revised
data aggregation scheme, individual metering data of each
member node is transmitted to the group verifier, and stored
in a fixed-size queue. It creates a random sample set R for the
values collected in a recent period of time t where |R| = t,
and will be used as historical data in anomaly detection.
Accordingly, the size of the verifier’s dataset T is t ∗ gSize,
where gSize is the group size.

At each aggregation round, it is assumed to update the
historical data with the latest value. However, as the metering
data is collected at a high frequency, it may not be necessary
to update the data frequently. Moreover, per-round update will
cause undesired communication overhead that we want to
avoid by in-network aggregation. Therefore, we propose a slow
update scheme that allows only one member node to submit
an update per aggregation round. Hence, the communication
overhead caused by anomaly detection is only doubled (i.e.,
two output readings at each node) compared to the original
aggregation scheme. In particular, at round n, every node
computes (n mod gSize). Only the node whose intra-group
ID matches (n mod gSize) is allowed to send the update in
terms of Ci in the output tuple.

2) Data Re-encryption: To identify the abnormal data,
we need to analyze the historical data distribution, which is
encrypted under the aggregation key. However, it is absolutely
insecure for the collector to share the secret aggregation key a
with the verifier, not only because this will allow the verifier to
view all the historical readings of its group members, but more
importantly, the verifier can abuse this secret to recover all
future encrypted data in the aggregation. Key refreshing may
also not be a good solution, as it will lead to inconsistency
in the encryption form of the historical data (i.e., part of the
data is encrypted by PKagg and part of them is encrypted
by new aggregation key), and further causes difficulty to key
management.

Therefore, we propose a data re-encryption scheme: the
verifier (with the help of the collector) randomly selects
a neighbor node, say Nd, as its detector, and obtains the
re-encryption key RKagg→di = gvi/a from the collector.
It then performs the aforementioned re-encryption operation
over the data stream (e.g., data stream of Np at time tp
is {Cp(tp − t), · · · , Cp(tp − t − i), ..., Cp(tp − 1)}) where
Cp(tp − i)s are node Np’s t ciphertexts before time tp, and
sends the re-encrypted stream to the detector, which can
recover Mp = {mp(tp − t), ...mp(tp − 1)} = {mp1 , ...,mpt}
with its private detection key vi. The security of individual
metering data is guaranteed: for the verifier that stores the
data, it will never be chosen as detector and thus it cannot
obtain a re-encryption key for itself; for the detector, although
it can recover the individual metering data in t rounds, but it
doesn’t know to whom the data belongs. Therefore, we believe
the security and privacy is well maintained in the re-encryption
approach.

3) Group-based anomaly detection: We consider the meter-
ing data in smart grid aggregation as a temporal streaming data
without spatial correlation. That is, data distribution changes

only over time, and we neglect the similarity in neighboring
meter data associated with different households. We further
assume the time when anomaly occurs is unpredictable, that
is, we don’t have priori knowledge about data distribution at a
given time. Therefore, we need an anomaly detection scheme
that can efficiently model distribution for streaming data
and effectively approximate an unknown data distribution. It
should also be light-weight, which is computationally efficient
and requires very small memory.

In this work, we adopt the outlier detection model used
wireless sensor networks [19] and modify it to fit in our
scenario. This model uses a distance-based anomaly definition:
“a point p in a dataset T is a (D, r)-anomaly if less then D
points in T lie within distance r from p.” It approximates
the data distribution in dataset T based on the kernel density
estimator, and then computes the density of the data space
around the value which needs to be detected. If the number
of neighboring data is less than D, the distance-based outlier
is identified. We briefly introduce the method as follows.

The detector first maps the sample set R = Mp =
(mp1 , · · · ,mpt) into the interval [0, 1]. Let kp (x) be the kernel
function for Np, where

∫ 1

0
kp (x) dx = 1 for all values in Mp.

The underlying distribution fp (x) for T can be approximated
according to the values in the sample set Mp by the following
function

fp (x) =
1

t

∑
mpj
∈Mp

k
(
x−mpj

)
.

Let us select the Epanechnikov kernel that is easy to integrate
as the kernel function, then we have

k (xp) =

{
3
4

1
B

(
1−

(xp

B

)2)
,
∣∣xp

B

∣∣ < 1

0 , otherwise

where B is the bandwidth of the kernel function. With a
similar setting as in [19], we set B as

√
5σ |Mp|−

1
5 , where

σ is the standard deviation of the values in Mp. With the
distribution function fp (x) for Np, the detector estimates the
number of values that are within the distance r from mp as

N (mp, r) =

∫ r

0

fp (x) dx.

If this number is less than the threshold D, mp is identified
as an outlier.

V. EVALUATION

To support distributed group-based anomaly detection, the
proposed solution requires the root of each group to store
individual data for its members and preprocess the historical
data for the detector when necessary. The root is randomly
selected in the dynamic grouping, so it can be any smart
meter in the system. Therefore, we need to evaluate the
additional computation and storage overhead that the group-
based anomaly detection introduces to the root.

Computation overhead: In each aggregation round, a member
node needs to perform one encryption, one aggregation, and
one signing operation, while the group root needs to do an
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additional re-encryption and the detector needs to do an addi-
tional decryption over the re-encrypted data. We implemented
the schemes with Java pairing-based cryptography (JPBC)
library on a 2.8 GHz processor PC. The implementation
chooses a 160-bit order elliptic curve group G based on
y2 = x3 + x over a 512-bit finite field. We measured the
processing time for each operation as below:

Operation ENC DEC AGG Re-encryption DEC (for Re-Enc)
Time (ms) 15.89 23.61 0.09 10.04 1.4

Storage overhead: As the verifier of the anomaly detection
scheme, the root of each group needs to store a queue of
individual metering data for the recent t rounds for each
group member. A larger t indicates a higher accuracy in
anomaly detection. However, t should be bounded by the
storage capacity of the smart meter. Given the average group
size as 10 (adjustable by the parameters and threshold in
the grouping function), in order to achieve a reasonably high
detection accuracy (more than 90%), as also assumed in [19],
the size of the sample set (the queue length) is 1024, and thus
the dataset size for each member node is 10240. Since each
ciphertext size is 128B in our experiment, the total memory
needed for storage is 1.3×106B. In practice, a communication
module of a smart meter [22] has 4MB RAM and 8MB flash
memory. Therefore, only 16% memory is required for storing
the historical data, and the storage overhead introduced by the
anomaly detection is far below the capability of the current
smart meter.

Communication overhead: In the revised aggregation scheme,
we let the group members periodically send their individual
readings to the root of the group to update their historical data.
Hence, only one member node reports in each aggregation
round. This individual data is included in the aggregation
message, resulting in the increase of message size by one
ciphertext size (e.g., 128B). Consider the historical data will
be transmitted to the detector. If we distribute this overhead to
each aggregation round, it indicates a cost of one additional
message from the group root to the detector. Therefore, the
overall communication overhead will be 2N ∗ 128B, in a
network of N smart meters.

VI. CONCLUSION

Existing prevention based secure in-network information
aggregation mechanism for smart grid systems cannot effec-
tively detect accidental errors and falsified data injection by
malfunctioning or compromised meters. In this paper, we first
introduce a light-weigh anomaly detector based on kernel
density estimator to localize false data injected into the the
aggregation. To reduce the overhead at the collector, we design
a dynamic grouping scheme to divide meters into multiple
connected groups and distribute the verification and detection
load among the root of the groups. A novel data re-encryption
scheme based on bilinear mapping is further proposed to
transform the data previously encrypted under the aggregation
key into a form that can be computed by the detector to
ensure the security and privacy of individual metering data,
which are critical for anomaly detection. Performance of the

anomaly detector is evaluated in terms of the memory usage
and communication overhead, and proved to be light-weight
for the current smart meter configuration.
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