
888 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 6, JUNE 2013

Enforcing Secure and Privacy-Preserving Information
Brokering in Distributed Information Sharing

Fengjun Li, Bo Luo, Peng Liu, Dongwon Lee, and Chao-Hsien Chu

Abstract—Today’s organizations raise an increasing need for in-
formation sharing via on-demand access. Information brokering
systems (IBSs) have been proposed to connect large-scale loosely
federated data sources via a brokering overlay, in which the bro-
kersmake routing decisions to direct client queries to the requested
data servers. Many existing IBSs assume that brokers are trusted
and thus only adopt server-side access control for data confiden-
tiality. However, privacy of data location and data consumer can
still be inferred from metadata (such as query and access control
rules) exchanged within the IBS, but little attention has been put
on its protection. In this paper, we propose a novel approach to
preserve privacy of multiple stakeholders involved in the informa-
tion brokering process. We are among the first to formally define
two privacy attacks, namely attribute-correlation attack and infer-
ence attack, and propose two countermeasure schemes automaton
segmentation and query segment encryption to securely share the
routing decision-making responsibility among a selected set of bro-
kering servers. With comprehensive security analysis and experi-
mental results, we show that our approach seamlessly integrates
security enforcement with query routing to provide system-wide
security with insignificant overhead.

Index Terms—Access control, information sharing, privacy.

I. INTRODUCTION

A LONG with the explosion of information collected by or-
ganizations in many realms ranging from business to gov-

ernment agencies, there is an increasing need for interorganiza-
tional information sharing to facilitate extensive collaboration.
While many efforts have been devoted to reconcile data hetero-
geneity and provide interoperability, the problem of balancing
peer autonomy and system coalition is still challenging. Most
of the existing systems work on two extremes of the spectrum,

Manuscript received June 17, 2012; revised November 05, 2012; accepted
January 24, 2013. Date of publication February 14, 2013; date of current ver-
sionMay 16, 2013. This work was supported in part by the University of Kansas
General Research Fund (GRF 2301677), NRGRF 2302283, in part by NSF
OIA-1028098, in part by AFOSR FA9550-07-1-0527 (MURI), in part by ARO
W911NF-09-1-0525 (MURI), in part by NSF CNS-0905131, in part by NSF
CNS-0916469, in part by NSF DUE-0817376, in part by NSF DUE-0937891,
in part by ARO W911NF1210055, in part by U.S. ARL, and in part by U.K.
MoD W911NF-06-3-0001. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Kai Hwang.
F. Li and B. Luo are with the Department of Electrical Engineering and Com-

puter Science, The University of Kansas, Lawrence, KS 66045 USA (e-mail:
fli@ku.edu; bluo@ku.edu).
P. Liu, D. Lee, and C.-H. Chu are with the College of IST, The Pennsylvania

State University, University Park, PA 16801 USA (e-mail: pliu@ist.psu.edu;
dlee@ist.psu.edu; chu@ist.psu.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIFS.2013.2247398

adopting either the query-answering model to establish pair-
wise client-server connections for on-demand information ac-
cess, where peers are fully autonomous but there lacks system-
wide coordination, or the distributed database model, where all
peers with little autonomy are managed by a unified DBMS.
Unfortunately, neither model is suitable for many newly

emerged applications, such as healthcare or law enforcement
information sharing, in which organizations share informa-
tion in a conservative and controlled manner due to business
considerations or legal reasons. Take healthcare information
systems as example. Regional Health Information Organization
(RHIO) [1] aims to facilitate access to and retrieval of clinical
data across collaborative healthcare providers that include a
number of regional hospitals, outpatient clinics, payers, etc. As
a data provider, a participating organization would not assume
free or complete sharing with others, since its data is legally
private or commercially proprietary, or both. Instead, it requires
to retain full control over the data and the access to the data.
Meanwhile, as a consumer, a healthcare provider requesting
data from other providers expects to preserve her privacy (e.g.,
identity or interests) in the querying process.
In such a scenario, sharing a complete copy of the data with

others or “pouring” data into a centralized repository becomes
impractical. To address the need for autonomy, federated data-
base technology has been proposed [2], [3] to manage locally
stored data with a federated DBMS and provide unified data
access. However, the centralized DBMS still introduces data
heterogeneity, privacy, and trust issues. While being consid-
ered a solution between “sharing nothing” and “sharing every-
thing”, peer-to-peer information sharing framework essentially
need to establish pairwise client-server relationships between
each pair of peers, which is not scalable in large scale collabo-
rative sharing.
In the context of sensitive data and autonomous data

providers, a more practical and adaptable solution is to con-
struct a data-centric overlay (e.g., [4], [5]) consisting of data
sources and a set of brokers that make routing decisions based
on the content of the queries [6]–[9]. Such infrastructure builds
up semantic-aware index mechanisms to route the queries based
on their content, which allows users to submit queries without
knowing data or server location. In our previous study [9], [10],
such a distributed system providing data access through a set of
brokers is referred to as Information Brokering System (IBS).
As shown in Fig. 1, applications atop IBS always involve some
sort of consortium (e.g., RHIO) among a set of organizations.
Databases of different organizations are connected through a set
of brokers, and metadata (e.g., data summary, server locations)
are “pushed” to the local brokers, which further “advertise”

1556-6013/$31.00 © 2013 IEEE

LI et al.: ENFORCING SECURE AND PRIVACY-PRESERVING INFORMATION BROKERING 889

Fig. 1. Overview of the IBS infrastructure.

(some of) the metadata to other brokers. Queries are sent to
the local broker and routed according to the metadata until
reaching the right data server(s). In this way, a large number
of information sources in different organizations are loosely
federated to provide an unified, transparent, and on-demand
data access.
While the IBS approach provides scalability and server

autonomy, privacy concerns arise, as brokers are no longer
assumed fully trustable—the broker functionality may be
outsourced to third-party providers and thus vulnerable to be
abused by insiders or compromised by outsiders.
In this article, we present a general solution to the pri-

vacy-preserving information sharing problem. First, to address
the need for privacy protection, we propose a novel IBS,
namely Privacy Preserving Information Brokering (PPIB). It is
an overlay infrastructure consisting of two types of brokering
components, brokers and coordinators. The brokers, acting as
mix anonymizer [11], are mainly responsible for user authen-
tication and query forwarding. The coordinators, concatenated
in a tree structure, enforce access control and query routing
based on the embedded nondeterministic finite automata—the
query brokering automata. To prevent curious or corrupted
coordinators from inferring private information, we design
two novel schemes to segment the query brokering automata
and encrypt corresponding query segments so that routing
decision making is decoupled into multiple correlated tasks for
a set of collaborative coordinators. while providing integrated
in-network access control and content-based query routing,
the proposed IBS also ensures that a curious or corrupted co-
ordinator is not capable to collect enough information to infer
privacy, such as “which data is being queried”, “where certain
data is located”, or “what are the access control policies”, etc.
Experimental results show that PPIB provides comprehensive
privacy protection for on-demand information brokering, with
insignificant overhead and very good scalability.
The rest of the paper is organized as follows: we discuss the

privacy requirements and threats in the information brokering
scenario in Section II, and introduce the related work and pre-
liminaries in Section III. In Section IV, we present two core
schemes and the PPIB approach. We discuss the construction
and maintenance in Section V, analyze system privacy and se-
curity in Section VI, evaluate the performance in Section VII,
and conclude our work in Section VIII.

II. THE PROBLEM

A. Vulnerabilities and the Threat Model

In a typical information brokering scenario, there are three
types of stakeholders, namely data owners, data providers, and
data requestors. Each stakeholder has its own privacy: (1) the
privacy of a data owner (e.g., a patient in RHIO) is the identi-
fiable data and sensitive or personal information carried by this
data (e.g., medical records). Data owners usually sign strict pri-
vacy agreements with data providers to prevent unauthorized
use or disclosure. (2) Data providers store the collected data lo-
cally and create two types ofmetadata, namely routing metadata
and access control metadata, for data brokering. Both types of
metadata are considered privacy of a data provider. (3) Data re-
questors may reveal identifiable or private information (e.g., in-
formation specifying her interests) in the querying content. For
example, a query about AIDS treatment reveals the (possible)
disease of the requestor.
We adopt the semi-honest [12] assumption for the brokers,

and assume two types of adversaries, external attackers and
curious or corrupted brokering components. External attackers
passively eavesdrop communication channels. Curious or
corrupted brokering components, while following the protocols
properly to fulfill brokering functions, try their best to infer
sensitive or private information from the querying process.
Privacy concerns arise when identifiable information is

disseminated with no or poor disclosure control. For example,
when data provider pushes routing and access control metadata
to the local broker [6], [9], a curious or corrupted broker
learns query content and query location by intercepting a
local query, routing metadata and access control metadata of
local data servers and from other brokers, and data location
from routing metadata it holds. Existing security mechanisms
focusing on confidentiality and integrity cannot preserve pri-
vacy effectively. For instance, while data is protected over
encrypted communication, external attackers still learn query
location and data location from eavesdropping. Combining
types of unintentionally disclosed information, the attacker
could further infer the privacy of different stakeholders through
attribute-correlation attacks and inference attacks.
Attribute-correlation attack. Predicates of an XML query

describe conditions that often carry sensitive and private data
(e.g., name, SSN, credit card number, etc.) If an attacker in-
tercepts a query with multiple predicates or composite predi-
cate expressions, the attacker can “correlate” the attributes in
the predicates to infer sensitive information about data owner.
This is known as the attribute correlation attack.
Example 1: A tourist Anne is sent to ER at California

Hospital. Doctor Bob queries for her medical records through
a medicare IBS. Since Anne has the symptom of leukemia,
the query contains two predicates: [pName=“Anne”], and
[symptom=“leukemia”]. Any malicious broker that has
helped routing the query could guess “Anne has a blood cancer”
by correlating the two predicates in the query.
Unfortunately, query content including sensitive predicates

cannot be simply encrypted since such information is neces-
sary for content-based query routing. Therefore, we are facing a

890 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 6, JUNE 2013

Fig. 2. Architecture of PPIB.

paradox of the requirement for content-based brokering and the
risk of attribute-correlation attacks.
Inference attack. More severe privacy leak occurs when an

attacker obtains more than one type of sensitive information
and learns explicit or implicit knowledge about the stakeholders
through association. By “implicit”, we mean the attacker infers
the fact by “guessing”. For example, an attacker can guess the
identity of a requestor from her query location (e.g., IP address).
Meanwhile, the identity of the data owner could be explicitly
learned from query content (e.g., name or SSN). Attackers can
also obtain publicly-available information to help his inference.
For example, if an attacker identifies that a data server is located
at a cancer research center, he can tag the queries as “cancer-re-
lated”.
In summary, we have three reasonable inferences from three

distinct combinations of private information: (1) from query lo-
cation & data location, the attacker infers about who (i.e., a
specific requestor) is interested in what (i.e., a specific type of
data). (2) From query location & query content, the attacker in-
fers about where who is, or who is interested in what (if predi-
cates describe symptom or medicine, etc.), or something about
the data owner (if predicate identifies name or address of a per-
sonnel), etc. (3) From query content & data location, the at-
tacker infers which data server has which data. Hence, the at-
tacker could continuously create artificial queries or monitor
user queries to learn the data distribution of the system, which
could be used to conduct further attacks.

B. Solution Overview

To address the privacy vulnerabilities in current information
brokering infrastructure, we propose a new model, namely Pri-
vacy Preserving Information Brokering (PPIB). PPIB has three
types of brokering components: brokers, coordinators, and a
central authority (CA). The key to preserving privacy is to di-
vide and allocate the functionality to multiple brokering compo-
nents in a way that no single component can make a meaningful
inference from the information disclosed to it.
Fig. 2 shows the architecture of PPIB. Data servers and

requestors from different organizations connect to the system
through local brokers (i.e., the green nodes in Fig. 2). Brokers
are interconnected through coordinators (i.e., the white nodes).
A local broker functions as the “entrance” to the system. It
authenticates the requestor and hides his identity from other
PPIB components. It would also permute query sequence to
defend against local traffic analysis.

Coordinators are responsible for content-based query routing
and access control enforcement. With privacy-preserving con-
siderations, we cannot let a coordinator hold any rule in the
complete form. Instead, we propose a novel automaton segmen-
tation scheme to divide (metadata) rules into segments and as-
sign each segment to a coordinator. Coordinators operate col-
laboratively to enforce secure query routing. A query segment
encryption scheme is further proposed to prevent coordinators
from seeing sensitive predicates. The scheme divides a query
into segments, and encrypts each segment in a way that to each
coordinator enroute only the segments that are needed for se-
cure routing are revealed. Last but not least, we assume a sep-
arate central authority handles key management and metadata
maintenance.

III. BACKGROUND

A. Related Work

Research areas such as information integration, peer-to-peer
file sharing systems and publish-subscribe systems provide par-
tial solutions to the problem of large-scale data sharing. Infor-
mation integration approaches focus on providing an integrated
view over a large number of heterogeneous data sources by ex-
ploiting the semantic relationship between schemas of different
sources [13]–[15]. The PPIB study assumes that a global schema
exists within the consortium, therefore, information integration
is out of our scope.
Peer-to-peer systems are designed to share files and data sets

(e.g., in collaborative science applications). Distributed hash
table technology [16], [17] is adopted to locate replicas based
on keyword queries. However, although such technology has
recently been extended to support range queries [18], the coarse
granularity (e.g., files and documents) cannot meet the expres-
siveness needs of applications focused in this work. Further-
more, P2P systems often returns an incomplete set of answers
while we need to locate all relevant data in the IBS.
Addressing a conceptually dual problem, XML publish-sub-

scribe systems (e.g., [19], [20]) are probably the closely related
technology to the proposed research problem: while PPIB aims
to locate relevant data sources for a given query and route the
query to these data sources, the pub/sub systems locate relevant
consumers of a given document and route the document to these
consumers. However, due to this duality, we have different con-
cerns. The pub/sub systems focus more on efficiently delivering
the same piece of information to a large number of consumers,
while we are trying to route a large volume but small-sized
queries to fewer sites. Accordingly, the multicast solution in
pub/sub systems does not scale in our environment and we need
to develop new mechanisms.
One idea is to build an XML overlay architecture that sup-

ports expressive query processing and security checking atop
normal IP network. In particular, specialized data structures
are maintained on overlay nodes to route XML queries. In
[5], a robust mesh has been built to effectively route XML
packets by making use of self-describing XML tags and the
overlay networks. Kouds et al. also proposed a decentralized
architecture for ad hoc XPath query routing across a collection
of XML databases [6]. To share data among a large number

LI et al.: ENFORCING SECURE AND PRIVACY-PRESERVING INFORMATION BROKERING 891

of autonomous nodes, [21] studied content-based routing for
path queries in peer-to-peer systems. Different from these
approaches, PPIB seamlessly integrates query routing with
security and privacy protection.
Privacy concerns arise in interorganizational information

brokering since one can no longer assume brokers controlled
by other organizations are fully trustable. As the major source
that may cause privacy leak is the metadata (i.e., indexing and
access control), secure index based search schemes [22], [23]
may be adopted to outsource metadata in encrypted form to
untrusted brokers. Brokers are assumed to enforce security
check and make routing decision without knowing the content
of both query and metadata rules. Various protocols have been
proposed for searchable encryption [22], [24], [23], however,
to the best of our knowledge, all the schemes presented so far
only support keyword search based on exact matching. While
there are approaches proposed for multidimensional keyword
search [25] and range queries [26], supporting queries with
complex predicates (e.g., regular expressions) or structures
(e.g., XPath queries) is still a difficult open problem. In terms
of privacy-preserving brokering, another related technique is
secure computation [27] that allows one party to evaluate var-
ious functions on encrypted data without being able to decrypt.
Originally designed for privacy information retrieval (PIR) in
database systems [28], such schemes have the same limitation
that only keyword-based search is supported.
Research on anonymous communication provides a way to

protect information from unauthorized parties. Many protocols
have been proposed to enable the sender node dynamically
select a set of nodes to relay its requests [29], [30]. These
approaches can be incorporated into PPIB to protect location
of data requestors and data servers from irrelevant or malicious
parties. However, aiming at enforcing access control during
query routing, PPIB addresses more privacy concerns other
than anonymity, and thus faces more challenges.
Finally, research on distributed access control is also related

to our work ([31] gives a good overview on access control in col-
laborative systems). In summary, earlier approaches implement
access control mechanisms at the nodes of XML trees and filter
out data nodes that users do not have authorization to access
[32], [33]. These approaches rely much on the XML engines.
View-based access control approaches create and maintain a
separate view (e.g., a specific portion of XML documents) for
each user [34], [35], which causes high maintenance and storage
costs. In this work, we adopt an NFA-based query rewriting ac-
cess control scheme proposed recently in [36], [9], which has a
better performance than previous view-based approaches [33].

B. Preliminaries

1) XML Data Model and Access Control: The eXtensible
Markup Language (XML) has emerged as the de facto stan-
dard for information sharing due to its rich semantics and ex-
tensive expressiveness. We assume that all the data sources in
PPIB exchange information in XML format, i.e., taking XPath
[37] queries and returning XML data. Note that the more pow-
erful XML query language, XQuery, still uses XPath to ac-
cess XML nodes. In XPath, predicates are used to eliminate un-
wanted nodes, where test conditions are contained within square

brackets “[]”. In our study, we mainly focus on value-based
predicates.
To specify the authorization at the node level, fine-grained

access control models are desired. We adopt the 5-tuple ac-
cess control policy that is widely used in the literature [38],
[34], [36]. The policy consists of a set of access control
rules , where
(1) subject is the role to whom the authorization is granted;
(2) object is a set of XML nodes specified by an XPath expres-
sion; (3) action is operations as “read”, “write”, or “update”;
(4) refers to access “granted” or “denied”,
respectively; and (5) denotes “local check”
(i.e., applying authorization only to the attributes or textual
data of the context nodes) or “recursive check” (i.e., applying
authorization to all the descendants of the context node). A set
of example rules are shown below:

Example 2. Example ACRs:

`` ''
Existing access control enforcement approaches can be clas-

sified as engine-based [39], [32], [35], [40], [41], view-based
[42], [43], [38], [44], [45], preprocessing [33], [34], [46]–[48],
and postprocessing [49] approaches. In particular, we adopt
the Nondeterministic Finite Automaton (NFA) based approach
as presented in [36], which allows access control to be en-
forced outside data servers, and independent from the data.
The NFA-based approach constructs NFA elements for four
building blocks of common XPath axes (, and)
so that XPath expressions, as combinations of these building
blocks, can be converted to an NFA, which is used to match
and rewrite incoming XPath queries. Please refer to [36] for
more details on the QFilter approach.
2) Content-Based Query Brokering: Indexing schemes have

been proposed for content-based XML retrieval [50]–[53]. The
index describes the address of the data server that stores a partic-
ular data item requested by an user query. Therefore, a content-
based index rule should contain the content description and the
address. In [9], we presented a content-based indexing model
with index rules in the form of , where
(1) object is an XPath expression that selects a set of nodes; and
(2) location is a list of IP addresses of data servers that hold the
content.

Example 3. Example Index Rules:

892 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 6, JUNE 2013

Fig. 3. Data structure of an NFA state.

Fig. 4. State transition graph of the QBroker that integrates index rules with
ACRs.

When an user queries the system, the XPath query is matched
with the object field of the index rules, and the matched query
will be sent to the data server specified by the location field of
the rule(s). While other techniques (e.g., bloom filter [7], [6])
can be used to implement content-based indexing, we adopt the
model in [9] in our study since it can be directly integrated with
the NFA-based access control enforcement scheme. We call the
integratedNFA that captures access control rules and index rules
content-based query broker (QBroker). QBroker is constructed
in a similar way as QFilter [36]. Fig. 3 shows the data structure
of each NFA state in QBroker, where the state transition table
stores the child nodes specified by the XPath expression as the
child states in . The binary flag indicates that
the state is a “double-slash” state. “double-slash” state, whose
child state is an -transition state that directly transits to the next
state without consuming any input symbol, will recursively ac-
cept input symbols. Fig. 4 shows a QBroker constructed from
Example 2 and 3. Unlike QFilter that captures ACRs for only
one role, QBroker adds two binary arrays to each state to capture
rules for multiple roles: determines the roles that are
allowed to access this state and indicates for which
role(s) the state is an accept state. For instance, in Fig. 4, the ac-
cept list of state 5 is [1 0], indicating the state is an accept state
for but not for , and the access list of state 6 is [1 1],
indicating this state is accessible by both roles. A is
attached to each accept state. In the brokering process, QBroker
first checks if a query is allowed to access the requested nodes
according to the role type and then makes routing decision. If a
query can access only a subset of the requested data, it will be
rewritten into a “safe” query before forwarding.

IV. PRIVACY-PRESERVING QUERY BROKERING SCHEME

The QBroker [9] approach has severe privacy vulnerability
as we discussed in Section II. If the QBroker is compromised
or cannot be fully trusted (e.g., under the honest-but-curious as-
sumption as in our study), the privacy of both requestor and data
owner is under risk. To tackle the problem, we present the PPIB
infrastructure with two core schemes. In this section, we first ex-
plain the details of automata segmentation and query segment
encryption schemes, and then describe the 4-phase query bro-
kering process in PPIB.

A. Automaton Segmentation

In the context of distributed information brokering, multiple
organizations join a consortium and agree to share the data
within the consortium. While different organizations may
have different schemas, we assume a global schema exists
by aligning and merging the local schemas. Thus, the access
control rules and index rules for all the organizations can be
crafted following the same shared schema and captured by a
global automaton. The key idea of automaton segmentation
scheme is to logically divide the global automaton into multiple
independent yet connected segments, and physically distribute
the segments onto different brokering components, known as
coordinators.
1) Segmentation: The atomic unit in the segmentation is an

NFA state of the original automaton. Each segment is allowed
to hold one or several NFA states. We further define the gran-
ularity level to denote the greatest distance between any two
NFA states contained in one segment. Given a granularity level
, for each segmentation, the next states will be di-
vided into one segment with a probability . Obviously, with
a larger granularity level, each segment will contain more NFA
states, resulting in less segments and smaller end-to-end over-
head in distributed query processing. However, a coarse parti-
tion is more likely to increase the privacy risk. The trade-off
between the processing complexity and the degree of privacy
should be considered in deciding the granularity level. As pri-
vacy protection is of the primary concern of this work, we sug-
gest a . To reserve the logical connec-
tion between the segments after segmentation, we define the fol-
lowing heuristic segmentation rules: (1) NFA states in the same
segment should be connected via parent-child links; (2) sibling
NFA states should not be put in the same segment without their
parent state; and (3) the “accept state” of the original global au-
tomaton should be put in separate segments. To ensure the seg-
ments are logically connected, we also make the last states of
each segment as “dummy” accept states, with links pointing to
the segments holding the child states of the original global au-
tomaton.

Algorithm 1 The automaton segmentation algorithm:

Input: Automaton State

Output: Segment Address:
1: for each symbol in do

LI et al.: ENFORCING SECURE AND PRIVACY-PRESERVING INFORMATION BROKERING 893

2:

3:
4:
5:
6: end for
7:
8:
9:
10:
11: return

2) Deployment: We employ physical brokering servers,
called coordinators, to store the logical segments. To reduce
the number of needed coordinators, several segments can be
deployed on the same coordinator using different port numbers.
Therefore, the tuple uniquely identifies a
segment. For the ease of presentation, we assume each coordi-
nator only holds one segment in the rest of the article. After the
deployment, the coordinators can be linked together according
to the relative position of the segments they store, and thus
form a tree structure. The coordinator holding the root state
of the global automaton is the root of the coordinator tree and
the coordinators holding the accept states are the leaf nodes.
Queries are processed along the paths of the coordinator tree in
a similar way as they are processed by the global automaton:
starting from the root coordinator, the first XPath step (token) of
the query is compared with the tokens in the root coordinator.
If matched, the query will be sent to the next coordinator, and
so on so forth, until it is accepted by a leaf coordinator and then
forwarded to the data server specified by the outpointing link
of the leaf coordinator. At any coordinator, if the input XPath
step does not match the stored tokens, the query will be denied
and dropped immediately.
3) Replication: Since all the queries are supposed to be pro-

cessed first by the root coordinator, it becomes a single point of
failure and a performance bottleneck. For robustness, we need
to replicate the root coordinator as well as the coordinators at
higher levels of the coordinator tree. Replication has been ex-
tensively studied in distributed systems. We adopt the passive
path replication strategy to create the replicas for the coordina-
tors along the paths in the coordinator tree, and let the central-
ized authority to create or revoke the replicas (please see more
details in Section V). The CAmaintains a set of replicas for each
coordinator, where the number of replicas is either a preset value
or dynamically adjusted based on the average queries passing
through that coordinator.
4) Handling the Predicates: In the original construction of

NFA (similarly as described in QFilter [36] and QBroker [9]), a
predicate table is attached to every child state of an NFA state
as shown in Fig. 3. The predicate table stores predicate symbols
(i.e., pSymbol), if any, in the corresponding query XPath step.
An empty symbol means no predicate.
To handle the predicates, either from the query or from the

ACR, the original strategy is lookup-and-attach. That is, if an
XPath step in the query matches a child state in the state transi-
tion table (i.e., an eSymbol), predicate carried in that particular

XPath step or predicate stored in the predicate table will be at-
tached to the corresponding XPath step in the safe query. The
real evaluation of the predicate is left to the data servers, which
inevitably causes unnecessary communication and processing
overhead if the predicate conditions conflict. We illustrate this
problem with the following example.
Example 4: Consider a query

and the
QBroker in Fig. 4. This query will be accepted at state 11,
rewritten into a safe query, and sent to three data servers.
However, from the index rules in Example 3, we know that
data servers at 195.228.155.9 and 135.176.4.56 do not contain
the requested data. Routing a query to irrelevant data servers
yields unnecessary overhead.
To address this problem, we present a new scheme to handle

value-based predicates in input XML queries. We first change
the data structure of the original NFA state by adding new
fields as , and , to the predicate table:
(1) still stores the predicate token; (2) stores
the test condition; (3) indicates if the predicate
is introduced from an ACR or an index rule, and (4)
stores the addresses carried by the index rule.
In processing, if the XPath step of a query does not have a

predicate, the scheme works the same as before: it looks up the
predicate table for predicates introduced by ACRs (i.e., with

) and attaches “ ” to the safe query.
If a predicate exists in a particular XPath step, the scheme re-
trieves records of the same predicate from the table, and sends
them with the query predicate to a predicate directory server,
which further examines the test conditions. In testing, the query
predicate is first compared with the ACR predicate to deter-
mine if the query passes the access control testing. After that,
the query predicate is further compared with the predicate in-
troduced by the index rules, to limit the scope of potential desti-
nation data servers. If a predicate successfully passes both test-
ings, we attach the of the index rule to the safe query.
Accordingly, in query processing, if an accepted query carries
multiple lists, it will be sent to the intersection of the
destination data servers. Finally, we would like to point out that
this scheme does not support structural predicates (that contain
twig conditions in the predicates) due to the excessive overhead
caused by waiting for responses from the twigs in a distributed
setting.

B. Query Segment Encryption

Informative hints can be learned from query content, so it
is critical to hide the query from irrelevant brokering servers.
However, in traditional brokering approaches, it is difficult, if
not impossible, to do that, since brokering servers need to view
query content to fulfill access control and query routing. For-
tunately, the automaton segmentation scheme provides new op-
portunities to encrypt the query in pieces and only allows a coor-
dinator to decrypt the pieces it is supposed to process. The query
segment encryption scheme proposed in this work consists of
the preencryption and postencryption modules, and a special
commutative encryptionmodule for processing the double-slash
(“//”) XPath step in the query.

894 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 6, JUNE 2013

1) Level-Based Preencryption: According to the automaton
segmentation scheme, query segments are processed by a set of
coordinators along a path in the coordinator tree. A straightfor-
ward way is to encrypt each query segment with the public key
of the coordinator specified by the scheme. Hence, each coordi-
nator only sees a small portion of the query that is not enough
for inference, but collaborating together, they can still fulfill the
designed function. The key challenges in this approach is that
the segment-coordinator association is unknown beforehand in
the distributed setting, since no party other than the CA knows
how the global automaton is segmented and distributed among
the coordinators.
To tackle the problem, we propose to encapsulate query

pieces based on the publicly known information—the global
schema. XML schema also forms a tree structure, in which
the level of a node in the schema tree is defined as its distance
to the root node. Since both the ACR and index rules are
constructed following the global schema, an XPath step (token)
in the XPath expression of a rule is associated with level if
the corresponding node in the schema tree is at level . We
assume the nodes of the same level share a pair of public and
private level keys, . After automaton segmentation,
the segments (and the corresponding coordinators) are assigned
with the private key of level , if it contains a node of
level . In preencryption, the XPath steps (between two “/”
or “//”) of a query are encrypted with the public level keys

, respectively. Intuitively, the th XPath step of a
query should be processed by a segment with a node at level ,
and therefore, is able to be decrypted by the coordinator holding
that segment. Moreover, if a coordinator has a segment that
contains XML nodes of different levels, it needs to decrypt
the first unprocessed XPath steps of the query.
2) Postencryption: The processed query segments should

also be protected from the remaining coordinators in later pro-
cessing, so postencryption is necessary. In a simple scheme, we
assume all the data servers share a pair of public and private
keys, , where is known to all the coordina-
tors. Each coordinator first decrypts the query segment(s) with
its private level key, performs authorization and indexing, and
then encrypts the processed segment(s) with so that only
the data servers can view it.
3) Commutative Encryption for “//” Handling: When

a query has the descendant-or-self axis (i.e., “//” in XPath
expressions), a so-called mismatching problem occurs at the
coordinator who takes the “//” XPath step as input. This is be-
cause that the “//” XPath step may recursively accepts several
tokens until it finds a match. Consequently, the coordinator
with the private level key may not be the one that matches the
“//” token, and vice versa. This problem is further explained in
Example 5 and Fig. 6(a). To tackle the problem, we revise the
level-based encryption scheme by adopting the commutative
encryption. Commutative encryption algorithms [12], [54], [55]
have the property of being commutative, where an encryption
algorithm is commutative if for any two commutative keys
and and a message . Therefore,
we assign a new commutative level key to nodes at level ,
and further assume nodes at level share with nodes at level

.

Example 5: Assume the global automaton is segmented as
shown in Fig. 5. Coordinators , and hold the seg-
ments , and , respectively. According to
the level-based preencryption, a query “ ” will be
encrypted as . When gets “ ”,
it finds the token does not match the NFA state “ ” but it still
accepts the token due to the property of “//”. Similarly, , while
still not be able to process “ ”, will further decrypt irrele-
vant query segment “ ” with .
The commutative encryption is invoked by the first coordi-

nator encountering the “//” XPath step in a query and ended by
the first coordinator whose NFA state matches the “//” token.
The entire process experiences four stages. A is
attached to a query to indicate which the stage the query is cur-
rently at. Detailed algorithm is explained as follows:
1) When a coordinator first encounters the “//” XPath
step, it sets a pointer to the first unprocessed query seg-
ment, encrypts all the unprocessed query segments (except
the “//” XPath step) with its commutative level key , and
sets the flag to 1.

2) With , the next coordinator first adds the
second encapsulation to the unprocessed query segments
with its commutative level key ; then it decrypts the
pointed query segment with its private level key ,
and moves the pointer to the next segment. After that, it
sets the flag to 2.

3) For a following coordinator , if none of its NFA
states matches the “//” token, it first removes one wrap-
ping (by decrypting with) and adds one wrap-
ping (by encrypting with) to the unprocessed query
segments. Due to the commutative encryption prop-
erty, the unprocessed query segments are changed from

to . Then
it decrypts the pointed segment with its private level key

and moves the pointer to the next.
4) When a coordinator accepts the “//” token, it applies the
commutative decryption to all the unprocessed segments
with key , and encrypts each of them with the public
level keys , respectively. After that, it
sets the flag to 3.

5) Coordinator decrypts all the unprocessed segments
with and resets the flag to 0.

The core idea of commutative encryption is to wrap the un-
processed query segments after the “//” XPath step with two
consecutive commutative layer keys, which are not possessed
by a same coordinator. The additional wrapping is kept until
the commutative encryption process is stopped by a matching
of the “//” token. In practical, we adopt Pohlig–Hellman expo-
nentiation cipher with modulus as our commutative encryp-
tion algorithm to generate the commutative keys.
Example 6: Let us revisit the previous example with com-

mutative encryption. As shown in Fig. 6(b), once accepts the
“//” XPath step “ ”, it starts to add the commutative wrap-
ping to the second query segment “ ” by encrypting with
. removes the wrapping of original level-based encryption

and continues to add one more wrapping by encrypting wit .
still does not match the “//” token, so it only changes com-

mutative wrapping to the ones related to and . When

LI et al.: ENFORCING SECURE AND PRIVACY-PRESERVING INFORMATION BROKERING 895

Fig. 5. Example to illustrate the automaton segmentation scheme: (a) divide
the global automaton with granularity level of 1; (b) the segments are linked to
form a tree structure.

matches ‘ ”, it unwraps one layer of commutative encryp-
tion with and adds a level-based encryption with to yield
an output of , which can be decrypted by .

C. The Overall PPIB Architecture

The architecture of PPIB is shown in Fig. 7, where users
and data servers of multiple organizations are connected via a
broker-coordinator overlay. In particular, the brokering process
consists of four phases:
• Phase 1: To join the system, a user needs to authenticate
himself to the local broker. After that, the user submits
an XML query with each segment encrypted by the corre-
sponding public level keys, and a unique session key .

is encrypted with the public key of the data servers to
encrypt the reply data.

• Phase 2: Besides authentication, the major task of the
broker is metadata preparation: (1) it retrieves the of
the authenticated user to attach to the encrypted query;
(2) it creates a unique for each query, and attaches

and its own address to the query for data
servers to return data.

• Phase 3: Upon receiving the encrypted query, the coordi-
nators follow automata segmentation scheme and query
segment encryption scheme to perform access control and
query routing along the coordinator tree as described in
Sections IV-A and IV-B. At the leaf coordinator, all query
segments should be processed and reencrypted by the

Fig. 6. (a) Example of the mismatching problem; the mismatching problem
caused by the descendant-or-self axis in a query. (b) Example of commutative
encryption; solve the mismatching problem with level-based commutative en-
cryption.

Fig. 7. We explain the query brokering process in four phases.

public key of the data server. If a query is denied access, a
failure message with will be returned to the broker.

• Phase 4: In the final phase, the data server receives a safe
query in an encrypted form. After decryption, the data
server evaluates the query and returns the data, encrypted
by , to the broker that originates the query.

V. MAINTENANCE

A. Key Management

The CA is assumed for offline initiation and maintenance.
With the highest level of trust, the CA holds a global view about
all the rules and plays a critical role in automaton segmentation
and key management. There are four types of keys used in the
brokering process: query session key , public/private level
keys , commutative level keys , and public/pri-
vate data server keys . Except the query session
keys created by the user, the other three types of keys are gener-
ated and maintained by the CA. The data servers are treated as
a unique party and share a pair of public and private keys, while
each of the coordinators has its own pairs of level key and com-
mutative level key. Along with the automaton segmentation and
deployment process, the CA creates key pairs for coordinators
at each level and assigns the private keys with the segments. The

896 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 6, JUNE 2013

TABLE I
POSSIBLE PRIVACY EXPOSURE CAUSED BY FOUR TYPES OF ATTACKERS: LOCAL EAVESDROPPER (LE),

GLOBAL EAVESDROPPER (GE), MALICIOUS BROKER (MB), AND COLLUSIVE COORDINATORS (CC)

level keys need to be revoked in a batch once a certificate ex-
pires or when a coordinator at the same level quits the system.

B. Brokering Servers Join/Leave

Brokers and coordinators, contributed by different organiza-
tions, are allowed to dynamically join or leave the PPIB system.
Besides authentication, a local broker only works as an entrance
to the coordinator overly. It stores the address of the root coor-
dinator (and its replica) for forwarding the queries. When a new
broker joins the system, it registers to the CA to receive the cur-
rent address list from the CA and broadcasts its own address to
the local users. When leaving the system, a broker only needs
to broadcast a leave message to the local users. Thing are more
complicate for the coordinators. Once joining the system, a new
coordinator sends a join request to the CA. The CA authenti-
cates its identity, and assigns automaton segments to it consid-
ering both the load balance requirement and its trust level. After
that, the CA issues the corresponding private level keys and
sends a broadcast message to update the
location list attached to the parent coordinator with the address
of the newly joined coordinator. When a coordinator leaves the
system, the CA decides whether to employ an existing or a new
coordinator as a replacement, based on the heuristic rules for au-
tomaton deployment and the current load at each coordinator.
After that, the CA broadcasts a
message to replace the address of the old coordinator with the
address of the new one in the location list at the dummy accept
state of the parent coordinator. Finally, the CA revokes the cor-
responding level keys. If a failure is detected from a periodical
status check by the CA or reported by a neighboring coordinator,
the CA will treat the failed coordinator as a leaving server.

C. Metadata Update

ACR and index rules should be updated to reflect the changes
in the access control policy or the data distribution in an organ-
ization.
1) Index Rules: To add or remove a (set of) data object, a

local server need to send an update message, in the form of
, to the CA, where ob-

ject is an XPath expression to describe a set of XML nodes,
address is the location of the data object, and action is either
“add” or “remove”. For adding a data object, the CA sends the
update message to the root coordinator, from which the message

traverses the coordinator network until reaching a leaf coordi-
nator, where the address will be appended to its location list. A
similar process is taken for data object removal to retrieve the
corresponding leaf coordinators and removes the address from
the location list.
2) Access Control Rules: Any change in the access

control policy can be described by (a set of) positive or
negative access control rules. Therefore, we construct an

message to reflect the change
for a particular role and send it to the CA. The CA forwards
the message to the root coordinator, from which the XPath
expression in object is processed by each coordinator according
to its state transition table, in the same way as constructing an
automaton with a new ACR: if the message stops at a particular
NFA state, the state will be changed to an accept state for that
role. Then, all the child and descendent leaf coordinators will
be retrieved and the location lists will be attached to the accept
state. If the message is accepted by an existing leaf coordinator,
new automaton segments will be created and assigned to new
coordinators. The location list at the original leaf coordinator
will be copied to the new leaf coordinator.

VI. PRIVACY AND SECURITY ANALYSIS

There are various types of attackers in the information bro-
kering process. From their roles, we have abused insiders and
malicious outsiders; from their capabilities, we have passive
eavesdroppers and active attackers that can compromise any
brokering server; from their cooperation mode, we have single
and collusive attackers. In this section, we consider three most
common types of attackers, local and global eavesdroppers, ma-
licious brokers and malicious coordinators. We first analyze
possible privacy breakages caused by each of them, and then
summarize possible privacy exposures in Table I.
1) Eavesdroppers: A local eavesdropper is an attacker who

can observe all communication to and from the user side. Once
an end user initiates an inquire or receives requested data,
the local eavesdropper can seize the outgoing and incoming
packets. However, it can only learn the location of local broker
from the captured packets since the content is encrypted. Al-
though local brokers are exposed to this kind of eavesdroppers,
as a gateway of DIBS system, it prevents further probing
of the entire DIBS. Although the disclosed broker location
information can be used to launch DoS attack against local

LI et al.: ENFORCING SECURE AND PRIVACY-PRESERVING INFORMATION BROKERING 897

brokers, a backup broker and some recovery mechanisms can
easily defend this type of attacks. As a conclusion, an external
attacker who is not powerful enough to compromise brokering
components is less harmful to system security and privacy.
A global eavesdropper is an attacker who observes the traffic

in the entire network. It watches brokers and coordinators
gossip, so it is capable to infer the locations of local brokers
and root-coordinators. This is because the assurance of the
connections between user and broker, and between broker
and root-coordinator. However, from the later-on communi-
cation, the eavesdropper cannot distinguish the coordinators
and the data servers. Therefore, the major threat from a global
eavesdropper is the disclosure of broker and root-coordinator
location, which makes them targets of further DoS attack.
2) Single Malicious Broker: A malicious broker deviates

from the prescribed protocol and discloses sensitive informa-
tion. It is obvious that a corrupted broker endangers user lo-
cation privacy but not the privacy of query content. Moreover,
since the broker knows the root-coordinator locations, the threat
is the disclosure of root-coordinator location and potential DoS
attacks.
3) Collusive Coordinators: Collusive coordinators deviate

from the prescribed protocol and disclose sensitive information.
Consider a set of collusive (corrupted) coordinators in the coor-
dinator tree framework. Even though each coordinator can ob-
serve traffic on a path routed through it, nothing will be exposed
to a single coordinator because (1) the sender viewable to it is
always a brokering component; (2) the content of the query is
incomplete due to query segment encryption; (3) the ACR and
indexing information are also incomplete due to automaton seg-
mentation; (4) the receiver viewable to it is likely to be another
coordinator. However, privacy vulnerability exists if a coordi-
nator makes reasonable inference from additional knowledge.
For instance, if a leaf-coordinator knows how PPIB mechanism
works, it can assure its identity (by checking the automaton it
holds) and find out the destinations attached to this automaton
are of some data servers. Another example is that one coordi-
nator can compare the segment of ACR it holds with the open
schemas and make reasonable inference about its position in the
coordinator tree. However, inference made by one coordinator
may be vague and even misleading.

VII. PERFORMANCE ANALYSIS

In this section, we analyze the performance of proposed PPIB
system using end-to-end query processing time and system
scalability. In our experiments, coordinators are coded in Java
(JDK 5.0) and results are collected from coordinators running
on a Windows desktop (3.4 G CPU). We use the XMark [56]
XML document and DTD, which is wildly used in the research
community. As a good imitation of real world applications, the
XMark simulates an online auction scenario.

A. End-to-End Query Processing Time

End-to-end query processing time is defined as the time
elapsed from the point when query arrives at the broker until
to the point when safe answers are returned to the user. We
consider the following four components: (1) average query

Fig. 8. Estimate the overall processing time at each coordinator. (a) Average
query brokering time at a coordinator. X: Number of keywords at a query
broker. Y: Time (s). (b) Average symmetric and asymmetric encryption time.
X: Number of keywords at a query broker. Y: Time (ms).

brokering time at each broker/coordinator ; (2) average
network transmission latency between broker/coordinators

; (3) average query evaluation time at data server(s)
; and (4) average backward data transmission latency

. Query evaluation time highly depends on XML
databases system, size of XML documents, and types of XML
queries. Once these parameters are set in the experiments,
will remain the same (at seconds level [57]). Similarly, the
same query set and ACR set will create the same safe query set,
and the same data result will be generated by data servers. As
a result, and are not affected by the broker-co-
ordinator overlay network. We only need to calculate and
compare the total forward query processing time as

. It is obvious that
is only affected by , and the average number

of hops in query brokering, .
1) Average Query Processing Time at the Coordinator:

Query processing time at each broker/coordinator con-
sists of: (1) access control enforcement and locating next
coordinator (Query brokering); (2) generating a key and en-
crypting the processed query segment (Symmetric encryption);
and (3) encrypting the symmetric key with the public key
created by super node (Asymmetric encryption).
To examine , we manually generate 5 sets of access con-

trol rules, and partition the rules of each set into segments (key-
words), which are assumed to be assigned to different coordina-
tors in the following evaluation. From set 1 to set 5, the number
of keywords held by one coordinator increases from 1 to 5. We
also generate 1000 synthetic XPath queries and similarly di-
vide the query into segments. In the experiment, we adopt the
off-the-shelf cryptographic algorithms, 3DES for symmetric en-
cryption and 1024-bit key length RSA (in practice, RSA with
optimal asymmetric encryption padding is recommended to de-
fend against adaptive chosen-ciphertext attacks) for asymmetric
encryption. Fig. 8(a) shows that query brokering time is at mil-
liseconds level, and increases linearly with the number of key-
words at a site. As shown in Fig. 8(b), since the data size is very
small (the XPath token on average is 128 bits), encryption time
for both symmetric and asymmetric encryption schemes is at
milliseconds level, while the asymmetric encryption time dom-
inates the total query processing time at each coordinator. As
a result, average is about 1.9 ms. Query processing time
at brokers and leaf-coordinators are shorter but still in the same
level. For simplicity, we adopt the same value (i.e., 1.9 ms) for
the average query processing time at brokers and coordinators.
2) Average Network Transmission Latency: We adopt av-

erage Internet traffic latency 100 ms as a reasonable estimation

898 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 6, JUNE 2013

of (from Internet traffic report) instead of using data col-
lected from our gigabyte Ethernet.
3) Average Number of Hops: We consider the case in which

a query is accepted or rewritten by ACRs
into the union of safe subqueries . When an
accepted/rewritten subquery is processed by the rule , the
number of hops is determined by the number of segments of
. In the experiment, we generate a set of 200 synthetic access

control rules and 1000 synthetic XPath queries.
It is obvious to see that the more segments the global au-

tomaton is divided into, the more coordinators are needed
and the less scalable the system is, due to the increased query
processing cost. However, higher granularity leads to better
privacy preserving performance. We choose the finest-gran-
ularity automaton segmentation (each XPath step of an ACR
is partitioned as one segment and kept at one coordinator) for
maximum privacy preserving. Our experiment result shows
that is 5.7, and the maximum number of hops of all
queries is 8.
4) End-to-End Query Processing Time: From above exper-

iment results, the total forward query processing time is calcu-
lated as (ms). It is
obvious that network latency dominates total
forward end-to-end query processing time, because the value of

is negligible compared with . Moreover, since re-
mains the same (as an estimation from Internet traffic),
becomes the deterministic factor that affects end-to-end query
processing time. Note that for other information brokering sys-
tems, although they use different query routing scheme, network
latency is not avoidable. As a conclusion, the proposed PPIB ap-
proach achieves privacy-preserving query brokering and access
control with limited computation.

B. System Scalability

We evaluate the scalability of the PPIB system against
complicity of ACR, the number of user queries, and data size
(number of data objects and data servers).
1) Complicity of XML Schema and ACR: When the segmen-

tation scheme is determined, the demand of coordinators is de-
termined by the number of ACR segments, which is linear with
the number of access control rules. Assume finest granularity
automaton segmentation is adopted, we can see that the increase
of demanded number of coordinators is linear or even better, as
shown in Fig. 9(a) and (b). This is because similar access con-
trol rules with same prefix may share XPath steps, and save the
number of coordinators. Moreover, different ACR segments (or,
logical coordinators) may reside at the same physical site, thus
reduce the actual demand of physical sites. In this framework,
the number of coordinators, , and the height of the coordinator
tree, , are highly dependent on how access control policies are
segmented.
2) Number of Queries: Considering queries submitted into

the system in a unit time, we use the total number of query seg-
ments being processed in the system tomeasure the system load.
When a query is accepted as multiple subqueries, all subqueries
are counted towards system load. For a query that is rejected
after segments, the processed segments are counted.

Fig. 9. System scalability: number of coordinators. (a) Using simple path rules.
(b) Using XPath rules with wildcards.

Fig. 10. System scalability: number of query segments. (a) Using simple XPath
rules and simple XPath queries. (b) Using simple XPath queries and rules with
wildcards. (c) Using queries and rules with 5% wildcards probability at each
XPath step. (d) Using query and ACR with 10% wildcards probability at each
XPath step.

We generate 5 sets of synthetic ACRs and 10 sets of synthetic
XML queries with different numbers and wildcard (i.e., “ ”
and “ ”) probabilities at each XPath step in each experiment.
Fig. 10 shows system load versus. number of XPath queries in
a unit time. More specifically, Fig. 10(a) only has simple path
rules (without wildcard or predicate), and Fig. 10(b) has rules
with wildcards. In both cases, system load increases linearly and
each query is processed less than 10 segments. Fig. 10(c) and (d)
use the same set of ACRs as in Fig. 10(b), but add wildcards into
queries with probability 5% and 10% at each step, respectively.
In the worst case, each query is processed no more than 50 seg-
ments. Moreover, if we compare curves in each subfigure, we
can see that larger ACR leads to higher system load, but the in-
crease appears to be linear in all cases.
3) Data Size: When data volume increases (e.g., adding

more data items into the online auction database), the number
of indexing rules also increases. This results in increasing of
the number of leaf-coordinators. However, in PPIB, query
indexing is implemented through hash tables, which is scalable.
Thus, the system is scalable when data size increases.

VIII. CONCLUSION

With little attention drawn on privacy of user, data, and meta-
data during the design stage, existing information brokering
systems suffer from a spectrum of vulnerabilities associated
with user privacy, data privacy, and metadata privacy. In this
paper, we propose PPIB, a new approach to preserve privacy in
XML information brokering. Through an innovative automaton
segmentation scheme, in-network access control, and query

LI et al.: ENFORCING SECURE AND PRIVACY-PRESERVING INFORMATION BROKERING 899

segment encryption, PPIB integrates security enforcement and
query forwarding while providing comprehensive privacy pro-
tection. Our analysis shows that it is very resistant to privacy
attacks. End-to-end query processing performance and system
scalability are also evaluated and the results show that PPIB is
efficient and scalable.
Many directions are ahead for future research. First, at

present, site distribution and load balancing in PPIB are con-
ducted in an ad-hoc manner. Our next step of research is to
design an automatic scheme that does dynamic site distribution.
Several factors can be considered in the scheme such as the
workload at each peer, trust level of each peer, and privacy
conflicts between automaton segments. Designing a scheme
that can strike a balance among these factors is a challenge.
Second, we would like to quantify the level of privacy protec-
tion achieved by PPIB. Finally, we plan to minimize (or even
eliminate) the participation of the administrator node, who
decides such issues as automaton segmentation granularity.
A main goal is to make PPIB self-reconfigurable.

ACKNOWLEDGMENT

The authors would like to thank T. Yu, W.-C. Lee, P. Mitra,
and M. Rabinovich for valuable discussions.

REFERENCES

[1] W. Bartschat, J. Burrington-Brown, S. Carey, J. Chen, S. Deming, and
S. Durkin, “Surveying the RHIO landscape: A description of current
{RHIO} models, with a focus on patient identification,” J. AHIMA,
vol. 77, pp. 64A–64D, Jan. 2006.

[2] A. P. Sheth and J. A. Larson, “Federated database systems for man-
aging distributed, heterogeneous, and autonomous databases,” ACM
Comput. Surveys (CSUR), vol. 22, no. 3, pp. 183–236, 1990.

[3] L. M. Haas, E. T. Lin, and M. A. Roth, “Data integration through data-
base federation,” IBM Syst. J., vol. 41, no. 4, pp. 578–596, 2002.

[4] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet:
A data-driven overlay network for efficient live media streaming,” in
Proc. IEEE INFOCOM, Miami, FL, USA, 2005, vol. 3, pp. 2102–2111.

[5] A. C. Snoeren, K. Conley, and D. K. Gifford, “Mesh-based content
routing using XML,” in Proc. SOSP, 2001, pp. 160–173.

[6] N. Koudas, M. Rabinovich, D. Srivastava, and T. Yu, “Routing XML
queries,” in Proc. ICDE’04, 2004, p. 844.

[7] G. Koloniari and E. Pitoura, “Peer-to-peer management of XML data:
Issues and research challenges,” SIGMOD Rec., vol. 34, no. 2, pp.
6–17, 2005.

[8] M. Franklin, A. Halevy, and D. Maier, “From databases to dataspaces:
A new abstraction for information management,” SIGMOD Rec., vol.
34, no. 4, pp. 27–33, 2005.

[9] F. Li, B. Luo, P. Liu, D. Lee, P. Mitra, W. Lee, and C. Chu, “In-broker
access control: Towards efficient end-to-end performance of infor-
mation brokerage systems,” in Proc. IEEE SUTC, Taichung, Taiwan,
2006, pp. 252–259.

[10] F. Li, B. Luo, P. Liu, D. Lee, and C.-H. Chu, “Automaton segmen-
tation: A new approach to preserve privacy in XML information bro-
kering,” in Proc. ACM CCS’07, 2007, pp. 508–518.

[11] D. L. Chaum, “Untraceable electronic mail, return addresses, and dig-
ital pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–90, 1981.

[12] R. Agrawal, A. Evfimivski, and R. Srikant, “Information sharing across
private databases,” in Proc. 2003 ACM SIGMOD, San Diego, CA,
USA, 2003, pp. 86–97.

[13] M. Genesereth, A. Keller, and O. Duschka, “Informaster: An informa-
tion integration system,” in Proc. SIGMOD, Tucson, AZ, USA, 1997.

[14] I. Manolescu, D. Florescu, and D. Kossmann, “Answering XML
queries on heterogeneous data sources,” in Proc. VLDB, 2001, pp.
241–250.

[15] J. Kang and J. F. Naughton, “On schemamatching with opaque column
names and data values,” in Proc. SIGMOD, 2003, pp. 205–216.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F.
Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for Internet applications,” IEEE/ACM Trans. Netw., vol. 11,
no. 1, pp. 17–32, Feb. 2003.

[17] R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. Yumerefendi, “The architecture of PIER:
An Internet-scale query processor,” in Proc. CIDR, 2005, pp. 28–43.

[18] O. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi, “A peer-to-peer
framework for caching range queries,” in Proc. ICDE, Boston, MA,
USA, 2004, pp. 165–176.

[19] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A routing scheme for
content-based networking,” in Proc. INFOCOM, Hong Kong, 2004,
pp. 918–928.

[20] Y. Diao, S. Rizvi, and M. J. Franklin, “Towards an Internet-scale XML
dissemination service,” in Proc. VLDB Conf., Toronto, Canada, Aug.
2004.

[21] G. Koloniari and E. Pitoura, “Content-based routing of path queries in
peer-to-peer systems,” in Proc. EDBT, 2004, pp. 29–47.

[22] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. IEEE Symposium on Security and Privacy,
2000, pp. 44–55.

[23] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Proc. ICDCS’10, Genoa, Italy,
pp. 253–262.

[24] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and effi-
ciently searchable encryption,” in Proc. CRYPTO’07, Santa Barbara,
CA, USA, pp. 535–552.

[25] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword
search over encrypted data in cloud computing,” in Proc. ICDCS,
Minneapolis, MN, USA, 2011, pp. 383–392.

[26] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Proc. TCC’07, Amsterdam, The Netherlands, pp.
535–554.

[27] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proc. STOC’09, Bethesda, MD, USA, pp. 169–178.

[28] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search
and oblivious pseudorandom functions,” in Proc. TCC’05, Cambridge,
MA, USA, pp. 303–324.

[29] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for web transac-
tions,” ACM Trans. Inf. Syst. Security, vol. 1, no. 1, pp. 66–92, 1998.

[30] P. F. Syverson, D. M. Goldschlag, and M. G. Reed, “Anonymous con-
nections and onion routing,” in Proc. IEEE S&P, 1997, pp. 44–54.

[31] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong, “Access control in col-
laborative systems,” ACM Comput. Surv., vol. 37, no. 1, pp. 29–41,
2005.

[32] S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and D. Srivastava, “Op-
timizing the secure evaluation of twig queries,” in Proc. VLDB, 2002,
pp. 490–501.

[33] M.Murata, A. Tozawa, andM. Kudo, “XML access control using static
analysis,” in Proc. ACM CCS, 2003, pp. 73–84.

[34] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending
query rewriting techniques for fine-grained access control,” in Proc.
SIGMOD’04, Paris, France, 2004, pp. 551–562.

[35] T. Yu, D. Srivastava, L. V. S. Lakshmanan, and H. V. Jagadish, “Com-
pressed accessibility map: Efficient access control for XML,” in Proc.
VLDB, China, 2002, pp. 478–489.

[36] B. Luo, D. Lee, W. C. Lee, and P. Liu, “Qfilter: Fine-grained run-
time XML access control via NFA-based query rewriting enforcement
mechanisms,” in Proc. CIKM, 2004, pp. 543–552.

[37] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez, M. Kay, J.
Robie, and J. Simon, XML Path Language (XPath). ver. 2.0, 2003 [On-
line]. Available: http://www.w3.org/TR/xpath20/

[38] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati, “A fine-
grained access control system for XML documents,” ACM Trans. Inf.
Syst. Security, vol. 5, no. 2, pp. 169–202, 2002.

[39] E. Damiani, S. di Vimercati, S. Paraboschi, and P. Samarati, “Securing
{XML} documents,” in Proc. EDBT 2000, 2000, pp. 121–135.

[40] H. Zhang, N. Zhang, K. Salem, and D. Zhuo, “Compact access con-
trol labeling for efficient secure XML query evaluation,” Data Knowl.
Eng., vol. 60, no. 2, pp. 326–344, 2007.

[41] Y. Xiao, B. Luo, and D. Lee, “Security-conscious XML indexing,”
Adv. Databases: Concepts, Syst., Applicat., vol. 4443, pp. 949–954,
2007.

[42] E. Bertino, S. Castano, and E. Ferrari, “Securing XML documents with
author-x,” IEEE Internet Comput., vol. 5, no. 3, pp. 21–31, May/Jun.
2001.

900 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 6, JUNE 2013

[43] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati, “Design and
implementation of an access control processor for XML documents.,”
Computer Networks, vol. 33, no. 1–6, pp. 59–75, 2000.

[44] A. Gabillon and E. Bruno, “Regulating access to XML documents,” in
Proc. DAS, 2002, pp. 299–314.

[45] W. Fan, C.-Y. Chan, and M. Garofalakis, “Secure XML querying with
security views,” in Proc. ACM SIGMOD, 2004, pp. 587–598.

[46] M. Kudo, “Access-condition-table-driven access control for XML
databases,” in Proc. ESORICS 2004, 2004, pp. 17–32.

[47] S. Mohan, A. Sengupta, and Y. Wu, “Access control for XML: A dy-
namic query rewriting approach,” in Proc. IKM, 2005, pp. 251–252.

[48] N. Qi and M. Kudo, “XML access control with policy matching tree,”
in Proc. ESORICS 2005, 2005, pp. 3–23.

[49] L. Bouganim, F. D. Ngoc, and P. Pucheral, “Client-based access
control management for XML documents,” in Proc. VLDB, 2004, pp.
84–95.

[50] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo, “Dy-
namic XML documents with distribution and replication,” in Proc.
ACM SIGMOD, 2003, pp. 527–538.

[51] P. Skyvalidas, E. Pitoura, and V. Dimakopoulos, “Replication routing
indexes for XML documents,” in Proc. DBISP2P Workshop, Vienna,
Austria, 2007.

[52] G. Skobeltsyn, “Query-Driven Indexing in Large-Scale Distributed
Systems,” Ph.D. Thesis, EPFL, Lausanne, 2009.

[53] P. Rao and B. Moon, “Locating XML documents in a peer-to-peer net-
work using distributed hash tables,” IEEE Trans. Knowl. Data Eng.,
vol. 21, no. 12, pp. 1737–1752, Dec. 2009.

[54] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu, “Tools
for privacy preserving distributed data mining,” ACM SIGKDD Explo-
rations Newsletter, vol. 4, no. 2, pp. 28–34, 2003.

[55] H. Y. S. Lu, “Commutative cipher based en-route filtering in wireless
sensor networks,” in Proc. VTC, Sep. 2004, vol. 2, pp. 1223–1227.

[56] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R.
Busse, “XMark: A benchmark for XML data management,” in Proc.
VLDB, 2002, pp. 974–985.

[57] H. Lu, J. X. Yu, G. Wang, S. Zheng, H. Jiang, G. Yu, and A. Zhou,
“What makes the differences: Benchmarking XML database imple-
mentations,” ACM Trans. Int. Tech., vol. 5, no. 1, pp. 154–194, 2005.

Fengjun Li received the B.E. degree fromUniversity
of Sciences and Technology of China, the M.Phil. de-
gree from the Chinese University of Hong Kong, and
the Ph.D. degree from the Pennsylvania State Uni-
versity 2010.
She is an Assistant Professor with the Electrical

Engineering and Computer Science Department,
University of Kansas. Her areas of interest include
data and application security, network security, smart
grids security, privacy, and healthcare informatics.

Bo Luo is currently an assistant professor with EECS
Department at the University of Kansas. He received
the Ph.D. degree from The Pennsylvania State Uni-
versity in 2008, the M.Phil. degree from the Chinese
University of Hong Kong in 2003, and the B.E. de-
gree from the University of Sciences and Technology
of China in 2001. He is interested in information re-
trieval, information security, and privacy.

Peng Liu received the B.S. and M.S. degrees from
the University of Science and Technology of China,
and the Ph.D. degree from George Mason University
in 1999.
He is a Full Professor of Information Sciences

and Technology, founding director of the Center for
Cyber-Security, Information Privacy, and Trust, and
founding director of the Cyber Security Laboratory
at Penn State University. His research interests are in
computer and network security. He has published a
monograph and over 200 refereed technical papers.

Dongwon Lee is currently an associate professor
of College of Information Sciences and Technology
(IST) with the Pennsylvania State University. He
received the B.S. degree from Korea University in
1993, the M.S. degree from Columbia University in
1995, and the Ph.D. degree from UCLA in 2002, all
in computer science.
Between the M.S. and Ph.D. degrees, he worked

at AT&T Bell Laboratories from 1995 to 1997. His
main research interests are data management and
mining.

Chao-Hsien Chu is a Professor of Information
Sciences and Technology at the Pennsylvania State
University (USA), where he received the Ph.D.
degree in business in 1984. His research interests
include information security and privacy assurance;
the integration and applications of smart sensing
and RFID technologies; intelligent technologies and
their applications; and operations and technolog-
ical innovations. He has published more than 170
papers, many of which are in top-ranking journals
or proceeding such as IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATIONS, IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING, INFORM Journal on Computing, Decision Sciences,
ACM Conference on EC, ACM Conference on CCS, etc. He is currently on
sabbatical leave to Singapore Management University, Singapore, where he
serves as the Visiting Professor of Information Systems and Associate Dean.

