
SEDB: Building Secure Database Services for
Sensitive Data

Quanwei Cai123, Jingqiang Lin12?, Fengjun Li4, and Qiongxiao Wang12

1 State Key Laboratory of Information Security,Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, 100093, China;

2 Data Assurance and Communication Security Research Center, Chinese Academy
of Sciences, Beijing, 100049, China;

3 University of Chinese Academy of Sciences, Beijing, 100049, China.
4 The University of Kansas, Lawrence, KS 66045, USA;

{qwcai, linjq}@is.ac.cn, fli@ku.edu, qxwang@is.ac.cn

Abstract. Database outsourcing reduces the cost of data management,
however, the confidentiality of the outsourced data is a main challenge.
Existing solutions [13, 17, 9, 16] either adopt multiple encryption schemes
for data confidentiality that only support limited operations, or focus
on providing efficient retrieval with problematic update support. In this
paper, we propose a secure database outsourcing scheme (SEDB) based
on Shamir’s threshold secret sharing for practical confidentiality against
honest but curious database servers. SEDB supports a set of commonly
used operations, such as addition, subtraction, and comparison, and is
among the first to support multiplication, division, and modular. We
implement a prototype of SEDB, and the experiment results demonstrate
a reasonable processing overhead.

Keywords: Database, outsourcing, confidentiality, secret sharing

1 Introduction

In cloud computing environment, database outsourcing can lower operational
cost [4], thus enables organizations to focus on their core businesses. However,
outsouring sensitive data to the third parties increases the risk of unauthorized
disclosure, as curious administrators can snoop on sensitive data, and attackers
can access all the outsourced data once it compromises the third parties.

There are two approaches to provide confidentiality in database outsouring.
One is based on client-side encryption, where the clients (or proxies) encrypt
the data before uploading it to database servers so that the servers perform the
requested operation over the encrypted data. Fully homomorphic encryption [6]
allows the servers to execute arbitrary functions over one encryption of the data.
However, fully homomorphic encryption is still prohibitive impractical [7], which
requires slowdowns on the order of 109×. CryptDB [13] and MONOMI [17]

? Corresponding author.

2 Quanwei Cai et al.

implement multiple cryptosystems, each of which supports a class of SQL queries,
such as AES with a variant of the CMC mode [10] for equality comparison,
order-preserving encryption [3] for range query, Paillier cryptosystem [12] for
summation, and the efficient retrieval protocol [15] for word search. As a result,
they have to maintain multiple copies of a same sensitive data. Moreover, these
schemes do not support the update operation well. For instance, when the data
is updated by summation, only the copy encrypted with Paillier cryptosystem
will be updated while the other copies remain stale, which harms the execution
of other queries. Last but not least, these schemes cannot support operations
such as multiplication, division, and modulus.

The other solutions are based on threshold secret sharing [14] in which the
clients split the sensitive data into shares and store them in different servers.
Solutions of this category require more servers than the encryption-based ones
do. However, with the advances in virtualization, the hardware cost has been
decreased remarkably. It is believed that the implementation cost should not
be the main obstacle to the adoption of these solutions. Several schemes are
proposed to achieve efficient retrieval. For example, AS5 [9] preserves the order
of the data in the shares by choosing appropriate coefficients of the polynomial
for secret sharing, and a B+ index tree is built to improve the query processing
in [16]. With a focus on efficient retrieval, these solutions not only require a
priori knowledge about the data, but also support the update operations poorly.

In this paper, we proposed a secure database outsourcing scheme (SEDB)
based on Shamir’s threshold secret sharing. SEDB employs three independent
database servers to store shares of sensitive data for the clients, and coordinates
the three servers to complete the clients’ requested operations cooperatively. In
summary, SEDB has the following properties:

– It supports a wider set of operations including multiplication, division and
modulus in addition to addition, subtraction and comparison. To the best of
our knowledge, it is the first practical solution that supports these operations.

– SEDB is easy to deploy as it is an out-of-the-box solution. SEDB needs no
modification on the database management system (DBMS) and applications
of database services. Moreover, SEDB doesn’t need any priori knowledge of
the data for the setup of the database.

– It provides a continuous database outsourcing service. Existing encryption-
based solutions requires costly and problematic coordination to keep multiple
copies of data consistent, and secret sharing based solutions often needs to
maintain additional information (e.g., the index tree [16], the mapping [1, 9]),
which may interrupt the database service during data updating. Unlike them,
SEDB only maintains one share of the data at each database server, and thus
ensures a continuous database outsourcing service. We have implemented
SEDB on MySQL, which is the first prototype providing continuous database
outsourcing service based on secret sharing, to the best of our knowledge.

SEDB: Building Secure Database Services for Sensitive Data 3

Fig. 1. The architecture of SEDB.

2 System Overview

As shown in Figure 1, SEDB consists of three backend database servers, a SEDB
coordinator, and a set of SEDB client plug-ins (denoted as SEDB plug-ins),
one at each client. A client has several applications of the database service.
When an application issues an SQL query, the SEDB plug-in rewrites the query
according to its operation type and sends it to the SEDB coorinator which
generates three SQL queries from it and distributes each to the backend database
server. There is an unmodified DBMS and several user-defined functions (UDFs)
in each backend database server, which executes the requested operations over
the shares of sensitive data. In SEDB, the applications need no modification to
execute the functions over sensitive data, they issues the SQL queries through the
standard API and library; the SEDB plug-in is responsible for sharing sensitive
data and recovering it for the applications; the SEDB coordinator ensures the
requets processed at each database server in the same order and makes the
backend database servers complete the requested operation through one or two
phases of communications with the backend database servers.

Trust model. In SEDB, we assume the clients that are authorized to process
the sensitive data are trusted. The SEDB plug-in deployed at client side is also
trusted and assumed to follow the protocol strictly without leaking any sensitive
data. On the contrary, the SEDB coordinator and the backend database servers
deployed at different third parties are assumed to be honest but curious: on one
hand, the honest coordinator/server executes the requested operations without
tampering with query content, its execution and result, or the sensitive data
in the DBMS; on the other hand, a curious coordinator/server may infer the
sensitive data from the submitted queries, the execution results, or the priori
knowledge about the outsourced data.

Network assumption. We assume the messages transmitted between the client
(the SEDB plug-in) and the SEDB coordinator, the SEDB coordinator and the
database servers can be captured by attackers. Therefore, we employ AES to
ensure message confidentiality. Each server shares a secret key with the other
servers and all clients, e.g., kc,si between the client c and server i. The message
m encrypted with the key k is denoted as [m]k. Moreover, we assume the clients

4 Quanwei Cai et al.

have limited bandwidth, while the bandwidth of the SEDB coordinator and the
servers are reasonably large enough in the cloud computing environment.

Finally, although we present SEDB with a focus on the process over the
integers, it can be extended to support the data of other types (e.g., char, varchar
and float), by transforming them into one or more integers. As we adopt Shamir’s
threshold secret sharing scheme [14] to share sensitive data, we assume that there
exists a large prime p such that all the computation results on the sensitive data
are in the interval [−(p− 1)/2, (p+ 1)/2).

3 The Protocol

In SEDB, the applications, SEDB plug-ins, SEDB coordinators and database
servers exchange messages through SQL queries, which ensures no modification
of DBMSes and applications. For example, to insert a value v into the table test
as the attribute attr, the application issues “insert into test(attr) values(v)”. The
SEDB plug-in sends “insert into test(attr) values(enshares(v))” to the SEDB
coordinator, where enshares(v) is a vector of encrypted shares of v. The SEDB
coordinator sends “insert into test(attr) values(DecShare(enshares(v)[i]))” for
server i where DecShare is a UDF to execute decryption. The SQL queries for
all the operations are detailed in the appendix A.

We assume, in each table, there is a unique identifier of each row (i.e., the
primary key). SEDB needs a shadow for each table to store the intermediate
transformation of the original data. The shadow table is designed for the process
of comparison, division and modulus.

3.1 Query processing

SEDB supports a set of operations including addition, subtraction, comparison,
multiplication, division, and modulus. We first describe the detailed process of
single operator and then discuss the process of SQL queries that contain multiple
operators in section 3.2.

3.1.1 Insert
The applications use insert operation to insert a confidential value v into the
database. An application invokes an insert process by sending the SQL query
with v as the parameter to the SEDB plug-in.

The SEDB plug-in parses the SQL query to get the value v, and uses Shamir’s
(2, 3)-threshold secret sharing scheme [14] to split v into 3 shares, where any 2 or
more shares can be used to reconstruct v. To compute the shares of v, the SEDB
plug-in produces the polynomial f(x) = a1x+a0, where a0 = v, and a1 is a non-
zero integer chosen randomly from [−(p−1)/2, (p+ 1)/2). Using the predefined
vector X = {x1, x2, x3}, where non-zero xi ε [−(p−1)/2, (p+1)/2), the SEDB
plug-in calculates f(xi) as the share for database server i. The large prime p and
the vector X are known to all participants. Then, the SEDB plug-in rewrites the
query by replacing v with the share vector {[f(x1)]kc,s1

, [f(x2)]kc,s2
, [f(x3)]kc,s3

},

SEDB: Building Secure Database Services for Sensitive Data 5

and sends it to the SEDB coordinator. After that, the SEDB plug-in discards
the polynomial. The SEDB coordinator splits the received SQL query into three
queries, each with one encrypted share, for three backend database servers. On
receiving the query, each database server decrypts the encrypted share, and
stores it in the database.

3.1.2 Select
The applications use the select operation to retrieve the values that satisfy a
specified condition. The SEDB plug-in forwards the select SQL query from the
application to the SEDB coordinator directly, which further sends the received
query to all three database servers. Then, each server encrypts its shares, and
sends back to the SEDB coordinator as the response. On receiving the responses,
the SEDB coordinator sorts them by the servers’ identifiers, and sends them to
the SEDB plug-in. Finally, the SEDB plug-in decrypts the encrypted shares,
reconstructs the values and returns the retrieved values to the applications.

3.1.3 Addition & Subtraction
In SEDB, applications can compute the addition and subtraction of two or more
confidential values without recovering them. The process of the subtraction is the
same as the addition, except that each server executes the subtraction instead
of addition on the shares. So we only present the process for the addition here.

The application may want to perform additions on existing values in the
database, or add a constant to an existing value. Without loss of generality, the
former case can be expressed as updating v3 with v1 + v2. To process it, the
SEDB plug-in and SEDB coordinator simply forward the update query to three
database servers, where each server updates v3 with the summation of its local
shares of v1 and v2. Assume the polynomials for v1 and v2 are f1(x) = a1x+ v1
and f2(x) = b1x + v2 respectively. Since the Shamir’s secret sharing scheme is
linear, v3 is shared using the polynomial f3(x) = (a1+b1)x+(v1+v2). In the latter
case, when the application wants to add a constant const to an existing value v1
in the database, the SEDB plug-in needs to pre-process const by splitting it using
the (2,3)-threshold secret sharing scheme. The encrypted shares are decrypted
at each server and added to the corresponding share, respectively.

3.1.4 Multiplication
Compared to addition, the process of multiplication is more complicated since
the multiplication of two shares increases the degree of the generated polynomial.
In particular, when updating v3 with v1 ∗ v2, the degrees of the polynomials for
v1 and v2 are 1, while the degree of the generated polynomial for v3 increases to
2, which means 3 shares are needed to recover the result of the multiplication.
To reduce the degree back to 1, we adopt the degree reduction scheme in [5] in
the process of the multiplication.

To process the multiplication, we introduce three UDFs at database servers:
NewMul1, NewMul2, and MulConst. When the SEDB coordinator receives a mul-
tiplication query from the SEDB plug-in, it rewrites the query by replacing the

6 Quanwei Cai et al.

operator ∗ with UDF NewMul1 and sends the rewritten query to all three backend
database servers. To execute NewMul1, server i multiplies its shares of v1 and v2
to compute mul1i = v1 ∗ v2, and then splits mul1i using (2, 3)-threshold secret
sharing scheme. The share vector {[share1(mul1i)]ks1,si

, [share2(mul1i)]ks2,si
,

[share3(mul1i)]ks3,si
}, with each subshare encrypted by pairwise secret key, is

returned the SEDB coordinator.
The SEDB coordinator combines the share vectors from three servers to

generate parameters of UDF NewMul2. In particular, database server i takes
parameter ([sharei(mul11)]ks1,si

, [sharei(mul12)]ks2,si
, [sharei(mul13)]ks3,si

) to

compute muli =
∑3

k=1 λk ∗ sharei(mul1k) where {λ1, λ2, λ3} is the first row
vector of the following matrix in [−(p−1)/2, (p+1)/2). Then, muli is server i’s
share of the multiplication result using (2, 3)-threshold secret sharing scheme.1 x1 x21

1 x2 x22
1 x3 x23

−1 (1)

The multiplication with a constant can take two different approaches. The
SEDB plug-in can simply invoke a UDF MulConst at three backend database
servers to multiply each local share with this constant. In the case where the
value of the constant needs protected, the SEDB plug-in needs to take a similar
process as presented earlier in this section: it first splits the constant with a
(2, 3)-threshold secret sharing scheme, sends the encrypted sub-shares to each
backend database server, and executes the multiplication of two shares.

3.1.5 Division & Modulus
In SEDB, we cannot directly perform the division or modulus on the shares in the
backend database servers. Certain transformations of the operands are necessary
to support the division and modulus operations. In particular, to calculate v1/v2
or v1%v2, we propose to generate v

′

1 = t1 ∗v1 + t1 ∗ t2 ∗v2 and v
′

2 = t1 ∗v2, where
t1 and t2 are non-zero integers chosen randomly from [−(p − 1)/2, (p + 1)/2).
Then we can represent the division and modulus of v1 and v2 as a combination
of addition, subtraction and multiplication operations on v1, v2, and v

′

1/s
′

2, i.e.,
v1/v2 = v

′

1/v
′

2 − t2, v1%v2 = v1 − v
′

1/v
′

2 ∗ v2 + t2 ∗ v2. If v1 or v2 is a constant,
we can create a dummy column firstly, then the computing is the same as the
division and modulus on existing values in the database.
Division: The SEDB plug-in and the SEDB coordinator cooperate to generate
random v

′

1 and v
′

2, and compute the value of v1/v2. In particular, the SEDB
plug-in first chooses three different polynomials of degree 1 to share t1, t2 and
t1∗t2, and then sends the encrypted shares to the SEDB coordinator. The SEDB
coordinator forwards the shares to corresponding backend database servers and
invokes a UDF Div1 at each database server to calculate its shares of v

′

1 and
v

′

2. With ([sharei(t1)]kc,si
, [sharei(t2)]kc,si

, [sharei(t1∗t2)]kc,si
), server i updates

the shadow of v1 with sharei(v1) ∗ sharei(t1) + sharei(v2) ∗ sharei(t1 ∗ t2), and
the shadow of v2 with sharei(v2)∗sharei(t1), encrypts the shadows for the other
two servers, and returns the result to the SEDB coordinator. Then the SEDB

SEDB: Building Secure Database Services for Sensitive Data 7

coordinator forwards the encrypted shadows to the corresponding servers and
invokes a UDF Div2 in each database server to reconstruct v

′

1 and v
′

2. As a result,
each server calculates its share of v1/v2 as v

′

1/v
′

2 − sharei(t2).
Modulus: To calculate v1%v2, the SEDB plug-in and the SEDB coordinator
take a similar process to prepare the Shamir’s (2, 3)-threshold shares of t1,
t2, t1 ∗ t2, and update the shadow of v1 and v2 by invoking a UDF Mod1 at
three database servers. In the execution of Mod1, each server invokes NewMul1

to generate the share vector for t2 ∗ v2. Then, the SEDB coordinator invokes
a UDF Mod2 at each server, which generates its share of t2 ∗ v2 by invoking
NewMul2, recovers v

′

1 and v
′

2, and generates its share of v1%v2 by calculating
sharei(v1)− v′

1/v
′

2 ∗ sharei(v2) + sharei(t2 ∗ v2).

3.1.6 Comparison
As the shares of the confidential values are not order-preserving in SEDB, we
perform the comparison by comparing the order-preserving transformations of
the values. For example, to compare two values v1 and v2, we first compute
v

′

1 = t1∗v1+t2 and v
′

2 = t1∗v2+t2, where t1 is randomly chosen from (0, (p+1)/2)
and t2 from [−(p − 1)/2, (p + 1)/2). As a monotonic transformation, the order
of v

′

1 and v
′

2 determines the order of v1 and v2.
To calculate v

′

1 and v
′

2, the SEDB plug-in prepare the three shares for t1
using a polynomial of degree 1 and a polynomial of degree 2 for t2, and then
sends the encrypted shares to the SEDB coordinator, which further forwards
([sharei(t1)]kc,si

, [sharei(t2)]kc,si
) to server i as the input of a UDF Compare1.

Each backend database server i executes Compare1 by computing sharei(t1) ∗
sharei(v1) + sharei(t2) and sharei(t1) ∗ sharei(v2) + sharei(t2), encrypts the
results for other two servers, and returns the encrypted results to the SEDB
coordinator. After collecting the results from all three backend database servers,
the SEDB coordinator invokes a UDF Compare2 to reconstruct v1

′ and v
′

2 at
each server using the (3, 3)-threshold secret sharing schemes, for comparison.

To compare a confidential value with a constant const, the SEDB plug-in
firstly computes t1 ∗ const + t2, encrypts it, and sends it to each server, which
compares it with the same transformations of the confidential value.

3.2 Discussions

SEDB supports complex SQL queries that contain a combination of the above
operators. The SEDB plug-in needs to determine the order of operations, and
prepares the parameters for all the operators and sends it in one SQL query
to the SEDB coordinator. The SEDB coordinator parses the received query,
extracts the parameters for each UDF, and then invokes multiple UDFs at the
backend database servers in order.

SEDB also supports aggregation queries. SEDB process the count function
similarly as in the original DBMS. To calculate the sum of data in a particular
column, the SEDB coordinator asks all servers to return the summation of their
shares for all the data in that column, and returns the result to the SEDB plug-
in for recovering the summation of that column. From the results of sum() and

8 Quanwei Cai et al.

count(), the SEDB plug-in can calculate the average of a particular column.
To process the min(), max(), Group by, or Order by operations on a column,
the SEDB coordinator invokes UDFs Compare1 and Compare2 to update the
shadow of that column using its order-preserving transformation, and executes
the min(), max(), Group by and Order by functions on the shadow column.

SEDB supports the join of columns as well. The process of join is similar
to the comparison, that is, we process the join on the shadow columns, which
is the same order-preserving transformations of the selected columns.

Since many SQL operators process NULL differently from the execution on
non-NULL values, SEDB stores the NULL values in plaintext. Finally, SEDB is
limited in supporting certain DBMS mechanisms such as transactions and index-
ing in its current version for the complexity in multi-round processing between
the SEDB coordinator and the backend database servers.

4 Security Analysis

In this section, we analyze the security of SEDB briefly. In SEDB, the sensitive
data is split using Shamir’s threshold secret sharing scheme. The adversaries
and SEDB coordinator can never obtain any plaintext share, as they have no
keys to decrypt the transmitted encrypted shares, thus they can never infer the
sensitive data. Each database server cannot reconstruct the sensitive data from
its local shares, as it owns only one share for each data. Moreover, the servers
are assumed to be honest, they never collude with each other to acquire enough
shares to reconstruct the data. In the following, we show that the database
servers cannot infer the sensitive data from the process of the operations, either.

In SEDB, the servers with no priori knowledge of the data and queries,
cannot infer any sensitive data during the executions. To process addition, each
server summarizes its local shares and gains no information from others. To
process multiplication, each server cooperatively completes the degree reduction.
As analyzed in [5], the generated polynomial is random, and each server owns
only one share of the multiplication. To process division and modulus, each server
obtains the transformations of two confidential values v1 and v2, such as t1 ∗v1 +
t1 ∗ t2 ∗ v2 and t1 ∗ v2. As the randomly chosen t1 and t2 are different in different
processes and never reconstructed, each server cannot deduce v1 and v2 from the
transformations. Each server determines the order of two confidential values v1
and v2 by the order-preserving transformation t1 ∗ v1 + t2 and t1 ∗ v2 + t2. As t1
and t2 are chosen randomly and differently each time, and never reconstructed,
the servers cannot infer v1 and v2 or other statical information (e.g., v1 − v2,
v1/v2) from the transformations.

SEDB prevents the adversarial servers inferring the sensitive data from priori
knowledge of the data and queries. The server may attempt to gain the sensitive
data from some known values (e.g., the minimum and maximum) or keywords in
some special queries. As each data is split independently, and the statical relation
of the values isn’t preserved in their shares, the server cannot deduce unknown
values from its local database. In the execution of addition and multiplication,

SEDB: Building Secure Database Services for Sensitive Data 9

each server only gains its share of the result, no useful information for statical
attacks. To execute v1/v2 and v1%v2, each server obtains the transformations
v

′

1 = t1∗v1+t1∗t2∗v2 and v
′

2 = t2∗v2. However, noticing that t1 (or t2) is chosen
independently in different executions, the adversarial server cannot infer t1 (or
t2) from multiple executions; in one execution, the adversarial server cannot
deduce v2, t1 or t2 from known v1, v

′

1 and v
′

2, it can either infer v1, t1 from v2,
v

′

1 and v
′

2. Therefore, the server cannot gain any unknown value from the known
ones and their transformations in the process of division and modular.

In the process of comparison, SEDB can be extended to prevent statistical
attacks. In current version, with two known values and their order-preserving
transformations, an adversary can deduce the coefficients of the transformation,
and thus infers other confidential values from their transformations. To compare
v1 and v2, we extend SEDB as follows: (1) we calculating v

′

1 = t1 ∗ v1 + t2
and v

′

2 = t1 ∗ v2 + t
′

2, where t2 and t
′

2 are chosen independently and randomly
from [1, r]; (2) if v

′

1 − v
′

2 > (r − 1) or v
′

2 − v
′

1 > (r − 1), the order of v1 and
v2 is determined by v

′

1 and v
′

2, otherwise, the shares of v1 and v2 are returned
to the SEDB plug-in who recovers v1 and v2 for comparison. The value r is
specified at the setup of the database, if r is set as the size of that column, all
comparison are processed at the SEDB plug-in, which leaks no information at the
cost of efficiency. In the extended version, the adversarial server cannot infer any
unknown confidential value even it knows the transformation and t1, as it cannot
distinguish the exact value from r potential inverses of the transformation.

5 Performance Evaluation

We have implemented the prototype of SEDB, which consists of the SEDB plug-
in, SEDB coordinator and backend database servers. The SEDB plug-in and
SEDB coordinator each contain a C++ library and a Lua module. The library in
the SEDB plug-in rewrites the queries from applications, constructs the results
based on the results from the SEDB coordinator, splits and reconstructs the
confidential values, encrypts and decrypts the shares. The library in the SEDB
coordinator splits the query from the SEDB plug-in for each backend database

Table 1. The average response time for operations in the first class (in ms).

Num of rows 1 2 10 40 100 400 1000 3000 5000 10000

Insert
SEDB 5.00 5.01 5.34 5.37 5.06 4.99 5.47 5.70 5.73 5.86

MySQL 1.45 1.65 2.28 1.82 1.34 1.72 1.19 1.24 1.11 1.29
Ratio 3.45 3.04 2.34 2.95 3.78 2.91 4.62 4.60 5.18 4.56

Select
SEDB 3.23 3.19 3.72 5.38 8.33 23.11 46.97 129.95 200.17 364.87

MySQL 0.74 0.85 0.91 1.31 1.52 3.47 6.53 14.72 28.33 43.80
Ratio 4.35 3.75 4.07 4.10 5.49 6.66 7.19 8.83 7.07 8.33

Add
SEDB 4.65 4.55 4.79 5.11 5.82 8.81 15.56 32.60 51.44 93.79

MySQL 1.47 1.46 1.59 1.54 2.16 3.73 6.08 12.08 18.45 35.47
Ratio 3.17 3.11 3.00 3.31 2.69 2.36 2.56 2.70 2.79 2.64

10 Quanwei Cai et al.

server, issues the query based on the replies from the servers, and constructs
the result for the SEDB plug-in. To provide transparent database service, we
adopts MySQL proxy [11] which invokes our Lua module to pass queries and
results to and from the C++ library in the SEDB plug-in. MySQL proxy is also
deployed in the SEDB coordinator which invokes the Lua module to capture
the queries from the SEDB plug-in, and passes them to the C++ library for
further process. Each backend database server uses MySQL 5.1 as DBMS, we
implement 15 UDFs at each server to compete the computation on the shares.
The big prime p is 128 bits, and the X vector is set as {1, 2, 3}. The secret
sharing scheme and AES are implemented using NTL [18].

All experiments ran with three database servers, one trusted client and one
SEDB coordinator in an isolated 100Mbps Ethernet. The database servers and
SEDB coordinator ran on identical workstations with an Intel i7-3770 (3.4 GHz)
CPU and 4GB of memory. The application and SEDB plug-in were deployed in
one physical machine with an Intel 2640M (2.8 GHz) CPU and 4GB of memory.
The operating systems of all the nodes are Ubuntu 12.04. Each database server
maintains a table test, which sets id as the primary key and has two attributes
attr1 and attr2.

We evaluated the processing overhead for ensuring confidentiality of sensitive
data in SEDB, by comparing each operation’s processing time in SEDB with it in
the original MySQL. We measured the average processing time by issuing a SQL
query with a single operation 100 times, to operate on test with different numbers
of rows (denoted as n). For better comparison, we classify the operations into
two classes according to the number of needed communication rounds between
the SEDB coordinator and each database server. The operations select, insert,
addition and subtraction, need only one round and belong to the first class. The
remains need two rounds and are categorized into the second class.

Table 1 lists the ratio of the processing time in SEDB to that in MySQL for
the operations in the first class. To evaluate the processing time for insert, select
and addition, we use SQL queries “insert into test(attr1,attr2) values (u1,u2)”
(u1 and u2 are random values), “select * from test” and “update test set attr1 =
attr1+attr2” respectively. As illustrated in table 1, the overhead for operations
in the first class is modest. For insert and addition, the processing overhead is
independent of n, and is at most 3.6× and 2.31× respectively when n ≤ 10000.
The main sources of SEDB’s overhead for insert and addition is the message
transmitting, as the critical communication path is 3 in SEDB and 1 in MySQL.
The processing overhead for select increases slightly as n increases, from 3.35×
when n = 1 to 7.33× when n = 10000. The overhead is increasing mainly because
the size of messages for the clients increases quicker in SEDB than in MySQL,
as the SEDB plug-in has to receive three shares instead of the original data.

Table 2 illustrates the processing overhead for operations in the second class.
We evaluate the processing time for multiplication, division, modulus and com-
parison, using SQL queries “update test set attr1 = attr1 ∗ attr2”, “update test
set attr1 = attr1/attr2”, “update test set attr1 = attr1%attr2” and “update
test set attr1 = attr1 where attr1 > attr2” respectively. As among the existing

SEDB: Building Secure Database Services for Sensitive Data 11

Table 2. The average response time for operations in the second class (in ms).

Num of rows 1 2 10 40 100 400 1000 3000 5000

Mul
SEDB 9.01 10.82 18.14 41.24 87.53 273.35 742.00 1910.84 3185.17

MySQL 1.77 1.73 1.78 1.96 2.43 3.85 5.68 12.47 18.80
Ratio 5.09 6.27 10.17 21.00 36.03 70.92 130.73 153.19 169.41

Div
SEDB 9.10 14.36 24.95 75.50 149.92 451.35 1336.40 6918.89 15391.94

MySQL 1.81 1.67 1.45 2.03 2.18 3.60 6.00 12.66 19.00
Ratio 5.02 8.62 17.18 37.28 68.63 125.30 222.88 546.64 809.93

Mod
SEDB 10.94 16.05 45.31 135.35 296.01 1283.04 2417.34 6132.38 14270.56

MySQL 1.73 1.80 1.33 1.94 2.00 4.05 6.84 15.00 27.33
Ratio 6.31 8.92 33.94 69.65 147.77 316.71 353.22 408.84 522.18

Compare
SEDB 9.73 11.59 21.22 53.72 119.97 304.24 795.89 2545.82 5671.55

MySQL 0.86 0.85 0.92 1.26 1.35 2.25 4.14 10.59 32.68
Ratio 11.34 13.69 23.07 42.75 88.72 135.45 192.14 240.36 173.52

solutions, only the ones based on fully homomorphic encryption can execute the
multiplication at the servers, which introduces a overhead of 109× [17], SEDB is
a more practical solution, whose overhead for multiplication is at most 168.41×
when n ≤ 5000. For the operations in the second class, the processing overhead
in SEDB increases with n, from a rather small one (10.34× for comparison when
n = 1) to 808.93× for division when n = 5000. It’s mainly because, with the
increase of n: (1) the time for the servers to complete the operations increases
quicker in SEDB than in MySQL, as the servers in SEDB have to invoke UDFs n
times; (2) the sizes of messages transmitted by the SEDB coordinator increase,
the sizes are 9zn, 15zn, 24zn, 12zn for multiplication, division, modulus and
comparison, where z is the size of the share and is 16 bytes in our evaluation.
The overhead can be reduced when the database servers and SEDB coordinator
are deployed in the cloud, where the computing resources and bandwidth are
increased remarkably.

6 Related Works

Hacigumus et al. [8] firstly proposed to provide the database as a service in
2002. They encrypt the database with a symmetric encryption, such as AES,
and place it on the untrusted server. Hacigumus partitions the domain of each
column into several disjoint subsets and assigns each partition with an unique
partition id. When accessing the service, the trusted client rewrites the query
by replacing the confidential value with the id of the partition that the value
belongs to. Therefore, the results from the server contains false ones which re-
quires the clients to postprocess it. Moreover, this scheme doesn’t support the
aggregates well, for example, when the client wants to get summation of some
column, it should acquire the entire column firstly, while each database returns
the summation of the shares to the client (SEDB plug-in) directly in SEDB.

CryptDB [13] is a more practical solution. It uses different cryptosystems
to support different types of queries, and maintains up to four columns for one

12 Quanwei Cai et al.

column in the original database. CryptDB cannot ensure the consistency of the
different shadow columns for one original column which makes the result of some
queries false. For example, when an addition is executed on the column encrypted
using Paillier [12], the data in other columns are stale. In SEDB, there is only
one column that stores the shares which ensures the correctness of the results.
Moreover, CryptDB cannot support SQL queries involving the multiplication or
division as it does not adopt any cryptosystem that can handle multiplications.

MONOMI [17] extends CryptDB to support more SQL queries by splitting
client/server execution of complex queries, which executes as much of the query
as is practical over encrypted data on the server, and executes the remaining
components on trusted clients, who will decrypt the data and processes queries
further. SEDB provides the transparent database service and doesn’t require the
modification on the clients. Cipherbase [2] provides secure database outsourcing
service with the trusted hardware on the untrusted server. The trusted hardware
executes arbitrary computation over the encrypted data.

Threshold secret sharing scheme has also been used to provide secure database
outsourcing service. Existing works mainly focus on improving the performance
for retrieval. Tian [16] builds a privacy preserving index to accelerate query.
Agrawal [1] utilizes hash functions to generate the distribution polynomials to
achieve efficient retrieval. AS5 [9] preserves the order of the confidential values in
their shares by choosing the appropriate polynomials, to make query execution
efficient. However, these schemes need to know the distribution of the data in
advance, and doesn’t support the update on the data.

7 Conclusion

In this paper, we propose a secure database oursourcing scheme, SEDB, to en-
sure the confidentiality of the outsourced database. SEDB is based on Shamir’s
threshold secret sharing scheme, in which the sensitive data is split into three
shares and stored in three independent, honest but curious servers. In SEDB, the
database servers execute functions over the shares without recovering the data.
The execution is leaded by a honest but curious SEDB coordinator, which makes
the servers cooperatively execute the operation. SEDB supports the functions
including insert, select, ddition, subtraction, multiplication, division, modular
and comparison, and provides continuous database outsourcing service.

Acknowledgments. Q. Cai, J. Lin and Q. Wang were partially supported
by National 973 Program of China under award No. 2014CB 340603 and the
National Natural Science Foundation of China (Grant No.61402470).

References

1. Agrawal, D., El Abbadi, A., Emekci, F., et al.: Secure data management service on
cloud computing infrastructures. In: New Frontiers in Information and Software as
Services, pp. 57–80. Springer (2011)

SEDB: Building Secure Database Services for Sensitive Data 13

2. Arasu, A., Blanas, S., Eguro, K., et al.: Secure database-as-a-service with Ci-
pherbase. In: Proceedings of the 2013 international conference on Management
of data. pp. 1033–1036. ACM (2013)

3. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric en-
cryption. In: Proc. of the 28th EUROCRYPT. pp. 224–241. Springer-Verlag (2009)

4. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: Live migration in shared
nothing databases for elastic cloud platforms. In: Proc. of SIGMOD. pp. 301–312.
ACM (2011)

5. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Proc. of the annual
ACM symposium on Principles of distributed computing. pp. 101–111. ACM (1998)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of the
41st annual ACM symposium on Symposium on theory of computing (STOC). pp.
169–169. ACM Press (2009)

7. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:
Advances in Cryptology (CRYPTO), pp. 850–867. Springer (2012)

8. Hacigümüş, H., Iyer, B., Li, C., et al.: Executing SQL over encrypted data in the
database-service-provider model. In: Proc. of SIGMOD. pp. 216–227. ACM (2002)

9. Hadavi, M.A., Damiani, E., Jalili, R., et al.: AS5: A secure searchable secret sharing
scheme for privacy preserving database outsourcing. In: Data Privacy Management
and Autonomous Spontaneous Security, pp. 201–216. Springer (2013)

10. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Advances in Cryptology
(CRYPTO), pp. 482–499. Springer (2003)

11. M. Taylor: MySQL proxy. https://launchpad.net/mysql-proxy
12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity class-

es. In: Advances in cryptology (EUROCRYPT). pp. 223–238. Springer (1999)
13. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: Processing

queries on an encrypted database. Communications of the ACM pp. 103–111 (2012)
14. Shamir, A.: How to share a secret. Communications of the ACM pp. 612–613 (1979)
15. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted

data. In: Proc. of IEEE S&P. pp. 44–55. IEEE (2000)
16. Tian, X., Sha, C., Wang, X., Zhou, A.: Privacy preserving query processing on

secret share based data storage. In: Database Systems for Advanced Applications.
pp. 108–122. Springer (2011)

17. Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing analytical queries
over encrypted data. In: Proc. of the VLDB Endowment. vol. 6, pp. 289–300. VLDB
Endowment (2013)

18. V. Shoup: NTL: A library for doing number theory. http://www.shoup.net/ntl/

14 Quanwei Cai et al.

A Appendix

SEDB is an out-of-the-box solution for secure database outsourcing service,
which needs no modification on the applications and DBMS. The participants
in SEDB exchange messages through SQL queries and the replies. We describe
a sample of the message exchanges in SEDB for each operation in Figure 2. In
particular, we assume the application operates on the table test, which sets id
as the primary key, and has three attributes attr1, attr2 and attr3. The table
shadowtest is the shadow of test.

Application SEDB plug-in SEDB coordinator Database server i

insert into test(attr1) values(v) insert into test(attr1) values(encshares(v)) insert into test(attr1) values(DecShare(encshares(v)[i]))insert

select attr1 from test select attr1 from test
select EncShare(attr1) from test

update test set attr3=attr1+attr2

select

update test set attr3=attr1+attr2 update test set attr3=NewAdd(attr1,attr2)addition

update test set attr3=attr1*attr2 update test set attr3=attr1*attr2 select NewMul1(att1,attr2,id) from test

encshares(attr1*attr2)[i] sorted by id

update set attr3=NewMul2(

{encshare(attr1*attr2)[j][i] | j=0,1,2})

multiplication

update test set attr3=attr1/attr2 update test set attr3=NewDiv(att1,attr2,

encshares(t1),encshares(t2),encshares(t1*t2))

encshares(attr1')[i], encshares(attr2')[i] sorted by id

update test set attr3 = Div2(encshares(attr1'), encshares(attr2'))

update test set attr3 =

 attr1%attr2
update test set attr3=NewMod(att1,attr2,

encshares(t1),encshares(t2),encshares(t1*t2))

select Mod1(att1,attr2,encshares(t1)[i],

encshares(t2)[i], encshares(t1*t2)[i], id) from test

encshares(attr1')[i], encshares(attr2')[i],

encshares(attr2*t2)[i] sorted by id

update test set attr3 = Mod2(encshares(attr1'),

encshares(attr2'), {encshares(attr2*t2)[j][i] |j=0,1,2})

modular

select 1 from test where

attr1>attr2
select 1 from test where NewCompare(

attr1,attr2,encshares(t1),encshares(t2))>0 select Compare1(attr1, attr2, encshares(t1)[i],

encshares(t2)[i], id) from test

encshares(attr1')[i], encshares(attr2')[i] sorted by id

update shadowtest set attr1=Compare2(encshares(attr1')),

attr2=Compare2(encshares(attr2'))

select 1 from test where id=shadowtest.id &&

shadowtest.attr1'>shadowtest.attr2'

select Div1(att1,attr2,encshares(t1)[i],

encshares(t2)[i], encshares(t1*t2)[i], id) from test

division

comparison

Fig. 2. The message exchange in SEDB.

To execute insert, the SEDB plug-in replaces the confidential value v with
its encrypted share vector encshares(v), the SEDB coordinator invokes a UDF
DecShare with the corresponding encrypted share encshares(v)[i] at database
server i, which decrypts the share and stores it in test. For select and addition,
the SEDB plug-in doesn’t modify the SQL queries, while the SEDB coordinator
invokes a UDF EncShare to get the encrypted shares from server i to complete
select, and a UDF NewAdd to make server i execute the addition of the columns.

In the process of multiplication, the SQL query is transmitted to the SEDB
coordinator without modification, who firstly invokes a UDF NewMul1 at each
server i. Server i sorts the rows in test by id, generates the share vector for the
multiplication of its local shares of values in columns attr1 and attr2 in order,
then returns the encrypted share vectors encshares(attr1∗attr2)[i]. On receiving

SEDB: Building Secure Database Services for Sensitive Data 15

the replies from three database server, the SEDB coordinator constructs the
parameter for a UDF NewMul2 as in section 3.1.4, and invokes it to complete the
degree reduction.

To execute division and modular, the SEDB plug-in firstly chooses t1 and
t2 for each row in test and generates the encrypted share vectors for each t1,
t2 and t1 ∗ t2, then it invokes NewDiv and NewMod at the SEDB coordinator. To
process the NewDiv, the SEDB coordinator firstly invokes a UDF Div1 to get the
encrypted shares of t

′

1 and t
′

2 (encshares(attr1
′
)[i] and encshares(attr2

′
)[i]) of

all rows ordered by id in test from server i; then the SEDB coordinator combines
them to generate encshares(attr2

′
) and encshares(attr2

′
), and invokes Div2 to

complete the division at each server. For NewMod, by invoking a UDF Mod1, the
SEDB coordinator gains encshares(attr1

′
)[i] and encshares(attr2

′
)[i] as in the

process of Div1, together with the encrypted share vector (encshare(attr2∗t2)[i])
of the multiplication of the corresponding local shares of attr2 with the share of
t2 from server i, where encshare(attr2 ∗ t2)[i] is also ordered by id. Then, the
SEDB coordinator recombines the encshare(attr2∗ t2)[i] as in section 3.1.4, and
invokes a UDF Mod2. To execute Mod2, each database server firstly complete the
degree reduction as in NewMul2 to get its share of attr2 ∗ t2, then calculates its
share of the modular as described in section 3.1.5.

To compare two columns in test, the SEDB plug-in invokes the NewCompare

with the encrypted share vector of t1 and t2 at the SEDB coordinator. The
coordinator firstly invokes a UDF Compare1 at each server i, to get the encrypted
shares of t

′

1 and t
′

2 of all rows ordered by id in test from server i, then combines
them to update the shadowtest through a UDF Compare2, finally the coordinator
sends a query to make each server complete the comparison on the shadowtest.

