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Abstract. Hidden service is a very important feature of Tor, which
supports server operators to provide a variety of Internet services without
revealing their locations. A large number of users rely on Tor hidden
services to protect their anonymity. Around 30,000 servers are running
hidden services every day [21]. However, hidden services are particularly
vulnerable to traffic analysis attacks especially when the entry guard of a
hidden server is compromised by an adversary. In this paper, we propose
a multipath routing scheme for Tor hidden servers (mTorHS) to defend
against traffic analysis attacks. By transferring data through multiple
circuits between the hidden server and a special server rendezvous point
(SRP), mTorHS is able to exploit flow splitting and flow merging to
eliminate inter-cell correlations of the original flow. Experiments on the
Shadow simulator [11] show that our scheme can effectively mitigate the
risk of traffic analysis even when robust watermarking techniques are
used.
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1 Introduction

To address people’s needs for privacy, many low-latency anonymity systems have
been proposed to provide anonymity for Internet communications. Among them
Tor [5] is the most popular and widely deployed low-latency anonymous com-
munication system today, providing anonymity to millions of users on a daily
basis [20]. One major reason that contributes to the success of Tor is its com-
prehensive anonymous services, which provide three types of anonymity [17],
i.e., sender anonymity, receiver anonymity and sender-receiver unlinkability. In
particular, Tor allows general users to access Internet sites without disclosing
their actual identities to the destination and prevents adversaries from linking
two communicating parties (i.e., sender anonymity and unlinkability for general
users). Besides, Tor also allows server operators to hide their locations while
providing a variety of Internet services via so-called Tor hidden services. This is
a very appealing feature that makes Tor stand out. Other popular low-latency
anonymity systems such as Anonymizer [10] and Java Anon Proxy (JAP) [3]
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do not support such hidden service, since it is out of the scope of their initial
designs. Anonymous publishing is of great importance especially for people in
countries with strict censorship, therefore, a large number of users with strong
anonymity needs deploy their services such as SSH, instant messaging and web
servers on the Tor network for its practical support to location-hidden services
and low latency. According to the statistics of Tor Project [21], around 30,000
hidden servers are active daily in the Tor network.

However, according to recent studies Tor hidden services are still under the
risk of de-anonymization due to specialized traffic analysis attacks [16,4]. It is
argued that the current Tor design is vulnerable to traffic analysis attacks if
the adversary can monitor a user’s traffic entering and leaving the anonymous
network at both sender and receiver ends. Since the malicious client always
resides at one end of the anonymous path, she can successfully perform the traf-
fic analysis attack if she is able to observe the traffic at the hidden server end.
Øverlier et al. proposed the first documented attack against Tor hidden ser-
vices by exploiting traffic analysis techniques. They experimentally verified that
a hidden server can be located within a short period of time if the adversary is
able to control one Tor (or preferably two) router(s) [16]. Biryukov et al. also
confirmed the practicality of traffic analysis attacks by conducting an oppor-
tunistic de-anonymization attack to Tor hidden services [4]. The effectiveness of
such attacks is mainly caused by the low latency in anonymized paths, which
unwillingly preserves the inter-cell timing correlation between the original flow
and the anonymized flow. The adversary can exploit traffic analysis techniques
to correlate common patterns between the original flow and the anonymized flow
to infer identities and relations of the communicating parties. Therefore, the key
to mitigating the threats of traffic analysis attacks is to reduce the timing corre-
lation between cells. Dummy traffic is considered as an effective countermeasure
to obscure the timing features of the original flow [18]. However, due to the high
cost introduced by dummy traffic, it is not a practical solution for the already
heavily loaded Tor network.

In this paper, we propose a multipath routing scheme for Tor hidden services
(mTorHS) to defend against traffic analysis attacks. Our scheme routes data cells
between the rendezvous point and the hidden server through multiple circuits,
which exploits flow splitting and flow merging functionalities of multipath rout-
ing to remove identifiable patterns of the original flow. Through experiments on
the Shadow simulator [11], we show that mTorHS is resistant to traffic analysis,
even when robust watermarking-based techniques are employed. In addition, by
integrating multi-flow detection scheme [13] into mTorHS, our scheme is able
to combine multiple watermarked flows to detect the presence of watermarks, if
they have not been completed destroyed by multipath routing.

Because a large number of abbreviations are used in this paper, we summarize
the notions in Table 1. The remainder of this paper is organized as follows. After
introducing the background of Tor hidden services and two representative traffic
analysis attacks against Tor hidden services in Section 2, we present the threat
model in Section 3. Then, we elaborate the detailed design of our multipath Tor
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Table 1. Definitions of abbreviations used in this paper.

Abbreviation Term Abbreviation Term

HS Hidden server SRP Server’s rendezvous point

Alice Malicious client RC Rendezvous cookie

RP Rendezvous point DH Diffie-Hellman

OR Onion router IP Introduction point

hidden services in Section 4. In Section 5, we experimentally evaluate the effec-
tiveness of mTorHS against a very robust watermarking-based attack. Finally,
we review the related work in Section 6 and conclude this paper in Section 7.

2 Background

2.1 Tor

The onion-routing-based Tor network is an overlay network contributed by vol-
unteers running Onion Routers (ORs). A client selects three routers by default
to establish a circuit to the destination that he wants to access. Then, he packs
them into 512-byte cells, encrypts data packets in layers and sends data cells
through the circuit. Each router along the circuit peels off one layer of encryp-
tion and forwards the cell to the next router until it reaches the last relay (known
as “exit”), which further forwards the data to the original destination. Each hop
only knows who has sent the data (predecessor) and to whom it is relaying
(successor) due to the layered encryption. A router processes the cells that are
addressed to itself following the command in the cell, otherwise it simply relays
the irrelevant cell to the next hop.

2.2 Tor Hidden Services

The Tor hidden services proposed in [5] use rendezvous points(RPs) to support
hidden TCP-based services, such as web servers and instant messaging servers,
without revealing real IP addresses of hidden servers. Figure 1 illustrates basic
components of Tor hidden services: (1) To make a service reachable, the hid-
den server (HS) selects several routers at random as introduction points (IPs)
and builds circuits to them. IPs wait for connections on behalf of the hidden
server. (2) HS then uploads its service descriptor to the hidden service directory
(HSDir). The descriptor containing its public key and a set of introduction points
signed by the private key. After this step, HS is ready to accept connections from
clients. (3) To connect to the hidden service, we assume a client (Alice) learns
about HS’s onion address out of band. Then, Alice contacts HSDir and retrieves
the service descriptor of HS using this onion address. (4) After getting the set
of introduction points and HS’s public key from the service descriptor, Alice
randomly selects a router as the rendezvous point (RP) by assigning it a ren-
dezvous cookie (RC) which is a one-time secret, and builds a circuit to it (i.e.,
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Fig. 1. Tor hidden services architecture

client circuit). (5) After that, Alice sends an introduce message to one of the
introduction points and (6) asks the IP to forward it to HS. The message con-
taining the rendezvous cookie, RP address and the first part of a Diffie-Hellman
(DH) handshake is encrypted by HS’s public key. (7) After decrypting the intro-
duce message, HS establishes a new circuit to Alice’s RP (i.e., hidden server
circuit), and sends a rendezvous cell with RC and the second part of DH hand-
shake. (8) RP then relays the rendezvous cell to Alice. After verifying RC and
generating the end-to-end session key, Alice and HS start communicating with
each other through RP.

Because every connection (depicted by solid blue line in Figure 1) is a mul-
tihop Tor circuit, no one can learn the actual IP address of either end of the
connection. It is worth noting that the complete path between Alice and HS
generally consists of six routers in two circuits as shown in Figure 2: among
them, three routers including the rendezvous point are selected by Alice, and
the other three are chosen by HS. It was intuitively expected that network delay
jitter and flow mixing introduced by the six-hop path will make the original flow
indistinguishable from other flows, so that the adversary can neither correlate
the communication between Alice and HS nor identify the real IP address of HS.

2.3 Traffic Analysis Attack against Hidden Services

It is recognized that Tor hidden service is vulnerable to traffic analysis attacks.
In general, traffic analysis attacks can be classified into two categories: passive
traffic analysis and active traffic analysis. Passive traffic analysis correlates the
sender’s outgoing traffic with the receiver’s incoming traffic by comparing the
traffic features, such as packet timings and counts. To launch a successful passive
traffic analysis, the adversary needs to monitor the traffic for a long time to
obtain a reliable traffic pattern. The biggest advantage of passive traffic analysis
is its stealth, but it is time-consuming and less accurate compared with the
active attacks. To improve the accuracy and reduce the cost, many active traffic
analysis techniques have been proposed to generate traffic with a special pattern
at one end of the communication path and identify it at the other end.
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The security of Tor hidden services was first challenged by Øverlier et al. [16].
They experimentally attacked an early version of hidden services in which the
entry guard protection mechanism has not yet been implemented in Tor. In
response to a client request, HS will randomly select three routers to build a cir-
cuit to RP. Assume a malicious client controls a set of routers in the Tor network.
By establishing a large number of connections to HS, she can eventually force HS
to choose an entry router (i.e., the fist hop of a circuit) that she controls. Then
by requesting files of different sizes at different time from HS, the attacker can
generate a special traffic signature and exploit simple traffic analysis techniques
(e.g., packet counting combined with timing information) at the malicious entry
node and the RP to correlate flows with the same traffic pattern.

Another attack is proposed by Biryukov et al. [4]. They generated traffic with
a special pattern and applied packet counting traffic analysis to identify flows
with the injected pattern. For example, a malicious RP can send 50 padding
cells and a destroy cell to HS after receiving the rendezvous cell in Step (7)
(as shown in Figure 1). If the corresponding malicious entry guard observes 53
cells (including the destroy cell, 50 padding cells and 2 additional extended cells
in circuit construction) going towards HS and 3 cells (including the rendezvous
cell and 2 extend cells) leaving HS, the adversary can decide that this malicious
guard node is chosen as the entry node by HS.

However, these two attacks also suffer drawbacks. Since Øverlier’s attack was
conducted in the early stage of Tor with much fewer routers, clients and hid-
den servers, at that time their generated traffic pattern was unique enough and
hence can be preserved after going through the Tor network. Nevertheless, the
current Tor with much more traffic will make this simple packet counting based
analysis less effective. For Biryukov’s attack, because special cells (i.e., padding
cells) are used to generate a unique traffic signature, it may not be invisible
to hidden server. Therefore, more advanced active watermarking-based traffic
analysis techniques [23,14,9,8] are proposed, which can make the traffic analysis
attacks targeting Tor hidden services more efficient and stealthy. They embed
a specific traffic pattern to the victim’s flow on the sender side by manipulat-
ing the timings of selected cells. The adversary breaks the anonymity guarantee
if the watermark is uniquely identified on the receiver side. Compared to pas-
sive traffic analysis and other active traffic analysis techniques, watermarking is
more robust to flow transformations such as dummy traffic, flow mixing, traffic
padding and network jitter, so it is considered a more efficient and severe threat
to Tor hidden services.

3 Overview of the Problem and the Threats

The attacks described in Section 2.3 show that the adversary can successfully
correlate two communicating parties if she is able to observe the traffic at two
ends of a Tor circuit. As shown in Figure 2, the anonymous path between a
client and the hidden service server consists of 6 hops. Since a malicious client is
always at one end of the path, she only needs to trick HS to choose a compromised
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Fig. 2. Threat model in this paper where RP and OR1 are controlled by the adversary

router controlled by herself, i.e., OR1. Her success rate relies on the proportion
of compromised routers in the Tor network. Therefore, this attack particularly
threatens the hidden services. Moreover, the adversary can further select a node
that she controls to be the rendezvous point and build a one-hop circuit to this
RP. In this way, she can shorten the path to four and thus reduce the latency
between herself and HS to help correlate the traffic pattern. To mitigate this
threat, efforts can be made from two perspectives: (1) preventing an adversary
from controlling both ends of a circuit to impede the occurrence of traffic analysis
(2) reducing the success rate of traffic analysis even when both ends of a circuit
are compromised.

The concept of “entry guards” [16] is introduced into the current Tor design
to solve this problem following the first direction. Entry guards are a set of
routers that are considered reliable by a Tor node to be the first relay of an
anonymous path. By default, each user constructs its guard set of three routers,
which will expire in 30 to 60 days. After that, the entry guards will be reselected.
With entry guards, whenever the hidden server builds a circuit to the rendezvous
point in response to a client’s request, it will pick an entry guard from the set
for its first hop instead of choosing a random router in the network. Since the
entry guards are evaluated by several measures and considered reliable, they are
less likely to be controlled by the adversary. As a result, the chance that an
adversary controls both ends of a circuit is significantly reduced. However, it is
unreliable that the security of hidden servers merely relies on the goodness of
the entry guard set. Given enough time, a user will eventually select a malicious
entry node into his guard set. Johnson et al. showed that for an adversary with
moderate bandwidth capacity, it only takes 50 to 60 days to include a malicious
router to a user’s guard set [12]. As noted by Elahi et al., the design of entry
guard is still an unclear research problem [6] and subtle parameter selection
is required to achieve expected protection. Therefore, it is critical to develop
protection mechanisms which are parallel to the entry-guard-based solution to
enhance the resistance of Tor hidden services to traffic analysis attacks in case
the guard set is compromised.

In this paper, we make efforts following the second direction to reduce the
success rate of traffic analysis when the attacker has successfully controlled both
ends of a Tor circuit. Our work can be applied in concert with entry guard
protection mechanism. Figure 2 illustrates our threat model. We assume an
adversary Alice pretends to be a client of the hidden server and tricks the hidden
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server to select a node controlled by her (OR1) to be the entry node in the return
anonymous path. Alice then selects another controlled router as the rendezvous
point. We assume Alice can exploit any traffic analysis technique to passively
observe or actively manipulate the traffic passing through OR1 and RP. The
primary goal of the traffic analysis is to identify flows with the same traffic
pattern at OR1 and RP to confirm that both malicious nodes are recruited in
HS’s circuit, from which she can learn the location of the hidden server.

4 Multipath Tor Hidden Services (mTorHS)

To prevent the adversary’s RP and entry node from correctly identifying the
traffic pattern, we present a multipath routing scheme for Tor hidden services.
This scheme is based on the key insight that the traffic pattern observed or inten-
tionally generated at the malicious entry guard (e.g., OR1) will be somewhat
distorted by flow splitting and flow merging operations in multipath routing
and by the multiple routes with different network dynamics. The architecture
of mTorHS is illustrated in Figure 3. Different from the selection of rendezvous
point in the current Tor implementation, the hidden server also selects its own
“rendezvous point”. To distinguish two rendezvous points, the one selected by
the client is denoted as “CRP” and the one selected by hidden server is denoted
as “SRP”. In respond to a client’s request, HS builds an anonymous tunnel con-
sisting of m circuits, where m is a server specific parameter. HS then splits the
original flow onto m subflows and attaches each subflow to a circuit in the tun-
nel. All m circuits will go through the same entry guard OR1 and merge at SRP,
which further relays the merged flow towards the client. Next we will present
the detailed process of connection initiation and data transmission.

Fig. 3. mTorHS architecture

4.1 Connection Initialization at Client Side

For the client, the connection initialization remains the same as the current Tor
hidden services (i.e., step 3-6 in Section 2.2). More specifically, Alice first selects
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a client rendezvous point (CRP) and constructs a rendezvous circuit to it by
sending an establish rendezvous request. Then, she builds an introduce circuit to
one of HS’s introduction points and sends an introduce request, which requests for
the hidden service at HS and informs HS with CRP’s address (i.e., fingerprint).

4.2 Multipath Tunnel Construction on Hidden Server Side

After receiving the introduce request, HS decrypts it with its private key and
extracts the fingerprint of CRP, rendezvous cookie (RC) and the DH handshake
message. Then, HS selects its own rendezvous point (SRP) and constructs a
multipath tunnel to SRP, following the same approach described in [24].

SRP Selection. The selection of SRP is very critical. From Figure 3, we see
that subflow merging occurs at SRP. Hence, even when multipath routing is
adopted between SRP and HS, if the adversary controls SRP and OR1, she
can observe traffic patterns before merging from both ends of each subflow and
thus perform traffic analysis successfully. The adversary may follow the same
strategy as described in [16] to trick HS into selecting a controlled node as SRP
by continuously sending a large number of requests. If HS selects a new SRP for
each received access request, it may eventually select one of the compromised
router. Inspired by the entry guard idea, we propose “rendezvous guard” for
SRP selection, which is a set of reliable routers selected by the hidden server.
A hidden server initially selects three routers to compose its rendezvous guard
set, each of which stays in the set for a random period between 30 and 60 days.
Whenever HS builds a rendezvous circuit in response to the client request, it
sticks to the same rendezvous guard set and randomly picks one router from it.

Tunnel Initialization. As discussed previously, mTorHS constructs a tunnel
with multiple circuits to SRP instead of one anonymous circuit to CRP. In the
original Tor hidden service design, the hidden server responds to an introduce
request by establishing a four-hop anonymous circuit ending at CRP selected
by the client. To ease the presentation, we denote this anonymous circuit as
the primary circuit and the other m − 1 anonymous circuits in the tunnel as
the auxiliary circuits. As shown in Figure 3, all circuits merge at the SRP.
Therefore, it is the third router for every three-hop anonymous circuit in the
tunnel. Besides that, HS follows the default Tor path selection algorithm to
select all other routers to form the tunnel. When the circuit is established, HS
sends a multipath m cell1 along the primary circuit to SRP to request a multipath
connection. In response, SRP generates a unique 32-bit tunnel identifier (TID)
and incorporates it into the replied multipath ack m cell to indicate a successful
multipath tunnel construction. With TID, HS adds each auxiliary circuit to the
tunnel by sending a join m request to SRP along the circuit. SRP acknowledges
each successful joining with a joined m message. Finally, when HS receives m−1
acknowledgments, a multipath tunnel is successfully constructed. Note that all

1 To distinguish from the commands in current Tor, all the newly added commands
in mTorHS will end with an m.
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the cells are layered encrypted so only HS and SRP at two ends see TID and the
newly added tunnel construction command. This prevents the entry and middle
nodes of HS’s circuit from linking TID with HS. In fact, they even do not know
if they are involved in any tunnel construction.

Once the tunnel is established, HS follows the same process of the current
hidden service protocol to extend path construction to CRP and the client. In
particular, HS sends a rendezvous1 cell containing DH handshake message and
rendezvous cookie (RC) to CRP along the primary circuit, which verifies RC
and joins the client’s circuit with the server’s primary circuit. Then, CRP sends
a rendezvous2 cell containing the DH handshake message to the client to finish
the construction. Note that from CRP’s view, it sees only the primary circuit
connecting itself to SRP, and hence it has no idea about how many circuits are
involved in the multipath tunnel between SRP and HS.

Tunnel Management. The hidden server can add new auxiliary circuits or tear
down any existing circuit in the tunnel after it is established. In particular, a
new auxiliary circuit can join the tunnel by sending a join m command with the
corresponding TID. To tear down a circuit, HS immediately stops sending on this
circuit and informs SRP to drop it using a drop m message. Note that the number
of cells that have already been sent on this circuit (denoted as ns) should also be
passed to SRP to avoid packet loss. After receiving drop m cell, SRP extracts ns

and replies with a dropped m cell after it receives the remaining ns cells. Finally,
HS tears down the circuit when it receives the dropped m message. Since each
tunnel is constructed in response to a client’s request, it will be closed after the
request is completed. However, this will not result in the closure of all circuits
in the tunnel, since the circuits may be reused for other purposes until it gets
“dirty” - after its lifetime exceeding 10 minutes and no streams on it, similar as
in Tor circuit management.

4.3 Data Transmission between Client and HS

Once the connection is set up, the client and HS can communicate through the
anonymous path consisting of the server’s and the client’s anonymous circuits
joined at CRP. Data cells between SRP and HS can be routed through any circuit
in the tunnel. To indicate a cell is a multipath cell used in mTorHS, we add a
new cell command (i.e., MULTIPATH CELL). HS is responsible for assigning data
cells to circuits. Obviously, if HS schedules consecutive cells onto a same subflow,
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it is highly likely that the traffic pattern inserted by the malicious guard on this
subflow will be preserved in the merged flow and detected by the malicious CRP.
To reduce the likelihood of inter-cell correlations, HS randomly assigns data cells
to subflows with different capacities. As a result, a data cell from a fast circuit
needs to wait at SRP for earlier cells arriving from slow subflows to be merged
in an orderly manner. In this way, we utilize the network properties of different
circuits to distort or destroy potential traffic patterns inserted by the malicious
guard. This greatly reduces the likelihood of inter-cell correlation (we will explain
this in Section 4.4).

Data Cell Format. Since the capacity of each circuit in the tunnel varies,
different delays will be introduced to these subflows. Therefore, the data cells in
different subflows may arrive at SRP out of order. To solve this issue, we modify
the format of Tor data cell to incorporate a 4-byte sequence digest and a 4-byte
sequence number for multipath data packets, as shown in Figure 4. Originally
the 512-byte cell consists of a 3-byte cell header including a circuit identifier and
a cell command for cell type, and 509-byte cell payload with a payload header
and the payload data. We use 8 bytes of the cell payload as multipath header
for cell reordering, where 4 bytes are used as sequence digest for integrity check
and 4 bytes are used for sequence number. The multipath header is only used by
SRP and HS to reorder data cells, and the remaining 501-byte end-to-end cell
payload is used to carry the real payload data between client and HS.

Data Cell Encryption. In Tor anonymous routing, data cells are encrypted
in layers with the shared session keys of the intermediate relays in the order of
their relative positions in the anonymous path. Since the end-to-end cell payload
and the multipath header are designed for the client and SRP respectively, HS
needs to encrypt the two parts separately. The end-to-end cell payload should
be encrypted in five layers with the inner-most layer encrypted by the end-to-
end session key and the outer-most layer encrypted by the key of OR1, while the
multipath header is only encrypted in three layers with the keys of SRP, the mid-
dle router OR2 and the entry router OR1, respectively. When an intermediate
router receives a multipath cell, it applies its secret session key onto both end-
to-end cell payload and the multipath header to unwrap one encryption layer.
Consequently, at SRP the multipath header will be completely unwrapped and
recognized by SRP for further processing, while the end-to-end cell payload is
still encrypted and remains secure.

Data Cell Reordering. To merge multiple circuits in a tunnel, SRP orders
the received cells from all circuits according to their sequence number and tem-
porarily stores the out-of-order cells in a buffer. When SRP receives a multipath
data cell from a subflow, it first decrypts the multipath header and generates a
digest for the last four bytes of the multipath header using the symmetric key
shared with HS. If it is the same as the received sequence digest, SRP verifies
the sequence number is not tampered. If the sequence number of this cell is
what SRP expects, it will be immediately forwarded to CRP, otherwise it will
be stored and ordered according to the sequence number. The multipath header
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Fig. 5. Tor router queuing architecture [2]

field is only used for data cell reordering. Hence, after SRP reorders the cells
and merges them into one output stream, this field becomes useless. To avoid
unnecessary information leak, SRP will replace it with random bits. Similarly,
when the client sends data to HS, the client reserves these eight bytes for SRP
by padding them with random numbers.

4.4 Discussions

In Tor network, two Tor routers are connected over a TCP connection, which is
multiplexed by several circuits. Due to the multiplexing of a TCP connection,
flow mixing actually occurs at every router. However, we argue that the cell
distribution is well preserved after flow mixing so that a maliciously inserted
traffic pattern can still be observed by the attacker. First, let us explain the
data cell processing at a Tor router. When a cell arrives from a TCP connection,
it triggers the connection read event of libevent to first put it into the application-
layer input buffer and then send to the corresponding circuit queue according
to its circuit identifier. As shown in Figure 5, five different circuits arrive SRP
from four TCP connections. Then, a connection write event will select a circuit
based on pre-determined scheduling algorithms such as priority-scheduling [19]
to pull cells from the circuit queue and send them to the output buffer. As a
low-latency system, a router will send out cells in the circuit queue as fast as
possible until the output buffer is full. Therefore, it is not surprising that cells
from a same subflow will be outputted in a batch with inter-cell features well
preserved.

In this paper, we propose a multipath routing approach that introduces an
interdependent subflow mixing to SRP data cell processing. For example, in
Figure 5 suppose the circuits in gray belong to the same tunnel. Each of them
is associated to a subflow, which transfers a portion of data cells. Since the
malicious guard has no clue about the flow membership of the subflows passing
through it, it has to treat each subflow independently when inserting detectable
traffic patterns. Oppositely, SRP will treat subflows of a same flow in a way
that considers flow interdependency. In particular, when subflows are merged
at SRP, cells from one subflow may be inserted into two cells that are adjacent
in another subflow. This interpolation causes difficulty in pattern detection on
the merged flow. Passive traffic analysis such as packet counting will fail. More-
over, due to differences in router bandwidth and other network dynamics, the
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capacity of circuits vary [22,24]. Some cells with larger sequence numbers from
a fast circuit (e.g., cell 4 on the first circuit in Figure 5) may arrive earlier than
those with smaller sequence numbers but assigned to a slow circuit (e.g., cell 1
on the second circuit). The cells must be reordered at SRP. Consequently, the
waiting time introduced by such reordering will distort or destroy the inter-cell
timing correlations of a manipulated subflow and makes active traffic analysis
less effective.

5 Experiment Evaluation

In this section we test the performance of mTorHS against a well-known active
traffic analysis scheme, i.e., interval centroid-based watermarking (ICBW) [23],
and evaluate the enhanced anonymity in our multipath hidden services. In par-
ticular, we conducted experiments with the Shadow simulator [11], which is an
accurate, discrete event simulator running real Tor protocol over a simulated
Internet topology. We implemented the multipath Tor router (please read [24]
for details) and plugged it into the Shadow simulator to support multipath hid-
den services in a private Tor network. We also implemented an adversary node
following the threat model described in Section 3, which first inserted water-
marks to flows at the malicious entry guard OR1 using ICBW protocol, and
then examined packets at the malicious client rendezvous point for expected
traffic signatures.

5.1 Implementing ICBW Watermarking Scheme

To assess the resistance of the proposed scheme against traffic analysis, we imple-
mented a state-of-the-art traffic watermarking scheme, the interval centroid-
based watermarking (ICBW) protocol to attack low-latency anonymity sys-
tems [23]. The ICBW was verified on a leading commercial anonymizing service
platform www.anonymizer.com as an effective attack. Here we briefly explain its
working mechanism. As illustrated in Figure 6, ICBW embeds a watermark into
a sufficiently long flow by intentionally changing the centroid of several randomly
selected intervals. This scheme divides the duration of flow starting from an offset
O into 2n intervals of equal length T. The centroid is then calculated by aver-
aging each packet’s relative arrival time to the start of its interval. The intervals
are randomly grouped into two subsets ({IA1 , ..., IAl

} and {IB1 , ..., IBl
}), each

with l elements. Each element in set A and B contains r intervals for redundancy
such that n = rl. The random grouping is illustrated in Figure 6a. To encode a
watermarking bit 1 (or 0), two elements (IAi

and IBj
) of the set A and B are

selected, respectively. The packets in all intervals of IAi
(or IBi

) will be delayed
by a maximum value of a. Figure 6b illustrates the delaying, which actually
changes the distribution of relative arrival time from U(0, T ) to U(a, T ) where
U(, ) stands for uniform distribution. After encoding, the difference between the
average centroids of IA and IB will be a

2 for watermark bit 1 and −a
2 for water-

mark bit 0. To decode, the decoder starts from the same offset O and checks the
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b.   Distribution of cell timing before and after delaying 
Centroid Centroid 

Fig. 6. Random grouping intervals for a packet flow in ICBW [13,23]

existence of the watermark. Because each watermark bit is encoded by averaging
the delays of packets that are randomly selected from many intervals, ICBW is
very robust to network delay jitter and flow mixing along a circuit. We refer the
readers to [23] for details.

For ICBW, we follow the suggested parameter setting: 32-bit watermarks
are randomly generated and the redundancy r is set to 20. The interval length
T and the maximum delay a are set to 500ms and 350ms, respectively. We
use an offset O = 10s to delay cells in the selected intervals according to the
watermark bits at the malicious guard and meanwhile log the arrival time of
each cell using the same offset at CRP. From the logged arrival time we compute
the difference between the average centroid of IA and IB to derive a watermark
bit 1 if it is closer to a

2 or 0 if it is closer to −a
2 . Hamming distance, which is the

number of mismatched bits, is computed between the derived watermark and
the original watermark to evaluate how successful the watermarking attack is.
Since the network delay is unknown, a set of different offsets are tested. The one
that matches most to the inserted watermarks is chosen as the correct decoding
offset to decode the watermark.

5.2 Implementing mTorHS

We implemented mTorHS on Tor v0.2.5.6-alpha. The construction of the client’s
circuit remains the same as in the current Tor hidden service design, but we
change the implementation for the server circuit construction. As explained pre-
viously, the server’s circuit consists of an entry guard, a middle relay, SRP and
CRP. Since we assume the malicious client controls the guard node and CRP, we
fix the selection of the two nodes in the implementation. The middle relay is ran-
domly selected from the Tor router set and SRP is randomly selected from the
“rendezvous guard set”. For simplicity, in our current implementation we form
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the rendezvous guard set with routers flagged as entry guard. This is because
the concept of “rendezvous guard set” is derived from the idea of entry guard
set to denote a set of routers trusted by the hidden server. In the future, we will
develop selection criteria to assist the selection of reliable rendezvous guards.

Finally, we build a small private Tor network in the Shadow simulator with
50 Tor routers, 1 hidden server, 20 general HTTP servers, 1 malicious client and
100 general web clients to run our experiments. Among the 50 routers, two are
configured as malicious CRP and OR1. This is a general case for evaluation.
Obviously, the fewer the general clients in the network, the more likely the
adversary identifies the hidden server. So, we choose an extreme setting for
comparison, where the adversary is the only client in the network. As pointed
out by Wang et al. in [23], the longer the flow, the more robust the watermark.
To ensure a sufficiently long flow for successful watermarking, we let the client
to request a 100MiB file at the hidden server under both settings.

5.3 Results

We perform the ICBW attack on the original Tor and the proposed mTorHS,
where m is set to 2, 4, 6 and 8. To rule out random noise, we repeat the water-
marking attack for ten times for each setting. The results shown below are the
average results of ten experiments. Table 2 shows the comparison in terms of
Hamming distance between Tor and mTorHS under different settings. A larger
Hamming distance indicates that the anonymity system can better transform
the original flow and prevent the traffic analysis. No matter in general cases
or extreme cases, mTorHS can better obscure the embedded watermark in the
victim’s flow. The Hamming distance achieved on mTorHS is always larger than
the maximum Hamming distance threshold (i.e., 8) [23]. When the Hamming
distance exceeds the threshold, the adversary has less confidence to correlate
the watermarked flow to the suspected flow. We note that with m increasing,
the Hamming distance does not increase obviously. One reason might be that
when we decode the watermark, we tried a set of different offsets and picked the
minimum value.

Table 2. Comparison of Hamming distance between Tor and mTorHS with different
m where each flow is encoded using different watermarks.

Tor mTorHS

m=2 4 6 8

General case 6 9 9 10 12

Extreme case 3 8 9 9 11

From the adversary’s perspective, if she wants to circumvent the multipath
routing scheme, she should use the same watermark for different flows. Since
two circuits between OR1 and HS multiplex the common TCP connection, the
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cells that HS sends out through two different subflows arrive at OR1 within
the same coding interval of 500ms. If the adversary uses different watermarks
to encode them, it is possible that one subflow is delayed while the other one
not, which causes the distribution of the delayed subflow is squeezed to U(a, T )
while the other one is still U(0, T ). When SRP receives these cells from two
subflows, SRP will merge them so that the distribution of the merged flow will
be a uniform distribution U(x, T ) where 0 < x < a depending on which subflow
the majority of the cells belong to. Therefore, when the malicious CRP receives
the merged subflow, she cannot recover the correct centroid of this interval. To
avoid this, the adversary ought to use the same watermark to encode all flows
going through OR1 so that they will have a same distribution. When they are
merged at SRP, the merged flow still preserves the distribution. Table 3 shows
the results when the adversary embeds the same watermark to all flows. In
order to verify this assumption without being influenced by general traffic, we
perform this experiment in the extreme cases. As shown in Table 3, when the
same number of subflows are used, the Hamming distance of the merged flow in
cases where a same watermark is embedded is always smaller than the one when
different watermarks are used.

Table 3. Comparison of Hamming distance between Tor and mTorHS with different
m where all flows are encoded using the same watermark.

Tor mTorHS

m=2 4 6 8

Extreme case 3 4 7 6 7

However, once the adversary encodes multiple flows with the same water-
mark, her watermarking is vulnerable to the multi-flow attacks [13] (from the
defending perspective, we call it multi-flow detection (MFD) in this paper.) The
idea of MFD is that the MFD detector will aggregate all flows into a single flow
after it collects a number of watermarked flows. This aggregation scheme in MFD
is different from our subflow mixing, which overlaps the relative arrival time of
each flow to the same start. If several abnormally long periods of silence (i.e., no
packets for hundreds of milliseconds) are observed in the aggregated flow, the
detector considers the presence of watermarking attack, extracts the watermark-
ing keys and removes the watermarks from the observed flows. Since SRP merges
multiple subflows, which is naturally compatible to MFD, we deploy the MFD
detector at SRP. Figure 7 shows the aggregated arrival time of six flows with and
without the presence of watermark. Compared to the aggregated unwatermarked
flows, the silence of the victim’s aggregated flow is more obvious and periodic.
Once SRP recognizes the existence of a watermark with higher confidence, it
can remove it by randomly delaying some cells on the suspicious flow.
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Fig. 7. Comparison of time pattern of the aggregated flow between watermarked flows
and unwatermarked flows.

6 Related Work

Attacks to Hidden Services. In addition to the two traffic analysis attacks
against Tor hidden services discussed in Section 2.3, clock skew based attacks are
also proposed to break the anonymity of hidden servers. [15,25] found that the
load changes on the victim’s computer will result in temperature changes, which
further cause the victim’s clock to deviate from the real clock time and results in
clock skew. Therefore, the adversary can periodically build many connections to
the victim to generate a specific clock skew pattern. Meanwhile, she can measure
the clock skew of a set of candidates and tries to detect a matched pattern.

Multipath Routing for Performance. The solution proposed in this work is
based on multipath routing in the current Tor network. Other multipath routing
schemes [1,24] have been proposed to improve the performance for general clients
on Tor. Alsabah et al. [1] exploited multipath routing solutions to improve the
performance for bridge and video streaming users, while Yang et al. [24] proposed
a scheme to better utilize low-capacity routers to support bandwidth-intensive
applications. We adopted the design of [24] in this work, but any multipath
routing based approach can be applied in the proposed scheme.

Defense for Hidden Services. Entry guard proposed in [16] is an effective
solution to protect hidden servers. Elahi et al. implement a framework to study
Tor’s entry guard design and empirically explores how the parameters affect the
anonymity [6]. Besides, Hopper proposed a protection mechanism for Tor hidden
services from another perspective – he explored the challenges in protecting Tor
hidden services against botnet abuse [7].



Enhancing Trafiic Analysis Resistance for Tor Hidden Services 383

7 Conclusion and Future Work

Tor hidden service is a very important tool to provide receiver anonymity to server
operators, but it is vulnerable to traffic analysis attacks especially when the entry
guard protection is broken. In this paper, we propose a multipath routing based
scheme that exploits flow mixing and flow merging to distort or destroy inserted
traffic patterns in a victim’s flow. We believe this is an effective complement to
the existing protection mechanism. Besides, since the multipath architecture is
naturally compatible to detection mechanisms based on multiflows, it can be fur-
ther integrated with multiflow detection protocols to detect the presence of water-
marks. We experimentally verify the effectiveness of our scheme in defending one
of the most robust watermarking schemes on the Shadow simulator.

The performance issues of Tor have been recognized as a big obstacle impeding
Tor’s further expansion, so it is important to evaluate the cost introduced by our
proposed multipath routing architecture. Based on the findings of other multipath
routing work on general Tor services [1,24], we believe that the multipath routing
schemes usually improve the performance when a larger aggregated auxiliary cir-
cuits bandwidth contributes to the tunnel. However, the proposed multipath hid-
den services introduce more complexity to onion routers (e.g., separate encryption
for end-to-end data and multipath header). In our future work, in addition to the
evaluation on the Shadow simulator, we will also deploy multiple onion routers in
the live Tor network to explore its impact on the performance of Tor hidden ser-
vices. Besides, we will also test different scheduling schemes when HS splits traffic
to multiple subflows, e.g., round-robin and proportional scheduling.
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