
Hide Your Hackable Smart Home from
Remote Attacks: The Multipath Onion

IoT Gateways

Lei Yang1, Chris Seasholtz2, Bo Luo2, and Fengjun Li2(B)

1 Amazon LLC., Seattle, WA, USA
ynglei@amazon.com

2 The University of Kansas, Lawrence, KS, USA
{seasholtz,bluo,fli}@ku.edu

Abstract. The rapid expansion of IoT-enabled home automation is
accompanied by substantial security and privacy risks. A large number
of real-world security incidents exploiting various device vulnerabilities
have been revealed. The Onion IoT gateways have been proposed to
provide strong security protection for potentially vulnerable IoT devices
by hiding them behind IoT gateways running the Tor hidden services,
in which the gateways can only be accessed by authorized users with
the .onion addresses of the gateways and correct credentials. However,
the limited bandwidth of Tor makes this approach very impractical and
unscalable. To tackle this issue, we present two novel designs of multipath
Onion IoT gateway and split channel Onion IoT gateway. The first design
implements a customized multipath routing protocol in Tor to construct
a multi-circuit anonymous tunnel between the user and the Onion gate-
way to support applications that require low latency and high bandwidth.
The second scheme splits command and data channels so that small-sized
command packets are transmitted through the more secure channel over
the Tor hidden service, while the less secure data channel over the public
network is used for outbound very-high-bandwidth data traffic. Exper-
iment results show that the proposed approaches significantly improve
the performance of Onion IoT gateways, so that they can be practically
adopted to securely transmit low-latency and high-bandwidth data, such
as HD video streams from home surveillance cameras. We also prove the
security guarantees of the proposed mechanism through security analysis.

Keywords: IoT security · Smart homes · Tor hidden service

1 Introduction

By connecting billions of smart devices to the Internet, the Internet-of-Things
leads to a pervasive deployment of intelligence into our daily life with innova-
tive applications. In a recent estimation, approximately 8.4 billion IoT devices
are connected to the Internet worldwide in 2017 – a 31% increase from 2016. By
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 575–594, 2018.
https://doi.org/10.1007/978-3-319-99073-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_28&domain=pdf


576 L. Yang et al.

2020, the number of connected device will reach 20.4 billion, resulting in a global
market of $2 trillion [22]. One of the fastest growing IoT fields is smart home
systems, sometimes referred as home automation, in which smart appliances such
as baby monitors, security cameras, smoke alarms, smart locks, smart lights, and
smart switches/plugs are connected to the home network and remotely control-
lable through the Internet. Beyond convenience, the smart home technology also
provides tangible benefits such as safety and energy-efficiency.

While we are witnessing a rapid expansion of IoT-enabled home automation,
the increasing use of the networked IoT devices is accompanied by substantial
security and privacy risks [29,31,35], which in some cases could lead to chilling
safety consequences since the smart devices in home automation are monitor-
ing our personal activities at home. For example, burglars can hack into our
surveillance system [13] or analyze our electricity consumption [43] to observe
our life pattern, and get into our homes with the help of our smart locks [18]. To
make things worse, the compromised devices can be turned into bots to launch a
DDoS attack. For example, the Mirai botnet compromising millions of cameras
and digital video recorders took down the Dyn DNS servers in 2016 and caused
a massive Internet outage as well as up to $110 million economic loss [17].

As security and privacy has become a most important consideration in the
design and implementation of the smart home technology, various security solu-
tions have been proposed to secure light-weight IoT communication protocols
(e.g., DTLS [27,32] for RPL [38], 6LoWPAN [33] and CoAP [34]), enhance
authentication [28,30] and access control [25,26,36], attest operational status
of remote devices and detect intrusions, etc. However, over the recent years, a
large number of real-world attack incidents have been revealed by academia,
security firms and individual researchers, which have exploited various types of
vulnerabilities in consumer IoT devices and applications involving the use of
surveillance cameras [4,13] and baby cameras [1], smart locks and garage open-
ers [18], smart appliances [2,9], thermostats [3], plugs and light bulbs [29], etc.

A root cause of these vulnerabilities is that the manufacturers have been
lax in adopting appropriate or even basic security measures. For example, the
D-LINK DCS2132L Internet cameras require no credential to access the manage-
ment interface [4,35], and the WeMo devices allow mobile Apps to access them
through an unencrypted SOAP API [31]. The lack of security protection is due
to several reasons. First, it is difficult to extend conventional security schemes
to IoT devices that are usually resource-constrained. Moreover, implementing
security measures on IoT devices especially on the low-end ones requires skills
and resources, and thus increases design and development costs. Finally, manu-
facturers are under business pressures to hit the market so that security is not
their priority.

Consider the large number of heterogeneous IoT devices, manufacturers’ gen-
eral lack of incentives to adopt appropriate security practices, and the slow
progress in IoT security standardization/regulation, it is difficult, if not com-
pletely impossible, to develop security solutions for each individual device, nor to
force each device vendor to ensure a flawless implementation or adopt adequate



Hide Your Hackable Smart Home from Remote Attacks 577

security protections. Recognizing the fact that security vulnerabilities always
exist in IoT devices, the question we pose is in what strategy the chance of
adversaries attacking vulnerable devices can be reduced and where this protection
should be deployed?

Smart devices

(a) Direct access model

Home router IoT Gateway

Smart devices

(b) Gateway-based access model

Fig. 1. Home automation operational models

This naturally leads to an isolation-based approach that uses a dedicated IoT
gateway to separate the private network, in which the IoT devices are deployed,
from the public network, and secure the perimeter of the private network at the
gateway. As shown in Fig. 1b, the IoT gateway coordinates the connected home
automation devices and isolates them from direct access from the public Internet.
Open-source platforms such as Home Assistant [5] and open Home Automation
Bus (openHAB) [8] are introduced to support the interconnection of devices in
different types and from different manufacturers. In this work, we developed our
secure IoT gateways on the Home Assistant platform, but our design can be
easily extended to other platforms. Since all devices are managed and controlled
through the gateway, individual devices no longer offer interfaces for remote
control and thus are not directly exposed to remote adversaries. However, the
gateway, which may have its own security vulnerabilities, becomes the new target
of interest to the adversaries, and also the single point of failure.

One approach to secure the IoT gateway is to connect it to a back-end cloud
server that relays all the commands from the cloud so that it can utilize the
existing security mechanisms provided by the cloud. Samsung’s SmartThings
[11], Apple’s HomeKit and Google’s Brillo are several examples. However, the
cloud-based approach needs to store IoT data on the cloud and thus yields a
serious privacy issue if the cloud service provider is not fully trusted to view
our private IoT data. In fact, users have expressed serious security and privacy
concerns due to data breaches and various types of data abuses [20].

Therefore, we propose to integrate the Tor hidden service onto the poten-
tially vulnerable IoT gateway so that it is protected from being directly exposed
to remote adversaries. This is because in most network attacks, a critical step
is to identify vulnerable, Internet-facing nodes through reconnaissance. By hid-
ing the gateway behind the Tor network, the adversaries, without knowing the



578 L. Yang et al.

gateway’s .onion address, cannot directly scan or access the gateway. In this
way, the Tor hidden service acts as an additional security buffer between the
smart home applications and the adversaries. This idea was first introduced by
Nathan Freitas from the Tor Project in [21], which described a straightforward
approach of obtaining an .onion address for the IoT gateway and running the
Tor hidden service directly on it. However, in practice, this approach suffer from
a well-known performance problem of the Tor network, in which Tor users often
experience very high delays [41,42]. The poor performance of the IoT gateway
running the Tor hidden service affects any IoT applications with realtime require-
ments. Moreover, to prevent congestion, Tor actively throttles high-bandwidth
applications. Consequently, IoT gateways with high-bandwidth services such as
video streaming will be blocked.

To tackle the performance problem, we propose two novel and practical
designs of multi-path Onion IoT gateways, namely IoT gateway over multipath
Tor hidden services, and IoT gateway over split channels. Both designs provide
strong security protection by hiding the IoT devices behind the gateway run-
ning the Tor hidden services. In the first solution, we extended the multipath
routing protocol mTor [42] and customized it to construct an end-to-end tunnel
consisting of multiple Tor circuits between the user and the proposed Onion
IoT gateway. By applying a self-adaptive scheduling scheme, the tunnel trans-
fers data over multiple circuits efficiently and thus achieves a good throughput
to support IoT applications that require low network latency. Since the traffic
is routed through the anonymous tunnel, this scheme provides a same security
protection as the original Tor-based approach. Therefore, it fits the user who
requires strong security protection and a reasonable performance.

We further improved the performance of the Onion gateway in our second
design by using split channels for command and data transmission. In particular,
the IoT gateway running the Tor hidden service maintains two separate channels:
the command channel handles requests and responses, which are tiny messages,
through the hidden service ports over the Tor network, and the data channel is
only used to send high-bandwidth traffic to remote users over the public network.
By separating the command and data channels, we provide a good security
protection by hiding the security-sensitive command interface behind Tor, while
avoiding injecting high-bandwidth traffic into the Tor network.

The main contributions of this work are as follows:

– We present a general security solution to safeguard IoT devices with potential
security vulnerabilities by hiding them behind the specially designed IoT
gateways running the Tor hidden services.

– We propose two novel designs of Onion IoT gateways to provide strong secu-
rity protection by integrating the Tor hidden services on the IoT gateway
with optimized performance to support high-bandwidth and low-latency IoT
applications.

– To our best knowledge, the proposed Onion IoT gateway design is the first
practical solution to integrate Tor hidden service with secure IoT gateways.



Hide Your Hackable Smart Home from Remote Attacks 579

The rest of this paper is organized as follows. We first introduce the pre-
liminaries in Sect. 2, and then present our IoT gateway designs, namely multi-
path Onion IoT gateway and split channel Onion IoT gateway, in Sects. 3 and
4, respectively. We evaluate the performance of the proposed designs through
experiments in Sect. 5 and analyze their security in Sect. 6. Finally, we discuss
the related work in Sect. 7 and conclude this work in Sect. 8.

2 Preliminaries

2.1 One Instance of Smart Home Gateway: Home Assistant

Home Assistant (HA) is an open-source home automation platform running on
Python 3, which is able to automatically discover, monitor, control and automate
various consumer IoT devices [5]. It can run on major operating systems (e.g.,
Linux, Windows, OS X) and hardware modules ranging from PCs to micro-
controllers such as Raspberry Pi. Home Assistant offers a web interface and
allows users to remotely access it through web browsers or mobile applications.

We choose Home Assistant as our implementation platform for several rea-
sons. First, HA is an open-source platform supporting the major brands of IoT
devices, and thus is widely used in home automation application development.
It also has good community supports. Moreover, Freitas implemented the Tor-
based gateway on HA [21], so it is fair to compare his scheme with ours on the
same platform. It worths noting that our designs do not rely on the HA platform.
In particular, the first design using the customized multipath Tor routing pro-
tocol is platform-independent, and the second design can be easily implemented
in other platforms with a small effort.

2.2 Tor and Tor Hidden Service

The Tor network [19] is an overlay network consisting of Onion Routers (ORs)
contributed by volunteers to support anonymous communication over the Inter-
net. To do so, the client’s proxy, known as the Onion Proxy (OP), randomly
selects three routers to establish a Tor circuit to the destination. It then encrypts
the data in layers, packs them into 512-byte cells and sends data cells through
the circuit. Each router along the circuit peels off one layer of encryption and for-
wards the cell to the next router until it reaches the last relay (known as “exit”),
which further forwards the data to the original destination. Each hop only knows
who has sent the data (predecessor) and to whom it is relaying (successor) due
to the layered encryption.

Tor hidden services use rendezvous points (RPs) to allow service operators
to offer TCP-based services, such as web or instant messaging servers, without
revealing their real IP addresses. Service operators can enable it by setting up
Tor as the proxy for their services. Figure 2 illustrates the basic components
of Tor hidden services: (1) The hidden server (HS) randomly selects several
routers as its introduction points (IPs) and builds onion circuits to them. (2)



580 L. Yang et al.

Hidden 
Server

Alice Rendezvous Point
(1)

(2)(3)

(4)

(5) (6)

(7)(8)

HSDir

Introduction Point

Fig. 2. Tor hidden services architecture

HS uploads its service descriptor to the hidden service directory (HSDir), where
the descriptor along with HS’s public key and the set of IPs is signed by HS’s
private key. Now, HS is ready to accept connections from clients. (3) To connect
to the hidden service, a client (e.g., Alice) contacts HSDir to retrieve the service
descriptor of HS using its onion address, which Alice learns out of band. (4) With
the set of IPs and HS’s public key from the service descriptor, Alice randomly
selects a router as her RP, gives it a rendezvous cookie (RC) which is a one-
time secret, and builds a circuit to it. (5) Alice sends an introduce message to
one of the IPs and (6) asks it to forward the message to HS, which contains
the rendezvous cookie, RP address and the first part of a Diffie-Hellman (DH)
handshake encrypted by HS’s public key. (7) After decrypting the introduce
message, HS establishes a new circuit to Alice’s RP and sends a rendezvous cell
to it, containing RC and the second part of DH handshake. (8) RP relays the
rendezvous cell to Alice. (9) After verifying RC and generating the end-to-end
session key, Alice and HS start communicating through RP, which relays data
cells between the two circuits without change.

In our design, the IoT gateway built on the Home Assistant platform is
running Tor hidden services, so it can only be accessed by its .onion address with
an optional authentication token shared between authorized users. By applying
multiple-hop onion routing and the end-to-end encryption, Tor hidden services
provide strong protection to traffic flows and the location of the hidden server.
This prevents the remote adversaries from knowing the IP address of the IoT
gateway by probing or scanning the network, or even the existence of the IoT
gateways, and thus reduces the risks of remote exploitation.

Flow Control. Tor uses a two-layer window-based end-to-end flow control
scheme to guarantee a steady flow between two ends. Since multiple streams
multiplex a circuit, the outer layer performs a circuit-level control which restricts
the number of cells transmitted over a circuit for all streams. The inner layer
enforces a stream-level control for individual streams. At both ends of a circuit,
two OPs (one for sender and one for receiver) control the speed of data cells
entering and leaving the circuit by keeping track of the circuit and stream win-
dows. By default, a circuit window starts with 1000 cells and a stream window
is initialized to 500 cells. When a data cell is sent, both windows decrease by



Hide Your Hackable Smart Home from Remote Attacks 581

one. When a stream window becomes empty, the sender stops sending from this
stream; when a circuit window reaches zero, the sender stops sending from all
streams on this circuit. Windows are increased when the corresponding acknowl-
edgment cell known as SENDME is received. For every 100 cells received on a
circuit, the receiver sends a circuit SENDME to inform the sender to forward
another 100 cells from this circuit. For every 50 cells received from a stream in
this circuit, the receiver sends a stream SENDME to request another 50 cells
from this stream.

The Performance Problem of Tor. There are about 7,000 onion routers
in the Tor network, among which the majority is low-bandwidth relays. So, the
donated bandwidth resource is relatively scarce comparing to the large user scale
(i.e., almost 2.5 million users per day). Besides, due to the current path selection
scheme, many users tend to select relays from a very small set of high-bandwidth
relays when constructing the circuits, which causes frequent congestions on these
relays. When congestion happens, a congested relay in a 3-hop circuit will greatly
degrade the performance of the entire circuit. Hence, the problem becomes worse
in hidden services, in which the circuit connecting the user to the hidden server
contains six relays. In [21], Freitas proposed to directly deploy Home Assistant
over the Tor hidden service, therefore, this scheme inevitably suffers the same
performance problem stated above.

3 IoT Gateway over Multipath Tor Hidden Services

To overcome the performance problem of the current deployment of Tor for IoT
gateway, we extend the mTor approach in [42], and customize it into an end-to-
end multipath routing scheme to support Tor hidden services, namely mTorHS.

As illustrated in Fig. 3, mTorHS constructs an anonymous tunnel consisting
of m circuits, where m is a client-specified parameter. While the capacity of
each circuit is dynamic over time, our proposed mTorHS scheme can adaptively
distribute traffic onto m circuits in proportion to their dynamic capacities, and
thus avoid the communication being blocked by a congested circuit and achieve
an optimal overall performance. mTorHS is transparent to the Tor network, that
is, no modification needs to be made on regular Tor relays. Only the two Tor
Onion Proxies (OPs) on the user side (for users who choose to use mTorHS) and
the hidden server side (i.e., Tor OP for Home Assistant) need to be updated. In
particular, new functions are added for associating multiple circuits to a client
stream, adding sequence number to data cell, reordering out-of-sequence cells,
and scheduling cells across multiple circuits. Next, we will elaborate the pro-
cess of tunnel construction and data transmission. For the ease of presentation,
we denote user’s Onion Proxy as OP or Alice interchangeably, and call hidden
server’s OP as HS in the following sections.



582 L. Yang et al.

3.1 Tunnel Construction

In our scheme, the server establishes hidden service and client retrieves service
descriptors in the same way as the conventional Tor hidden service (i.e., step 3–6
in Sect. 2.2). Our modification starts from step 4.

Tunnel Initialization. Different from the current scheme which randomly
selects one router as the rendezvous point (RP), the user Alice chooses m routers
and constructs m circuits of 3 hops, each ending at a distinct router. Then, Alice
gives m different rendezvous cookies (RC) to the RPs, which will be used to link
the joining circuits established from the hidden server. We denote the first estab-
lished circuit as the primary circuit and the other m−1 circuits as the auxiliary
circuits. Once m circuits are established, Alice does the same thing as steps 5–6
in Sect. 2.2. In particular, Alice sends an introduce1 message to an introduction
point, which will forward it to the hidden server with an introduce2 message.
The message contains the rendezvous cookie, RP address and the first part of a
DH handshake for the primary circuit. We add two new fields to this message,
namely, is multipath and tunnel width, which indicate the request is to build a
multipath tunnel with tunnel width m. After receiving the introduce2 message,
HS checks if is multipath is set. If so, HS generates a unique 32-bit tunnel iden-
tifier (TID); otherwise, HS follows the original Tor protocol. HS establishes a
new circuit to the RP of the primary circuit and sends Alice a rendezvous1 cell
containing RC, the second part of DH handshake, and TID. RP relays the con-
tent of the rendezvous1 cell to Alice with a rendezvous2 cell. Once Alice receives
it and successfully verifies RC, she extracts TID and generates the end-to-end
session key. A 6-hop circuit is established between Alice and HS. Now, Alice and
HS can communicate with each other through the primary circuit. It is worth
noting that while two 3-hop anonymous circuits (between client and RP and
between server and RP) join at the RP conceptually, we re-design the entire
circuit construction protocol to enable end-to-end encryption between the client
and the server so that no intermediate router can observe the clear traffic in Tor.

Fig. 3. An example of mTorHS architecture where m = 3.

With TID, Alice adds the remaining auxiliary circuits to the tunnel by send-
ing m − 1 next rp m1 messages to HS along the primary circuit. The format of
1 To distinguish from the commands in current Tor, all the newly added commands

in mTorHS have a suffix m.



Hide Your Hackable Smart Home from Remote Attacks 583

each next rp m message is similar to the introduce1 message, which contains TID
and RP’s address used in auxiliary circuits. In response to the next rp m message,
HS builds a new circuit connecting to the corresponding RP, and acknowledges
each successful joining with a rendezvous1 to that RP. HS associates all circuits
with the same TID to form a tunnel for Alice. After Alice receives all m ren-
dezvous2 cells including 1 cell from the primary circuits and m−1 cells from the
auxiliary circuits, a multipath tunnel is successfully constructed.

Tunnel Management. Atop circuit management of Tor, mTorHS introduces
additional tunnel management to oversee circuits in the tunnel. mTorHS man-
ages the multipath tunnel dynamically according to the congestion status of
member circuits over time. If OP detects that the transmission on a member
circuit becomes very slow, OP will construct a new circuit to replace it (will be
elaborated in the next subsection). The slow circuit closing scheme provides OP
the ability of responding to real-time network dynamics, and prevents a slow
circuit from becoming a bottleneck of the entire tunnel. In particular, OP can
add new auxiliary circuits or tear down any existing circuit at any time. In par-
ticular, a new auxiliary circuit can be added by sending a next rp m command
to inform HS of the new RP address. To tear down a circuit, OP informs HS
to drop it using a drop m message. After receiving drop m cell, HS immediately
stops sending on this circuit and responds to OP using a dropped m message
with the number of cells that have already been sent on this circuit (denoted as
ns). Once OP receives ns cells on this circuit, it terminates the circuit.

3.2 Data Transmission

When Alice’s data stream arrives at OP via SOCKS, OP spawns the client stream
(denoted as the parent stream) to m subflows and appends them to the tunnel by
associating each subflow with a circuit. Each subflow has its own stream window
and inherits a common stream ID from the parent. Next, OP sends a relay begin
cell through a random member circuit to start the access.

Scheduling and Data Cell Allocation. Conceptually, data cells can be for-
warded through any member circuit in the tunnel. However, if the number of
allocated cells on a particular circuit exceeds its capacity, it will become con-
gested. Since the overall performance of a tunnel is bounded by the slowest
circuit, two endpoints of a tunnel need to cooperate to schedule cells across mul-
tiple circuits based on the capacities of individual circuits. A naive approach for
cell allocation is to probe the capacity of each circuit after it is initiated and
schedule traffic according to the probed capacity.

However, the method is problematic in practice. First, it will introduce a
large amount of probing traffic to the Tor network. Moreover, the capacity
of each circuit may change dramatically after probing. Therefore, the static
scheduling scheme cannot adapt to network dynamics so that it is ineffective.
In [14], Alsabah et al. presented an opportunistic probing approach to estimate
the round-trip-time (RTT) of a circuit based on Tor’s circuit-level congestion
control scheme. The RTT-based approach is reactive to network dynamics, but



584 L. Yang et al.

2 1 1 2 2 4 2 4 494

CircID Cell
Cmd

Relay
Cmd Recognized Stream

ID Digest Len Seq.
No. Data

Cell Header Cell Payload 

Payload Header Multipath Header

Fig. 4. mTorHS cell format: a new filed, sequence number marked in red, is added as
the multipath header, representing the sequence number of sent-out cells. (Color figure
online)

it is still not very accurate because the congestion feedbacks are received infre-
quently [15]. We argue that RTT-based approach may not be a good choice in
cross-layer scheduling, which is also recognized in multipath TCP design [16].

In mTorHS, we adopt a “pulling” scheduling scheme – instead of pushing
data cells to circuits by a scheduler, we let each subflow actively pull data from
a shared send buffer, whenever its stream window becomes nonempty. Initially,
each subflow has a stream window of 500 cells. As described in Sect. 2.2, the
stream window decreases by one when sending a cell out and increases by 50
when receiving a stream-level SENDME. Consequently, a subflow stops sending
cells when its stream window size drops to zero and resumes when it receives
a SENDME. When the circuit to which a subflow is appended becomes con-
gested, cells will be moving much slower towards the receiver, resulting in delayed
stream-level SENDMEs and long waiting at the sender end. Whereas, subflows on
fast circuits will send out data cells fast and steadily. In this way, the “pulling”
scheduling is subflow self-adaptive without accurate explicit circuit RTT mea-
surements. When multiple subflows have a nonzero stream window, we adopt a
FIFO (first-in-first-out) queue to schedule them.

Slow Circuit Detection. Another challenge in mTorHS design is the detection
of slow circuits. To avoid a congested circuit becoming the bottleneck of the
entire tunnel, OP will replace slow circuits with new ones. We adopt a distance-
based outlier detection approach to determine whether a circuit is congested
based on a sliding window of 50 cells. In particular, we measure the time of
receiving every 50 cells and find the lower and upper quartiles (Q1 and Q3) of
ten most recent records to calculate the interquartile range (IQR) where IQR =
Q3 − Q1. If a new measurement falls out of the range of (0, Q3 + 1.5IQD], it
is considered as an outlier indicating the circuit is experiencing a congestion.
To increase detection reliability, OP considers a circuit as congested if at least
three consecutive outliers occur. Once detected, OP and HS will collaborate to
tear down the congested circuit and replace it with a new one. This can be done
through the tunnel management discussed above.

Data Re-ordering. Combining the self-adaptive “pulling” scheduling and
active congestion detection schemes, mTorHS is able to adapt to network
dynamics, which potentially prevents slow circuits from degrading the overall



Hide Your Hackable Smart Home from Remote Attacks 585

performance of multipath tunnel. However, due to dynamic scheduling, data
cells may arrive at the receiver out of order. To solve this issue, we have to mod-
ify the format of Tor data cell to incorporate a 32-bit sequence number in the
multipath data packets. As shown in Fig. 4, the first four bytes of data payload
is reserved for this purpose. Moreover, we add a new relay subdata m command
to indicate a data cell is multipath data. When OP receives a multipath data cell
from a subflow, it first checks if the sequence number is expected. An expected
cell is immediately forwarded to the application stream, while an out-of-order
cell is stored in a buffer and ordered according to its sequence numbers.

3.3 Discussions

By applying congestion detection, users of multipath hidden services can route
traffic through multiple circuits (some may be lightly occupied), and thus
improve the overall performance. Such a congestion avoidance scheme also ben-
efits single-path users, since mTorHS stops using the congested paths to give
bandwidth to others’ traffic. To further balance the usage on high-bandwidth
relays between multipath users and general users, we can force multipath users
to use the low-bandwidth relays to establish their tunnel and still achieving an
acceptable performance, since most Tor relays are low-bandwidth and they are
under-utilized in the current Tor [42]. We can bundle these idle, low-bandwidth
relays to effectively serve the multipath users without hurting general users. In
terms of security, this solution, namely IoT gateway over multipath Tor hidden
services, transmits all traffic, including incoming and outgoing traffic, on gate-
way through Tor network, so the IP address of gateway is still hidden from the
public Internet and thus the adversary cannot scan and attack the gateway.

mTorHS improves the network utilization by employing low-bandwidth
relays. However, it will not increase the overall bandwidth of Tor network. If
millions of users access their gateways via Tor, especially for bulk traffic like
watching camera videos, the huge demand on bandwidth may exceed the capac-
ity of Tor. Therefore, IoT gateway over mTorHS is best for users who have
very strong security requirement but only need an acceptable performance. For
the majority users who want to achieve a better balance between security and
performance, we propose an alternative solution, namely IoT gateway with split
command and data channels, which will be presented in next section.

4 IoT Gateway with Split Command and Data Channels

Tor provides very strong security protection but limited bandwidth, while the
public Internet has the opposite – high bandwidth but weak security protection.
To combine the advantages, we propose a novel scheme, namely IoT gateway with
split command and data channels, which leverages the security of Tor and the
good performance of the public Internet. More specifically, the IoT gateway only
accepts incoming traffic from the Tor channel, while responding to the remote
client with encrypted (data) traffic through the Internet channel.



586 L. Yang et al.

Event BusCommand: watch video 
on temporary Port 
56789 with token

Service 
Registry

Camera Component:
Open video stream on 
Port 56789 and send 
to user

Data: video stream

State Machine

Call service open 
stream on Port 56789 

State_changed events

Set state

Push video

Poll state

Home Assistant (HA)User

abc.onion

Video player

Receiver

Connect to HA
on port 56789

Forward to
video player

Tor

Internet

Call service: send video 
stream on Port 56789

Fig. 5. An example of IoT gateway with split command and data channels: user sends
request to watch camera video on port 56789 through the Tor channel, while Home
Assistant temporarily opens port 56789 to deliver encrypted video through Internet.

With this scheme, the IoT gateway can still defend against vulnerability
scanning by refusing to respond to any request coming from the Internet, such as
ICMP ping, telnet, or HTTP request. The adversary obtains nothing by scanning
the gateway with IP address. Besides, since the onion address of hidden service is
only known by the user himself, the adversary cannot scan the gateway through
Tor. Therefore, the security of the IoT gateway is still well protected. From
the efficiency perspective, the incoming command traffic to the IoT gateway is
usually transient and very small, so transmitting the commands through Tor
will not introduce much overhead to Tor. In response to the command coming
from the Tor channel, the gateway sends out bulk traffic, such as camera videos,
to the user through the Internet channel. Since the video stream is transfered
through the public Internet, we need to ensure strong encryption and mutual
authentication between the user and the IoT gateway.

An overview of the protocol is shown in Fig. 5. Next, we deliberate this pro-
tocol with an example in which a user remotely requests video stream from a
camera behind the IoT gateway.

Step 1: Connection Initialization Through Tor. The user connects to the
IoT gateway, such as Home Assistant, using its onion address (e.g., abc.onion).
At the client side, the user selects a device (e.g., a camera) and specifies a
random high TCP port pd for the data stream. Meanwhile, a 256-bit ran-
dom token rA, a 1024-bit random number x and its corresponding gx (for
Diffie-Hellman) will be generated. The random token rA will be used for the
later mutual authentication, and gx will be used to generate the session key.
Then, user submits this configuration to IoT gateway (e.g., Home Assistant)
through Tor.

Step 2: Service Initialization at IoT Gateway. In a conventional IoT gate-
way, data will be disseminated to the user through the same channel as the



Hide Your Hackable Smart Home from Remote Attacks 587

incoming request. For example, video from the camera will be sent back to the
user on the web interface, transmitted through Tor, if the request comes from
Tor HS. In our scheme, we redesign the interfaces of the data-intensive devices,
such as the Camera Component, so that the data stream is re-directed to a
temporary port specified by the user, and transmitted to the user through the
public Internet channel. To do so, we add a new functionality to the Camera
Component and register this service (i.e., camera through Internet) to the Ser-
vice Registry. Since this new service is implemented at the component level, it
can work with different types of cameras seamlessly.

When Home Assistant receives user’s request from the Tor channel, it gen-
erates a 256-bit random token rHS , a 1024-bit random number y and its corre-
sponding Diffie-Hellman number gy. HA uses the received gx and y to generate
the session key gxy and responds to user with the random token rHS through
the Tor channel. Meanwhile, HA opens port pd, which is specified by the user,
and waits for the connection for data dissemination, e.g., video streaming.

Step 3: Initialization of Data Channel Through Internet. After user
receives the token rHS and the second half of Diffie-Hellman handshake gy

through Tor, he will generate the session key gxy, and send a request containing
rHS to Home Assistant through the data channel, which is encrypted with gxy.

Step 4: Data Dissemination Through Internet. Once user’s request for
video stream arrives at port pd through the Internet channel, Home Assistant
decrypts it with the session key and verifies the token rHS . If the authentication
succeeds, Home Assistant sends rA followed by the subsequent data to the user.
The communication is encrypted with the session key. Meanwhile, HA discards
requests that fail the authentication. Finally, when the user receives the reply, he
decrypts it to get rA to verify the server. If the authentication succeeds, he will
accept the subsequent data stream. Otherwise, the connection will be closed.

5 Experiment and Performance Evaluation

To demonstrate the performance improvement of our proposed schemes, we
implement all three Tor-based IoT gateway approaches, and perform experi-
ments on the live Tor network. In particular, we compare network throughput
for video streaming in the following settings: (1) the original Home Assistant
without Tor hidden services (denoted by HA-No-Tor), (2) HA with single-path
Tor hidden services (HA-sTorHS ), (3) HA with multipath Tor hidden services
(HA-mTorHS ) and (4) HA with split command and data channel (HA-Split).

Setup. We deployed Home Assistant on a dedicated Raspberry Pi 2 [10] to
simulate the proposed IoT gateway, which connects to a VStarCam IP camera
[12]. The video stream is fed into Home Assistant via FFmpeg. The Raspberry
Pi 2 is equipped with a 700 MHz ARM A6 microprocessor and 512 MB of RAM.
The client accesses Home Assistant through a laptop with 2.5 GHz Intel i5 CPU,
8 GB RAM and OSX.



588 L. Yang et al.

Experiments. To compute the throughput, we measure the overall time for the
client to receive a 10 MB streaming data from Home Assistant. For HA-Split,
we modify Home Assistant using Python 3 on the backend and Polymer on the
frontend. For HA-mTorHS, we change the source code of Tor-v0.2.9.10. Note
that all changes are made to the client’s proxy and hidden server’s proxy, so
no change is needed on the Tor network. We compare two different multipath
settings where the tunnel width m is set to 2 and 4, respectively. To eliminate the
difference caused by circuits’ capacities, we let the HA-4TorHS scheme to use
the default path selection algorithm to choose relays for 4 circuits and record
the used relays. Then, we let the HA-2TorHS scheme randomly choose 2 out
of 4 circuits, while HA-sTorHS randomly chooses 1 from the 4 circuits. Each
experiment is repeated 60 times over different time of a day, and the average
transmission time for each approach is recorded.

Fig. 6. Average network throughput provided by various approaches, compared with
throughput needs of household IoT devices: Setting 1: two full HD (1280 × 1080)
surveillance cameras, 30 fps, H.264 high quality compression; Setting 2: two HD 720p
(1280× 720) cameras, 30 fps, H.264 high quality compression; Setting 3: two HD 720p
cameras, 15 fps, H.264 medium quality compression.

Results. Figure 6 compares the performance of different schemes. The Y-axis is
the throughput measured from transmitting 10 MB video from the IoT camera.
We can see that the baseline approach (HA-sTor) that directly integrates Tor
hidden services into Home Assistant achieves the worst performance, which is
almost 7 times slower than the direct access to HA through the public Internet
(HA-No-Tor).

Figure 6 also shows that the proposed multipath Tor hidden services can
improve the performance significantly. In particular, the HA-2TorHS scheme
adopting two multipath circuits is 1.7 times faster than HA-sTorHS, while HA-
4TorHS is 3 times faster. In fact, HA-4TorHS is fast enough for a typical home
surveillance setting with two HD 720p (1280× 720) cameras capturing at 30 fps
with H.264 high quality compression.

Lastly, HA-Split can achieve the same performance as accessing Home Assis-
tant without using Tor with a comparably weaker security guarantee. More
specifically, it provides the same security guarantee for the command channel



Hide Your Hackable Smart Home from Remote Attacks 589

and the same anti-scanning feature for the IoT devices and HA. In summary,
both HA-mTorHS (with m > 3) and HA-Split schemes can achieve an accept-
able performance with enhanced security as we expect. We recommend users
with larger throughput requirement to adopt the HA-Split scheme, which also
avoids overloading the Tor network with a large amount of IoT data. While for
users with higher security requirements, we recommend using the HA-mTorHS
scheme, which hide both the IoT devices and the client behind Tor hidden service
with a strong anonymity protection.

As we have discussed, a single Tor path can (and often) get congested.
mTorHS with slow circuit detection and congestion control overcomes this prob-
lem. To demonstrate this, we conduct another experiment – a 6-hop path between
the client and the hidden server is established using very fast relays measured
by Tor, i.e., 3 relays used by client are 2391A, 92CFD and 3E13E, while 3
relay used by client are A7047, 96DAF and 8C23B. They are respectively Top
1%, 5%, 14%, 30%, 11% and 20% fastest relays among all Tor routers at the time
of experiment (July 12, 2017). Unfortunately, the real throughput of this path
consisting of very fast relays was lower than average: it takes 55 s to transmit the
10 MB video file. This poor performance is usually due to congestion on at least
one of relays in the path [37]. Then, for HA-2TorHS, we keep the first path as
is, and add another path with congestion control. The performance is improved
to 16 s for transmitting a 10 MB file, since most traffic can be routed through
the second path, which may also alleviate the congestion on the first path. For
HA-4TorHS, we add 2 more paths with congestion control, and the performance
is further improved to 10 s.

6 Security Analysis

In this section, we analyze the security of two proposed schemes in terms of
authentication, encryption and anti-scanning.

Authentication. Home Assistant provides optional password-based authenti-
cation, but it is not required. Besides, such an authentication approach has sev-
eral known weaknesses such as weak passwords, which is a commonly observed in
many use cases. Moreover, password-based authentication is particularly vulner-
able if adversaries are allowed unlimited attempts when guessing the password.
As a result, the embedded authentication of Home Assistant is not reliable.

To tackle this problem, our proposed schemes offer two additional layers of
authentication provided by Tor hidden services. First, adversaries cannot access
Home Assistant over hidden services without knowing the onion address of the
device behind the gateway. Since the onion address generated by Tor is an 80-
bit number in base32, it is not easy for adversaries to predict the one used by a
target. In addition, even if the adversary obtains the onion address by chance,
Tor hidden services also require users to have a 132-bit authentication cookie in
base64 to access the hidden server. It is very difficult for adversaries to guess
the correct combination of onion address and authentication cookie. Therefore,



590 L. Yang et al.

our schemes, by integrating Tor hidden services with the gateway, can provide
a reliable authentication service to secure the IoT gateway.

Encryption. Home Assistant does not use HTTPS by default, so it is very
insecure when accessing from remote. To address this problem, users are often
suggested to set up additional link encryption using Let’s Encrypt [7] for exam-
ple. However, this requires a tedious process to configure the setup, especially for
users who has little knowledge about networking and security. In practice, this
usually discourages users from adopting secure configurations. On the contrary,
our schemes are atop Tor hidden services, which have built-in onion encryption
and end-to-end encryption. With a very simple configuration process during
installation, we can set up the IoT gateway running over Tor hidden service.
After that, all traffic that goes through Tor is well protected without any user
involvement.

In the HA-mTorHS scheme, since all communication is over Tor, the data
confidentiality completely relies on Tor’s strong cryptography technologies. In
the HA-Separation scheme, we use Tor channel for command and Internet chan-
nel for data. All commands are protected by Tor as discussed before, while data
is also encrypted by an AES session key, which is negotiated through the com-
mand channel between user-end application and Home Assistant over hidden
service.

Anti-scanning. Anti-scanning approach is an effective solution for cyberattacks
against smart homes. The current Home Assistant running on the default port
8123 will respond to adversary’s scanning on this port, so the adversary can
find vulnerabilities and exploit them. In our HA-mTorHS scheme, all the access
to Home Assistant must pass through the hidden services. Without knowing
the onion address and the authentication cookie, adversary does not know the
existence of Home Assistant, and thus cannot probe and access it. In our HA-
Separation scheme, authentication and key negotiation are conducted through
the command channel over Tor, so those vulnerability scanning techniques will
not work any more. For data channel, it is still resistant to scanning when the
port is temporarily open to the public Internet for data transmission due to two
reasons: (1) On the data channel Home Assistant only responds to the connection
request that contains the nonce encrypted by session key, which is sent to the
user through Tor. Any other traffic will be dropped, so the scanning without the
correct nonce will receive no response; (2) Since the port on Home Assistant is a
random port and only temporarily open during data transmission, the adversary
even may not have enough window of time to detect a open port via massive
scanning, let alone a successful attack.

7 Related Work

Extensive research has been conducted to enhance the security of individual
devices. For authentication, Liao et al. [28] propose a secure ECC-based RFID
authentication scheme to realize the mutual authentication between devices.



Hide Your Hackable Smart Home from Remote Attacks 591

Wu et al. [39] further improve the security by proposing lightweight private
mutual authentication and private service discovery. For encryption, traditional
cryptography can be applied to secure IoT. Dinu et al. introduce a benchmark
framework to evaluate how well lightweight block ciphers, such as AES, RC5,
Simon and Speck, etc., are suited to IoT devices. For communication, a bunch of
dedicated protocols such as CoAP [34], RPL [38], and 6LoWPAN [33] and their
variants have been proposed, which are not only lightweight for IoT devices but
also security-oriented.

Another direction of approach that aims to achieve both security and effi-
ciency is cloud-assisted IoT security designs. Since resource-constrained IoT
devices usually cannot afford costly cryptographic techniques and large data
storage, many schemes propose to solve this problem by leveraging the connected
cloud, which provides powerful computation and storage capacity [23,24,40,44].
For example, [17,29] focus on cloud-assisted healthcare IoT, which mainly use
the storage resources of the cloud. In [17], they proposed a scheme to add water-
mark into the collected data of a patient to avoid the privacy leakage on the
cloud, while Yang et al. proposed a scheme that allows health service providers
such as doctors to access and verify the encrypted medical records stored on
the cloud by using a searchable encryption with forward privacy support [29].
In contrast, [28] utilizes the computation resources of the cloud to implement a
data publishing scheme adopting attribute-based encryption, while [24] proposes
a data access control scheme for constrained IoT devices and cloud computing
based on hierarchical attribute-based encryption. The above solutions mainly
focus on securing individual IoT devices, while IoT gives us a way to manage
and secure a bunch of heterogeneous devices. For example, Intel IoT gateway
can support comprehensive device protection with integrated McAfee, including
secure boot, application integrity monitor, encrypted storage and more [6].

This work is also related to Tor routing optimization. Several multipath Tor
schemes have been proposed to balance security and performance in Tor rout-
ing [14,41,42]. AlSabah et al. [14] first explored how to use multipath routing
to improve Tor’s performance, and Yang et al. [42] further analyzed the relay
usage and proposed to use low-bandwidth relays to construct multiple circuits to
improve performance and increase network utilization. Yang et al. [41] proposed
a partial multipath routing scheme for Tor hidden services to enhance the resis-
tance to traffic analysis. The tunnel is only built between the rendezvous point
and the hidden server. They improve the anonymity based on the insight that
traffic pattern are distorted by flow splitting and flow merging operations and
by the multiple routes with different network dynamics. In contrast, with the
goal of improving the performance, our proposed multipath Tor hidden services
for IoT gateway adopts an end-to-end multipath structure, which leverages the
end-to-end traffic management to work with network dynamics. Another notable
difference is that our multipath scheme is transparent to Tor network, namely,
no modifications are required on existing Tor routers except user proxy who is
using multipath Tor, and thus, our scheme can be seamlessly adopted, while all
other three schemes require new Tor routers to support their designs.



592 L. Yang et al.

8 Conclusion

Security and privacy are critical issues in the adoption of IoT devices. IoT onion
gateways provide strong security protection, but they suffer from the perfor-
mance bottleneck caused by the limited bandwidth of Tor. To tackle this issue,
we present a multipath Onion IoT gateway, which transmits IoT data stream
through an anonymous tunnel with multiple Tor circuits with congestion con-
trol. We also present a split channel Onion gateway, which splits the command
and data channels, to utilize the less-secure public Internet to route encrypted
data streams. We have demonstrated the effectiveness, efficiency, and security
guarantees of the proposed approach through experiments and security analysis.

Acknowledgment. This work is sponsored in part by the National Security Agency
(NSA) Science of Security Initiative and the US National Science Foundation under
NSF CNS-1422206 and DGE-1565570.

References

1. 9 baby monitors wide open to hacks that expose users’ most pri-
vate moments. https://arstechnica.com/security/2015/09/9-baby-monitors-wide-
open-to-hacks-that-expose-users-most-private-moments/

2. Hack Samsung Fridge. https://www.pentestpartners.com/security-blog/hacking-
defcon-23s-iot-village-samsung-fridge/

3. Hackers Make the First-Ever Ransomware for Smart Thermostats. https://
motherboard.vice.com/en us/article/aekj9j/internet-of-things-ransomware-
smart-thermostat

4. Hacking 14 IoT Devices. https://www.iotvillage.org/slides DC23/IoT11-slides.pdf
5. Home Assistant. https://home-assistant.io/
6. Intel IoT Gateway. https://www.intel.com/content/www/us/en/internet-of-

things/gateway-solutions.html
7. Let’s Encrypt. https://letsencrypt.org/
8. Openhab. https://www.openhab.org/
9. Ransomware Ruins Holiday By Hijacking Family’s LG Smart TV on Christmas

Day. https://www.yahoo.com/tech/ransomware-ruins-holiday-hijacking-familys-
201136667.html

10. Raspberry Pi. https://www.raspberrypi.org/
11. Smartthings. http://www.samsung.com/us/smart-home/smartthings/hubs/f-

hub-us-2-f-hub-us-2/
12. VStarCam Eye4. http://www.eye4.so/
13. Trendnet cameras - i always feel like somebody’s watching me (2012). http://

console-cowboys.blogspot.com/2012/01/trendnet-cameras-i-always-feel-like.html
14. AlSabah, M., Bauer, K., Elahi, T., Goldberg, I.: The path less travelled: overcoming

Tor’s bottlenecks with traffic splitting. In: De Cristofaro, E., Wright, M. (eds.)
PETS 2013. LNCS, vol. 7981, pp. 143–163. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39077-7 8

15. AlSabah, M., et al.: DefenestraTor: throwing out windows in Tor. In: Fischer-
Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 134–154. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4 8

https://arstechnica.com/security/2015/09/9-baby-monitors-wide-open-to-hacks-that-expose-users-most-private-moments/
https://arstechnica.com/security/2015/09/9-baby-monitors-wide-open-to-hacks-that-expose-users-most-private-moments/
https://www.pentestpartners.com/security-blog/hacking-defcon-23s-iot-village-samsung-fridge/
https://www.pentestpartners.com/security-blog/hacking-defcon-23s-iot-village-samsung-fridge/
https://motherboard.vice.com/en_us/article/aekj9j/internet-of-things-ransomware-smart-thermostat
https://motherboard.vice.com/en_us/article/aekj9j/internet-of-things-ransomware-smart-thermostat
https://motherboard.vice.com/en_us/article/aekj9j/internet-of-things-ransomware-smart-thermostat
https://www.iotvillage.org/slides_DC23/IoT11-slides.pdf
https://home-assistant.io/
https://www.intel.com/content/www/us/en/internet-of-things/gateway-solutions.html
https://www.intel.com/content/www/us/en/internet-of-things/gateway-solutions.html
https://letsencrypt.org/
https://www.openhab.org/
https://www.yahoo.com/tech/ransomware-ruins-holiday-hijacking-familys-201136667.html
https://www.yahoo.com/tech/ransomware-ruins-holiday-hijacking-familys-201136667.html
https://www.raspberrypi.org/
http://www.samsung.com/us/smart-home/smartthings/hubs/f-hub-us-2-f-hub-us-2/
http://www.samsung.com/us/smart-home/smartthings/hubs/f-hub-us-2-f-hub-us-2/
http://www.eye4.so/
http://console-cowboys.blogspot.com/2012/01/trendnet-cameras-i-always-feel-like.html
http://console-cowboys.blogspot.com/2012/01/trendnet-cameras-i-always-feel-like.html
https://doi.org/10.1007/978-3-642-39077-7_8
https://doi.org/10.1007/978-3-642-39077-7_8
https://doi.org/10.1007/978-3-642-22263-4_8


Hide Your Hackable Smart Home from Remote Attacks 593

16. Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: from theory to practice.
In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.)
NETWORKING 2011. LNCS, vol. 6640, pp. 444–457. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20757-0 35

17. Burke, S.: Massive cyberattack turned ordinary devices into weapons (2016).
http://money.cnn.com/2016/10/22/technology/cyberattack-dyn-ddos/index.html

18. Coldewey, D.: Smart locks yield to simple hacker tricks (2016). https://techcrunch.
com/2016/08/08/smart-locks-yield-to-simple-hacker-tricks/

19. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, August 2004

20. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home
applications. In: Proceedings of the 37th IEEE Symposium on Security and Privacy
(2016)

21. Freitas, N.: Internet of onion things (2016). https://blog.torproject.org/blog/
quick-simple-guide-tor-and-internet-things-so-far

22. Gartner Inc.: Gartner IoT forecast (2017). http://www.gartner.com/newsroom/
id/3598917

23. Hossain, M.S., Muhammad, G.: Cloud-assisted industrial internet of things (IIoT)-
enabled framework for health monitoring. Comput. Netw. 101, 192–202 (2016)

24. Huang, Q., Wang, L., Yang, Y.: DECENT: secure and fine-grained data access
control with policy updating for constrained IoT devices. World Wide Web 21(1),
151–167 (2018)

25. Jia, Y.J., et al.: ContexIoT: towards providing contextual integrity to appified
IoT platforms. In: Proceedings of The Network and Distributed System Security
Symposium, vol. 2017 (2017)

26. Kim, J.E., Boulos, G., Yackovich, J., Barth, T., Beckel, C., Mosse, D.: Seamless
integration of heterogeneous devices and access control in smart homes. In: 2012
8th International Conference on Intelligent Environments (IE), pp. 206–213. IEEE
(2012)

27. Kothmayr, T., Schmitt, C., Hu, W., Brünig, M., Carle, G.: DTLS based security
and two-way authentication for the internet of things. Ad Hoc Netw. 11(8), 2710–
2723 (2013)

28. Liao, Y.P., Hsiao, C.M.: A secure ECC-based RFID authentication scheme inte-
grated with ID-verifier transfer protocol. Ad Hoc Netw. 18, 133–146 (2014)

29. Ling, Z., Luo, J., Xu, Y., Gao, C., Wu, K., Fu, X.: Security vulnerabilities of
internet of things: a case study of the smart plug system. IEEE Internet Things J.
4(6), 1899–1909 (2017)

30. Ning, H., Liu, H., Yang, L.T.: Aggregated-proof based hierarchical authentication
scheme for the internet of things. IEEE Trans. Parallel Distrib. Syst. 26(3), 657–
667 (2015)

31. Notra, S., Siddiqi, M., Gharakheili, H.H., Sivaraman, V., Boreli, R.: An experi-
mental study of security and privacy risks with emerging household appliances.
In: 2014 IEEE Conference on Communications and Network Security (CNS), pp.
79–84. IEEE (2014)

32. Raza, S., Shafagh, H., Hewage, K., Hummen, R., Voigt, T.: Lithe: lightweight
secure CoAP for the internet of things. IEEE Sens. J. 13(10), 3711–3720 (2013)

33. Shelby, Z., Bormann, C.: 6LoWPAN: The Wireless Embedded Internet, vol. 43.
Wiley, Hoboken (2011)

34. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP)
(2014)

https://doi.org/10.1007/978-3-642-20757-0_35
http://money.cnn.com/2016/10/22/technology/cyberattack-dyn-ddos/index.html
https://techcrunch.com/2016/08/08/smart-locks-yield-to-simple-hacker-tricks/
https://techcrunch.com/2016/08/08/smart-locks-yield-to-simple-hacker-tricks/
https://blog.torproject.org/blog/quick-simple-guide-tor-and-internet-things-so-far
https://blog.torproject.org/blog/quick-simple-guide-tor-and-internet-things-so-far
http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917


594 L. Yang et al.

35. Sivaraman, V., Chan, D., Earl, D., Boreli, R.: Smart-phones attacking smart-
homes. In: Proceedings of the 9th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pp. 195–200. ACM (2016)

36. Sivaraman, V., Gharakheili, H.H., Vishwanath, A., Boreli, R., Mehani, O.:
Network-level security and privacy control for smart-home IoT devices. In: 2015
IEEE 11th International Conference on Wireless and Mobile Computing, Network-
ing and Communications (WiMob), pp. 163–167. IEEE (2015)

37. Wang, T., Bauer, K., Forero, C., Goldberg, I.: Congestion-aware path selection for
Tor. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 98–113. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 9

38. Winter, T.: RPL: IPv6 routing protocol for low-power and lossy networks (2012)
39. Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication

for the internet of things. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 301–319. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45741-3 16

40. Yang, L., Humayed, A., Li, F.: A multi-cloud based privacy-preserving data pub-
lishing scheme for the internet of things. In: Proceedings of the 32nd Annual Con-
ference on Computer Security Applications, pp. 30–39. ACM (2016)

41. Yang, L., Li, F.: Enhancing traffic analysis resistance for tor hidden services with
multipath routing. In: 2015 IEEE Conference on Communications and Network
Security (CNS), pp. 745–746. IEEE (2015)

42. Yang, L., Li, F.: mTor: a multipath tor routing beyond bandwidth throttling. In:
2015 IEEE Conference on Communications and Network Security (CNS), pp. 479–
487. IEEE (2015)

43. Yang, L., Xue, H., Li, F.: Privacy-preserving data sharing in smart grid systems.
In: 2014 IEEE International Conference on Smart Grid Communications (Smart-
GridComm), pp. 878–883. IEEE (2014)

44. Yang, L., Zheng, Q., Fan, X.: RSPP: a reliable, searchable and privacy-preserving
e-healthcare system for cloud-assisted body area networks. In: INFOCOM. IEEE
(2017)

https://doi.org/10.1007/978-3-642-32946-3_9
https://doi.org/10.1007/978-3-319-45741-3_16

	Hide Your Hackable Smart Home from Remote Attacks: The Multipath Onion IoT Gateways
	1 Introduction
	2 Preliminaries
	2.1 One Instance of Smart Home Gateway: Home Assistant
	2.2 Tor and Tor Hidden Service

	3 IoT Gateway over Multipath Tor Hidden Services
	3.1 Tunnel Construction
	3.2 Data Transmission
	3.3 Discussions

	4 IoT Gateway with Split Command and Data Channels
	5 Experiment and Performance Evaluation
	6 Security Analysis
	7 Related Work
	8 Conclusion
	References




