
Secure Cryptography Infrastructures in the Cloud
Dawei Chu∗‡, Kaijie Zhu§, Quanwei Cai∗†, Jingqiang Lin∗†‡, Fengjun Li♯, Le Guan¶, Lingchen Zhang∗†
∗State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

†Data Assurance and Communication Security Research Center, Chinese Academy of Sciences
§National Digital Switching System Engineering & Technological R&D Center, CHINA

‡School of Cyber Security, University of Chinese Academy of Sciences
♯Department of Electrical Engineering and Computer Science, The University of Kansas, USA

¶Department of Computer Science, University of Georgia, USA

Abstract—Information systems are deployed in clouds as virtu-
al machines (VMs) for better agility, elasticity and reliability. It is
necessary to safekeep their cryptographic keys, e.g., the private
keys used in TLS and SSH, against various attacks. However,
existing virtualization solutions do not improve the cryptography
facilities of in-cloud systems. This paper presents SECRIN, a se-
cure cryptography infrastructure for VMs in the cloud. SECRIN
is composed of a) virtual cryptographic devices implemented
in VM monitors (VMMs), and b) a device management tool
integrated in the virtualization management system. A virtual
device receives requests from VMs, computes with cryptographic
keys within the VMM and returns results. The keys appear only
in the VMM’s memory space, so that they are kept secret even
if the VMs were compromised. With the management tool, the
operator of virtualization management systems assigns virtual
cryptographic devices to a VM as well as other resources, while
the tenant (or owner) of a VM still holds proper controls on the
keys. The virtual devices work compatibly with live migration,
and the cryptographic computations are not interrupted when
the VMs are moving from a host to another. We develop the
SECRIN prototype with KVM-QEMU and oVirt. Experimental
results show that, it works compatibly with existing virtualization
solutions, provides reliable cryptographic computing services for
applications, and is secure against attacks happening in VMs.

I. INTRODUCTION

Various information systems are deployed as virtual ma-
chines (VMs) on Amazon EC2, Microsoft Azure, Alibaba
Aliyun and other virtualization platforms. Virtualization plat-
forms maintain computation, network and storage resources
for tenants with better agility, elasticity and reliability; howev-
er, the cryptography facilities of VMs are not well improved
in existing virtualization solutions. Meanwhile, deployed in
virtualized (or conventional) environments, information sys-
tems still depend on cryptography (in particular, the semantic
security of cryptographic algorithms and the confidentiality of
cryptographic keys) to provide secure services. While secure
algorithms are generally available, it is difficult to ensure the
confidentiality of keys. For example, TLS and SSH servers
shall protect their private keys against various attacks [1]–[6];
otherwise, the attackers would exploit the compromised keys
to decrypt messages or impersonate the owners of the keys.

Dawei Chu and Kaijie Zhu are co-first authors, and Quanwei Cai is
the corresponding author (Email: caiquanwei@iie.ac.cn). This work was
partially supported by National Natural Science Foundation of China (Award
61772518), National Key R&D Plan of China (Award 2017YFB0802100),
NSF DGE #1565570, NSA SoS Initiative #H98230-18-D-0009 and the Ripple
University Blockchain Research Initiative.

Virtualization technologies and cloud solutions offer the po-
tentials to mitigate the threats to cryptographic keys and build
cryptography infrastructures for all VMs in the cloud. Firstly,
if a virtualization platform builds cryptography services for
VMs, the keys will be decoupled from the VMs’ memory
space. All computations with keys will be performed in the
VM monitor (VMM), so the attack resilience is significantly
improved – if a VM is under attacks [1]–[4] or even com-
pletely compromised, the keys are still kept secret. Secondly,
compared with conventional solutions that keep cryptographic
keys within the VMs, hosting the keys in the VMM does not
introduce extra threats, because these sensitive data are always
accessible to the VMM when they are in VMs. Finally, cryp-
tographic facilities are managed in an agile and elastic manner
(as well as other resources), and reliable cryptography services
benefit from live migration of the virtualization platform.

We present SECRIN, a secure cryptography infrastructure
in the cloud. It provides cryptography services for VMs with
enhanced protections on the keys. SECRIN takes advantage
of the isolation mechanism from virtualization technologies,
and the cryptographic computations are implemented as virtual
devices, called virtio-ct. The virtual devices are implemented
within VMMs, so that the keys appear as plaintext only in the
VMM’s memory space and never in VMs.

To improve its usability, SECRIN integrates the manage-
ment of cryptographic devices into the virtualization manage-
ment system. In a cloud platform, all computation, network
and storage resources are coordinated by the virtualization
management system [7]. The virtual devices of SECRIN are
managed in the same way as other cloud resources, while the
tenants hold proper controls on the keys. When a virtio-ct
device is not mounted, its keys are encrypted by a password.
Once a (remote) tenant is booting his/her VM that is config-
ured with a virtio-ct device, he/she is prompted to enter the
password. This password is securely transported to the host,
to decrypt the key file and then to activate the virtual device.
SECRIN also works compatibly with live migration, to provide
reliable services. When it is serving for the applications in
a VM and the VM is moving from a host to another, the
cryptographic computations of SECRIN (and the applications
in this VM) are not interrupted.

We develop the prototype system with open-source VMMs
and virtualization management systems, i.e., KVM-QEMU

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: University of Kansas Libraries. Downloaded on August 13,2021 at 20:31:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. oVirt Structure

and oVirt [8]. By intensive experiments, we show that SE-
CRIN works compatibly with existing virtualization solutions,
provides secure cryptography services for various applications.

II. BACKGROUND ON VIRTUALIZATION

KVM-QEMU is a popular VMM solution, consisting of
a Linux kernel module called KVM (kernel-based virtual
machine) and a user-space program called QEMU. KVM
initializes CPU hardware and provides VM management inter-
faces via the ioctl system call, such as mapping the memory
of a VM, and assigning virtual CPUs. QEMU invokes the
interfaces to run VMs, each of which is a user-space process.

VMMs emulate isolated peripheral devices for each VM.
virtio [9] is a framework of device virtualization for KVM-
QEMU. It presents an abstraction layer called virtqueue, i.e.,
virtual queues connecting a front-end driver that runs in VMs
to the corresponding back-end driver in the user-mode QEMU.
Front-end and back-end drivers cooperate to emulate devices.

A virtualization management system [7] coordinates lots of
VMMs and VMs on the physical computation, network and
storage resources of the platform. Generally, a virtualization
platform consists of the following hardware:
Manager Node. A manager node provides the operators and
the tenants with portals for authentications and operations. It
communicates with hosts to execute requested operations.
Host. Each host runs a VMM to manage the VMs on it. A
platform may consist of hundreds, or even thousands of hosts.
Storage. It stores VM images, snapshots and other data.

oVirt [8] is an open-source virtualization management sys-
tem, built on top of KVM-QEMU. It is widely used in public
and private clouds. The oVirt system consists of the following
components, as shown in Figure 1: (1) oVirt engine running
on the manager node, to manage resources in the platform;
(2) virtual desktop server manager (VDSM) on each host as
the agent of oVirt engine, to execute VM life-cycle operations
via libvirt, and configure networks and storage; and (3) libvirt
[10] on each host to interact with KVM-QEMU to run VMs.

oVirt engine issues VM-operation commands to VDSM. It
also handles user authentication, and provides user interfaces
(UIs) for the oVirt operators (not the root user of manager
nodes or hosts) and tenants. Two UIs are provided, a web-
based interface and a command-line one named oVirt CLI. It
mounts a PostgreSQL database to store the configurations.

VDSM accepts the XML-RPC invocations from oVirt en-
gine, and then configures hosts, networks and storages, or
communicates with libvirt in XML messages to maintain the
VMs on its host. libvirt converts the XML messages into
QEMU commands to create, start, stop, save and restore VMs.

III. SECRIN: SECURE CRYPTOGRAPHY
INFRASTRUCTURES IN THE CLOUD

This section presents the assumptions and the design goals
of SECRIN. Then, the system architecture is introduced.

A. Threat Model and Assumption

SECRIN aims to protect cryptographic keys against the
attacks happening in VMs. The VM that invokes the SECRIN
services, might be completely compromised; i.e., attackers
could exploit vulnerabilities [1]–[4], [11] to access sensitive
data or even run privileged programs arbitrarily in the VM.

VMMs are assumed to be trustworthy. Isolation is enforced
to prevent a VM from accessing the VMM’s memory data. We
assume that it is free of VM escape (or privilege escalation)
vulnerabilities [12], [13]. This assumption can be ensured by
the assistance of hardware virtualization features and reducing
the size of trusted codes in VMMs [14], [15].

SECRIN provides cryptography facilities, integrated with
the virtualization management. The virtualization management
system is also assumed to be trustworthy. There is no operation
interface in the virtualization management for the operators to
disclose sensitive data of virtual cryptographic devices (i.e.,
the passwords and the keys in plaintext). First of all, SECRIN
works well, when the operators do not know the passwords or
the keys. Note that, an operator of virtualization management
is usually not the root of manager nodes or hosts, and a cloud
service does not grant unnecessary privileges to the operators.
The integrity of the platform is maintained by root users that
have to be trusted, and unauthorized modification is prevented.
We assume that the operators cannot break the integrity of
trusted binaries of the management system or VMMs.

The threat model assumes the same conditions as most
public cloud services. Amazon S3 introduces three options
to encrypt data in clouds [16], [17]: a) in the client side
before being uploaded, b) in the server side using the keys
managed by the cloud, called SSE, or c) in the server side but
using tenant-provided keys, called SSE-C. Similar modes are
supported by other clouds [18], [19]. We extend these service
modes, from cloud storage to cryptography services in the
cloud. The first option requires tenants to maintain cryptog-
raphy facilities by themselves; that is, a tenant runs its own
cryptographic device. SSE-C follows the same assumption as
SECRIN in the public cloud: Plaintext cryptographic keys are
used by trusted cloud binaries but unknown to the operators.
Finally, SECRIN in private clouds follows a mode similar to
SSE, where the cryptography facilities are fully controlled by
the operator.

B. Design Goal

SECRIN aims to provide secure cryptography infrastruc-
tures for VMs in the cloud, easy to be used and managed.
Provide cryptographic computation services for VMs, with
enhanced protections of the keys. The cryptographic keys
are kept secret even if a VM was completely compromised.
Attackers might compromise a VM and invoke the SECRIN
services arbitrarily, but not harm the confidentiality of keys.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on August 13,2021 at 20:31:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. SECRIN Overview

Integrate the cryptography infrastructure into the virtual-
ization management, following the same service modes of
cloud resources. The cryptographic devices are managed in
the virtualization management system in a way similar to
other cloud resources. The operator assigns virtio-ct devices
to VMs. From the tenants’ view, the SECRIN services are
(implemented as) common peripheral devices mounted in a
VM. The cryptography facilities support live migration, and
active virtio-ct devices are migrated across hosts.
Tenants and operators cooperatively control the virtual cryp-
tographic devices. Each key file encrypted by (an AES key
derived from) the tenant’s password, is stored in the storage
system. To mount a virtual cryptographic device in a VM, the
operator of virtualization management configures the key file
for the VM, and the tenant inputs the password to decrypt
the key file when the VM is booting. Such control prevents a
VM from accessing other tenants’ cryptographic devices and
avoids incidents due to the operators’ misoperations.

C. System Architecture

SECRIN is designed based on the general framework of
virtualization platforms. It is composed of a) virtual devices
implemented in VMMs, and b) a management tool integrated
in the virtualization management system. A virtualization man-
agement system provides operation interfaces and channels
for operators and remote tenants, so we build the SECRIN
management tool on top of these interfaces and channels.

Figure 2 shows the life-cycle of a virtio-ct device. Firstly,
the tenant generates his/her key file in a secure machine, and
sends it to the cloud platform. This file contains cryptographic
keys, encrypted by a password strong enough to resist brute-
force attacks. Then, the operator of virtualization management
assigns this key file to a VM belonging to the tenant. This
configuration instructs VMMs to initialize the cryptographic
device when booting the VM. Finally, when the tenant is
booting a VM, the virtualization management system prompts
him/her to input the password. The VMM receives the pass-
word to decrypt the key file and initialize the virtio-ct device,
which provides services only for this VM.
Cryptographic Key and Password. Cryptographic keys at
rest are encrypted as files in the storage system. When the
VMM initializes a virtio-ct device, it reads the key file and
decrypts it with the password. The virtualization management
system transports file paths and passwords to VMMs, along
with other configurations. The typical steps as follows. The
operator configures a VM by setting the file path of keys,

based on the ownership of VMs and cryptographic keys. When
a tenant is starting a VM configured with a virtio-ct device,
he/she is prompted to input the password, via a secure channel
connected to the VMM but unaccessible to VMs.

In addition to the typical mode in public clouds as above,
SECRIN supports another mode to initialize the devices: Both
key file paths and passwords are input by the operator. It is for
private clouds, where the operator is responsible for all VMs’
cryptography facilities.
Virtual Cryptographic Device. Virtual devices compute with
the keys in the back-end drivers, i.e., in the VMM’s memory
space that is unaccessible to any VM. The isolation among
multiple devices is enforced by the virtual device solutions
[9]. When the back-end driver of virtio-ct devices is launching
an instance (i.e., the device is being activated for a VM), the
corresponding key file is decrypted and the keys are assigned
to this instance only. The messages from the front-end driver
of the VM are delivered only to this instance of the back-end
driver, and vice versa. So a key file only serves the VM that
it belongs to, as configured in the system.

In the case of live migration, the running state of back-
end drivers is migrated between hosts, including the keys
and intermediate states of cryptographic computations. So the
cryptography services are not interrupted by live migration.

IV. IMPLEMENTATION

We build the prototype system with oVirt and KVM-QEMU.

A. Drivers of virtio-ct

The virtio-ct devices are implemented on virtio [9]. Each
virtio-ct device is a virtual PCI device, logically attached with
a number of tokens. Each token corresponds to a key. We
borrow the source code of OpenSSL to finish the cryptographic
computations in the back-end driver. The front-end driver in
VMs and the back-end in QEMU, consist of about 2,000 lines
of C code (LoC), excluding the blocks from OpenSSL.

On discovering a virtio-ct device, the front-end driver in-
stantiates necessary data structures, and communicates with
the VMM to initialize the device. virtio assigns a default man-
agement channel to each virtio-ct device. This management
channel is used to initialize the virtio-ct device by adding
tokens. The back-end driver sends necessary information for
the VM to add a token, including the algorithm (RSA or AES),
a user-friendly string of the token, and its public key (only for
an RSA token). The prototype supports only AES and RSA,
and we will support more algorithms in the future.

When the VM is notified of a new token, another channel is
allocated exclusively for this token. All applications in the VM
invoke the SECRIN services via the front-end driver, and the
front-end and back-end drivers communicate over this dedicat-
ed channel for cryptographic computations. Each request to a
token, indicates the operation (encryption, decryption, signing
or verification), the cipher mode (ECB, CBC, OFB or CFB)
for AES, and the padding (PKCS1 or OAEP) for RSA. On
receiving a request, the back-end driver computes with the
key. If random bits are needed, the OpenSSL pseudorandom

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on August 13,2021 at 20:31:17 UTC from IEEE Xplore. Restrictions apply.

number generator is used. The response always returns a status
code. If there is no error, the result bytes are written into the
buffer provided by the front-end driver.

B. Management and Initialization of virtio-ct

We integrate the management of virtio-ct into oVirt, with the
following functions: (1) configure and assign virtio-ct devices
to VMs, and (2) transport virtio-ct parameters to hosts, to
initialize the devices. We introduce about 200 LoC in oVirt
CLI for tenants to input passwords interactively, and about 300
lines of scripts in VDSM to handle the virtio-ct parameters.
virtio-ct Configuration. It is implemented in oVirt engine. We
define a custom property named virtio-ct-key for VMs.
When a virtio-ct device is assigned to a VM, the operator sets
the VM’s virtio-ct-key property and the property value
is the path of the key file. In the public-cloud mode, file paths
and passwords are input by operators and tenants, respectively.
In the private-cloud mode, both the password and the file path
are entered by the operator.

The virtio-ct parameters (i.e., file paths, passwords and key
files) are transported among oVirt UIs, oVirt engine, VDSM,
and libvirt. The UI channels of oVirt engine, either web
pages or oVirt CLI, are protected by TLS. The operator uses
these channels to configure and assign virtio-ct devices. We
extend oVirt CLI as follows for tenants to input passwords
interactively. When a tenant requests to start a VM, CLI reads
the VM’s configuration and prompts the tenant to input the
password after checking that a virtio-ct device is assigned.
Then, the password is collected by oVirt engine as a run-once
temporary parameter, not saved in the PostgreSQL database.

Then, oVirt engine sends the file path and the password
to VDSM in a VM-start XML-RPC request, as well as other
configurations. This is also protected by TLS.
virtio-ct Initialization. VDSM and libvirt work cooperatively
to prepare parameters, for QEMU to activate the device.

On receiving the VM-start XML-RPC invocation from oVirt
engine, VDSM generates the corresponding XML message for
libvirt. VDSM allows customized scripts by hooking a certain
point in the VM life-cycle. We hook the before_vm_start
point, to handle the virtio-ct-key property. This hook
happens, after VDSM finishes the XML message for libvirt
and before it calls libvirt to start the VM. The scripts handle
the XML message with the file path and password, so that it
is ready for libvirt to turn it into correct QEMU commands.
We also hook after_vm_start, to clean the passwords.

If an error appears when a virtio-ct device is initialized (e.g.,
incorrect password or no key file), the failure is fed back to
VDSM, and then to oVirt engine.

C. Cryptographic Computation Service API

Two categories of APIs are supported by virtio-ct devices.
The sysfs attributes are used to identify each device. Using sys-
fs, the key type, the name and the public key are exported on
the VM. Figure 3 shows two tokens, identified as ct0token0
and ct0token1. Meanwhile, cryptographic computations are

Fig. 3. virtio-ct Device

exported to the user space via the ioctl system call, which
sends requests to a device and receives responses.

This ioctl-based interface is further encapsulated into
an OpenSSL ENGINE, to make it easier to integrate virtio-
ct devices into existing applications. The OpenSSL ENGINE
mechanism dynamically loads an external cryptographic im-
plementation that complies with its interface specification, to
finish the computations. With this ENGINE, an application
still calls the OpenSSL interface, while OpenSSL sources out
its cryptographic computations to virtio-ct devices.

D. Application

We rebuild two prevailing applications on the prototype,
i.e., Apache HTTPS server and dm-crypt full disk encryption.
Apache invokes asymmetric cryptographic computations (i.e.,
RSA decryption in TLS handshakes) from the user space,
and dm-crypt invokes symmetric computations (i.e., AES
encryption/decryption) in OS kernel. Less than 10 LoC are
modified in these applications. These applications evaluate
SECRIN in different typical scenarios (i.e., asymmetric and
symmetric cryptography, in the user space and the kernel
space, for a small amount and a large mass of data).

Apache adopts the virtio-ct device as an OpenSSL ENGINE.
RSA computations in the TLS handshake are directed to virtio-
ct devices, while the symmetric cryptographic computations
are still finished in the VM. dm-crypt uses virtio-ct devices as
its AES module for disk data encryption/decryption. dm-crypt
originally calls the generic cryptographic functions in Linux
kernel, so we modify Linux kernel to export the AES functions
of virtio-ct to dm-crypt.

E. Live Migration

Live migration works well with SECRIN. When the VM
with active virtio-ct devices is migrated between hosts, the in-
progress SECRIN services operate continuously. The virtio-ct
back-end drivers are installed on every host, and the driver
state is sent automatically. Then, the states of front-end and
back-end drivers are consistently transported to the destination.

V. SECURITY ANALYSIS

This section discusses the security guarantees of SECRIN.
We assume that SECRIN is correctly implemented and the
system integrity is ensured. First of all, the cryptographic keys
and the tenants’ passwords to encrypt/decrypt the keys, are in
the memory space of VMMs or virtualization management
systems that is unaccessible from VMs. Thus, even if the VM
was completely compromised, the keys are still kept secret. It
depends on the isolation by VMMs, because these sensitive
data are processed within the memory space of VMMs.

SECRIN does not modify any VMM binary with ring -1, so
it does not introduce extra risks to the virtualization platform.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on August 13,2021 at 20:31:17 UTC from IEEE Xplore. Restrictions apply.

The virtio-ct device consists of the back-end driver in the user-
mode QEMU and the front-end driver in VMs; the passwords
are handled by oVirt CLI, oVirt engine, VDSM hook scripts
and libvirt, which are executed in the user space of hosts.

In the next, we examine the threats from different aspects
and also the remaining attack surfaces.
Threats from Hosts. The VMM and any processes with
root privileges in the host can access the cryptographic keys
and the passwords. Due to the isolation enforced by the host
OS, unprivileged processes except QEMU cannot access these
sensitive data. So we have to assume trustworthy VMMs and
host OSes; that is, these binaries do not leak sensitive data.

Patches are enforced to protect the passwords in the host
as follows. The password is included in the VM-start QEMU
command as an argument, and the command of each process
exists in procfs, the proc file system. We modify QEMU
with about 20 LoC: The password is replaced with ‘*’ as the
argument. So procfs or unprivileged commands based on
procfs (e.g., ps and top), cannot disclose the passwords.
This approach is widely adopted in open-source software such
as MySQL. Besides, the QEMU commands sent by libvirt, are
executed by fork and execve, and not logged in the shell
history accessible to unprivileged users.
Threats from Virtualization Management Systems. In Sec-
tion III-A, we assume that a) root privileges are held only by
trustworthy persons, and b) the (curious) operators are non-
root unprivileged users on the manager node and hosts. Such
operators cannot break the integrity of VMMs, host OSes, or
the virtualization management system (including the VDSM
hook scripts); otherwise, they will insert malicious binaries to
extract keys or passwords. The operators operate oVirt well,
without accessing these sensitive data of SECRIN via regular
operation interfaces.

The passwords are processed on manager nodes and hosts,
and recorded in the log modules of several components. By
setting the log level, we ensure no passwords in the logs of
oVirt engine and VDSM. This setting is changed only by root
privileges on the manager node or hosts. The log of libvirt also
contains the passwords and it cannot be disabled by tuning the
log level, so we modify libvirt to ensure no password is logged.
Threats from Networks. Attackers might attempt to obtain
the password and the key file over networks. In SECRIN, the
password is transported over TLS, from oVirt CLI to oVirt
engine, then to VDSM. Meanwhile, the keys are transported
during live migration, protected by TLS or SSH [10]. So the
network attacks are defeated.
Remaining Attack Surfaces. Physical attacks [5], [6] and
side-channel attacks [20]–[22] might compromise the keys.
These attacks are out of the scope of this work, and counter-
measures are available on hosts [6], [22]–[24].

VI. EVALUATION

This section presents the experiments on security and effi-
ciency. The prototype consists of: a) a manager node, b) two
Dell PowerEdge R820 servers as the hosts, each of which
runs with 4 Intel Xeon E5-4607 v2 CPUs and 32GB RAM,

Fig. 4. RSA Performance of virtio-ct

and c) an NFS server as the storage system. These machines
are connected in 1Gbps Ethernet. We install oVirt v3.5, libvirt
v0.10.2, KVM v0.12.1 and QEMU v1.7.1. One VM is created
with 4 vCPUs and 4GB RAM, and its OS is CentOS v6.6.

Apache and dm-crypt run in the VM. Apache uses OpenSSL
v1.0.2d and the virtio-ct device alternatively as its RSA mod-
ule, and dm-crypt alternatively invokes generic AES functions
in Linux kernel and virtio-ct as its AES engine. virtio-ct uses
OpenSSL v1.0.2d in its back-end driver. The keys are 2048-bit
RSA or 128-bit AES. During the HTTPS experiments, another
machine runs Apache Benchmark to issue HTTPS requests.

A. Security

Experiments were conducted to ensure no copy of keys in
VMs. When the virtio-ct device is being used (i.e., an infinite
loop requests RSA and AES decryption), we executed dump-
guest-memory to dump the VM’s memory, and info registers
to obtain the register contents. Then, the KeyFinder tools [25]
searched for the patterns of AES round keys and DER-encoded
RSA keys on dumped images. We also employed bgrep to
match the keys in the images. We dumped the memory and
registers for 60 times, but no occurrence of keys was found.
Contrarily, when we ran the tools on the memory dump of the
QEMU process, all keys were recovered each time.

B. Efficiency

RSA. We compare the RSA computations by virtio-ct with
OpenSSL in the user space. Figure 4 shows the speed of
native RSA computations, when a user-space program requests
RSA decryption at different levels of concurrency. When the
concurrency level is 1 (i.e., single thread), the speed of virtio-ct
is comparable. However, in the multi-threaded case, the speed
of OpenSSL increases while virtio-ct almost keeps unchanged.
In the current QEMU design, there is a global mutex that
synchronizes core codes across the threads that handle I/O
events; therefore, for each VM only one thread is reserved to
handle I/O events accessing virtio-ct or other virtual devices.
This limitation is for each VM, not for multiple VMs on one
host. One of our future works is to allocate multiple threads
that are independent from the QEMU context as SPICE [26],
so that the cryptographic computations are executed in parallel.

We measure the performance, when virtio-ct and OpenSSL
are alternatively served as the RSA engine of Apache HTTPS
servers. The client sends 10,000 HTTPS requests for a 5KB
web page, at different concurrency levels. As shown in Figure

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on August 13,2021 at 20:31:17 UTC from IEEE Xplore. Restrictions apply.

4, the number of HTTPS requests served does not reach the
maximum speed of native RSA computations, either for virtio-
ct or OpenSSL, due to the network protocol overheads. As the
concurrency level increases, the speeds of both virtio-ct and
OpenSSL increase; when there are 128 concurrent clients, the
speed of virtio-ct is about 62% of OpenSSL.
AES. We first compare virtio-ct with two AES modules: The
first one is a common OpenSSL-based program in the user
mode, the second runs AES encryption in Linux kernel that is
invoked via the ioctl system call, and virtio-ct is invoked
via both ioctl and virtio. A single-threaded program calls
AES encryption in an infinite loop, and each call includes k
blocks of encryption. All of them are based on the same library
of OpenSSL. In Table I, the native AES speed of virtio-ct
is much less than OpenSSL. It is explained that, compared
with AES encryption, the call-path overhead of virtio-ct is not
negligible. This overhead also explains that, as the number
of blocks per call increases, the speed of virtio-ct increases
more remarkably than other implementations in VMs. These
results show almost the most serious impact of efficiency by
replacing the conventional cryptography implementations with
virtio-ct: a) AES is one of the fastest cryptographic primitives,
so the call-path impact of virtio-ct will become more negligible
when heavier operations are invoked; and b) the program in
this case consists of only cryptographic computations, so when
a practical application is running on top of SECRIN, other
processing will mask the impact. The evaluation results of
RSA in Figure 4, are consistent with this inference.

We then measure the efficiency of virtio-ct, integrated in
dm-crypt for disk encryption. Three disks are mounted: The
first is plaintext, the second is encrypted with the default option
of dm-crypt, and the last one is encrypted by virtio-ct. IOzone
measures the file throughput, and Table II shows the results.
The throughput with virtio-ct is about 450 kB/s.

C. Live Migration

We migrate the VM, when HTTPS requests are being sent
to Apache in the VM. 10 times of live migration are finished
in one hour, and no HTTPS request fails. The average time
to finish live migration is nearly equal: 120.43s (virtio-ct) vs.
120.38s (OpenSSL). Besides, the speed of HTTPS requests
completed decreases to about 70%, compared with the results
in Figure 4 due to live migration, for either virtio-ct or
OpenSSL.

VII. RELATED WORK

vTPM [27] is built in VMMs with a trusted platform module
(TPM), to present TPM functions to multiple VMs. CaaS [28]
builds a special VM on Xen, to provides TPM-based functions

TABLE I
SPEED OF NATIVE AES ENCRYPTION (BLOCK/S)

Blocks per Call 1 2 4 8
in User Space 1302305.8 1307762.7 1339678.9 1334046.0
in Kernel Space 1102686.5 1118331.1 1121683.5 1132547.2
in virtio-ct 0031717.6 0037242.2 0038862.8 0038917.3

TABLE II
FILE READ/WRITE THROUGHPUT (KBYTE/S)

File Size (MB) 2 4 8 16 32
w/o encryption 12216 10272 13733 13394 11276

Read AES-generic 12144 10160 11719 11718 12194
virtio-ct 00479 00499 00471 00474 00487

w/o encryption 10635 10050 11567 12566 13241
Write AES-generic 09910 09579 10797 10671 10404

virtio-ct 00408 00456 00481 00467 00470

for other VMs. SECRIN, vTPM and CaaS shares the same
spirit that builds isolated cryptography services to protect keys,
but we provide more flexible interfaces. Besides, vTPM and
SECRIN support live migration [29], while CaaS does not.

Virtualization-based approaches are proposed to implement
cryptosystems. qemu-img encrypts the VM images, and a
user needs to input the password in hosts before the VM is
started. TreVisor [30] integrates an AES engine in VMMs to
implement transparent full disk encryption. These solutions are
designed only for disk encryption, and not integrated in the
virtualization management as common cryptography facilities
in the cloud.

Intel SGX is a CPU extension to build user-space enclaves
for sensitive data. Intel SGX prevents unauthorized access
from OSes or VMMs to the user space, while SECRIN
employs the isolation of VMMs to build security services for
VMs. Therefore, Intel SGX can be utilized to build applica-
tions against compromised VMMs, while SECRIN assumes
the trustworthy VMMs.

Different designs [3], [23], [24], [31] are enforced to protect
cryptographic keys in computer systems. These approaches
work compatibly with SECRIN to protect the keys in hosts.

VIII. CONCLUSION

We propose SECRIN, a secure cryptography infrastructure
in the cloud. It utilizes virtualization to enhance the securi-
ty of cryptographic systems, and extends the capacities of
virtualization platforms by introducing virtual cryptographic
devices as common resources of cloud services. The virtual
devices are a) protected in the memory space of VMMs,
against the attacks happening in VMs, and b) managed in the
virtualization management system as well as other resources,
but with special controls by the tenants.

REFERENCES

[1] National Vulnerability Database, “CVE-2014-0160,”
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160.

[2] ——, “CVE-2014-0069,”
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0069.

[3] K. Harrison and S. Xu, “Protecting cryptographic keys from memory
disclosure attacks,” in 37th IEEE/IFIP DSN, 2007, pp. 137–143.

[4] G. Guninski, “Linux kernel 2.6 fun, Windoze is a joke,” 2005, http:
//www.guninski.com/where do you want billg to go today 3.html.

[5] J. Halderman, S. Schoen et al., “Lest we remember: Cold boot attacks
on encryption keys,” 17th USENIX Security, pp. 45–60, 2008.

[6] P. Stewin and I. Bystrov, “Understanding DMA malware,” in 9th
DIMVA, 2013, pp. 21–41.

[7] B. Sotomayor, R. Montero et al., “Virtual infrastructure management
in private and hybrid clouds,” IEEE Internet Computing, vol. 13, no. 5,
pp. 14–22, 2009.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on August 13,2021 at 20:31:17 UTC from IEEE Xplore. Restrictions apply.

[8] “oVirt,” http://www.ovirt.org/.
[9] R. Russel, “virtio: Towards a de-facto standard for virtual I/O devices,”

Operating Systems Review, vol. 42, no. 5, pp. 95–103, 2008.
[10] “libvirt - the virtualization API,” https://www.libvirt.org/.
[11] National Vulnerability Database, “CVE-2014-4653,”

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-4653.
[12] ——, “CVE-2008-0923,”

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-0923.
[13] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Xen 0wning trilogy,”

in Black Hat, 2009.
[14] A. Seshadri, M. Luk et al., “SecVisor: A tiny hypervisor to provide

lifetime kernel code integrity for commodity OSes,” in 21st ACM
SOSP, 2007, pp. 335–350.

[15] U. Steinberg and B. Kauer, “NOVA: A microhypervisor-based secure
virtualization architecture,” in 5th EuroSys, 2010, pp. 209–222.

[16] Amazon Web Services, “Protecting data using server-side encryption
with customer-provided encryption keys (SSE-C),”
https://docs.aws.amazon.com/AmazonS3/latest/dev/
ServerSideEncryptionCustomerKeys.html.

[17] ——, “S3 service level agreement,” https://aws.amazon.com/cn/s3/sla/.
[18] Google, “Cloud storage: Concept and techniques,”

https://cloud.google.com/storage/docs/concepts-techniques.
[19] Microsoft, “Protecting data in Microsoft Azure,” 2014.
[20] J. Bonneau and I. Mironov, “Cache-collision timing attacks against

AES,” in 8th CHES, 2006, pp. 201–215.
[21] C. Arnaud and P. Fouque, “Timing attack against protected RSA-CRT

implementation used in PolarSSL,” in CT-RSA, 2013, pp. 18–33.
[22] D. Brumley and D. Boneh, “Remote timing attacks are practical,”

Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.
[23] L. Guan, J. Lin et al., “Protecting private keys against memory

disclosure attacks using hardware transactional memory,” in 36th IEEE
S&P, 2015, pp. 3–19.

[24] ——, “Copker: Computing with private keys without RAM,” in 21st
(NDSS), 2014.

[25] Princeton University, “AESKeyFinder and RSAKeyFinder,”
https://citp.princeton.edu/research/memory/code/.

[26] “SPICE,” http://www.spice-space.org/.
[27] S. Berger, R. Caceres et al., “vTPM: Virtualizing the trusted platform

module,” in 15th USENIX Security, 2006, pp. 305–320.
[28] S. Bleikertz, S. Bugiel et al., “Client-controlled cryptography as a

service in the cloud,” in 11th ACNS, 2013, pp. 19–36.
[29] B. Danev and R. Masti, “Enabling secure VM-vTPM migration in

private clouds,” in 27th ACSAC, 2011, pp. 187–196.
[30] T. Müller, B. Taubmann, and F. Freiling, “TreVisor: OS-independent

software-based full disk encryption secure against main memory
attacks,” in 10th ACNS, 2012, pp. 66–83.

[31] N. Mavrogiannopoulos, M. Trmac, and B. Preneel, “A Linux kernel
cryptographic framework: Decoupling cryptographic keys from
applications,” in 27th ACM SAC, 2012, pp. 1435–1442.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on August 13,2021 at 20:31:17 UTC from IEEE Xplore. Restrictions apply.

