
Poster Abstract: SmartAppZoo: a Repository of SmartThings Apps
for IoT Benchmarking

Zhaohui Wang
EECS/I2S, The University of Kansas

Lawrence, KS, United States
zhwang@ku.edu

Bo Luo
EECS/I2S, The University of Kansas

Lawrence, KS, United States
bluo@ku.edu

Fengjun Li
EECS/I2S, The University of Kansas

Lawrence, KS, United States
fli@ku.edu

ABSTRACT
A well-organized SmartApps dataset provides a valuable resource
for researchers to evaluate their work on smart home automation
systems. The IoTBench dataset created by Celik et al. 1 is a signif-
icant contribution to the IoT research community [1]. However,
due to the fast growth of SmartApps and the retirement of some
old apps, the IoTBench dataset becomes outdated. The research
community is in need of a new large-scale and carefully cleaned
benchmarking dataset. In this poster, we present a new repository,
namely, SmartAppZoo, which contains 3,526 SmartApps collected
from GitHub repositories, including 184 SmartThings official apps,
468 third-party apps from IoTBench, and 2,874 new third-party
apps. SmartAppZoo is a manually-verified, comprehensive, clean,
and diverse IoT benchmarking dataset. SmartAppZoo is available
at: https://github.com/SmartAppZoo/SmartAppZoo.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories.

KEYWORDS
Dataset, IoT, SmartThings, SmartApps
ACM Reference Format:
ZhaohuiWang, Bo Luo, and Fengjun Li. 2023. Poster Abstract: SmartAppZoo:
a Repository of SmartThings Apps for IoT Benchmarking. In International
Conference on Internet-of-Things Design and Implementation (IoTDI ’23), May
09–12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3576842.3589162

1 INTRODUCTION
Smart IoT devices and applications nowadays play a very important
role in our daily lives. The SmartThings ecosystem has become the
most widely adopted IoT platform worldwide, with 220 million reg-
istered users in 2022. SmartApps are used to manage SmartThings
devices such as thermostats, locks, and switches. Research efforts
have been devoted to various aspects of SmartApps, e.g., intelligent
controls, device collaboration, and security and privacy. The IoT-
Bench dataset [1] was shared with the research community in 2018.
However, the 5-year-old dataset appears to be in need of an update,
1https://github.com/IoTBench/IoTBench-test-suite

This work is licensed under a Creative Commons Attribution International
4.0 License.

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0037-8/23/05.
https://doi.org/10.1145/3576842.3589162

as: (1) the dataset scale does not reflect the significant growth of
SmartApps and becomes insufficient for large-scale benchmarking
needs; (2) the dataset is outdated that some apps are removed or
replaced by new apps, while some new apps with new features or
new vulnerabilities are not included; and (3) it contains duplicate
apps and apps with syntax errors that they do not compile.

To address these issues, we devote efforts to collecting an up-to-
date and clean repository of open-source SmartApps, namely the
SmartAppZoo and share it with the research community. SmartAp-
pZoo aims to achieve two objectives, scalability and usability. We
expect to collect all open-source SmartApps that are available and
provide a clean dataset without duplicates or meaningless apps that
do not compile or do not provide any functionality. To the best of
our knowledge, we have collected the largest number of SmartApps
from real-world applications. In this poster, we explain the process
to collect and clean the dataset and present the basic statistics of
the dataset. We share the dataset with the research community at:
https://github.com/SmartAppZoo/SmartAppZoo.

2 DATA COLLECTION AND CLEANING
The data collection process consists of three phases: crawling,
SmartThings app identification, and app cleaning.
App Crawling. SmartApp developers may share their apps on the
SmartThings community website [2] or post open-source Smar-
tApps in GitHub repositories. We first retrieved the 184 apps that
are officially posted in SmartThings’ public GitHub repository and
labeled them as the official apps in SmartAppZoo. This set of apps
is different from the official apps in the IoTBench dataset as five
official apps were removed in 2020. Next, we collected all the Smar-
tApps from GitHub to create a candidate third-party SmartApps
dataset. To collect all available third-party apps, we defined a list of
15 SmartApp-related keywords such as “SmartThing”, “SmartApp”,
and “IoT” and used the REST API of GitHub [3] to search for repos-
itories with these keywords. We excluded all forked repositories to
avoid duplications. The REST API returns only up to 1,000 results
for each search. Therefore, we used non-overlapping time windows
to construct the queries (e.g., from 01/01/2022 to 02/01/2022) and
reduced the window size until the search returned less than 1,000
results. Eventually, the crawler covered all the repositories in the
date range between January 1, 2013 and December 31, 2022. In
this process, we avoided the hand-crafted malicious SmartApps
from IoTBench or other third-party GitHub repositories used for
adversarial SmartApp research. Finally, we extracted all the Groovy
files from the repositories in this candidate SmartApps dataset. We
appended the repository name and GitHub username in the form
of “user_name@repo_name” to the end of the filename of all the
crawled Groovy files so that we can resolve any potential conflict
in file names and easily trace the origin of all the crawled apps.

https://github.com/SmartAppZoo/SmartAppZoo
https://doi.org/10.1145/3576842.3589162
https://github.com/IoTBench/IoTBench-test-suite
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576842.3589162
https://github.com/SmartAppZoo/SmartAppZoo


IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Zhaohui Wang, Bo Luo, and Fengjun Li

App Identification. Not all Groovy files in the candidate app
dataset are valid SmartApps. In particular, both SmartApps and
device type handlers have “preferences" blocks, while device type
handlers also have “metadata" blocks, which do not exist in Smar-
tApps. We use regular expression “preferences(\(.*\))?\s*{”
and “metadata(\(.*\))?\s*{” to check if a Groovy file contains
a “metadata” or “preferences” block. If it contains neither, it is not
a SmartApp or a device type handler. If it has only “metadata", it is
likely a device type handler; otherwise, it is a SmartApp.
App Cleaning.We observed a large number of duplicate apps in
the candidate app set. Moreover, a significant number of similar
apps were found. For instance, some apps have identical code (called
“code-identical apps”) but have different comments or definition
blocks, e.g. different authors. Finally, some apps have highly simi-
lar codes to fulfill highly similar functions (called “near-duplicate
apps”). Removing them avoids unnecessary overhead when using
SmartAppZoo for testing while not affecting its utility. The app
cleaning pipeline involves five steps to eliminate identical, code-
identical, and near-duplicate apps as well as non-functional and
invalid apps. Here, we introduce the details of the process.
(1) Clean identical apps. First, we removed all the apps that are
exact duplicates, i.e., Groovy files that produce identical hashes. In
practice, many apps were found in multiple repositories. In this
case, we kept only one app in SmartAppZoo and gave priorities to
official SmartThings apps. Approximately 75% of the collected apps
were removed in this step.
(2) Clean non-functional apps. We scanned the codebase of each
app to remove the non-functional ones that do not have any user-
defined code/functions. For instance, apps that only contain headers
or system-defined methods such as “installed” and “updated”.
(3) Clean invalid apps. We compiled all the remaining apps and
excluded the ones that failed to compile. A small number of apps,
for example, with syntax errors in their codebase were removed.
(4) Clean code-identical apps. To identify apps with identical
function codebase, we extracted the code, excluded the definition
blocks, and removed all comments. If multiple apps had identical
cleaned code, we kept only one of them in SmartAppZoo.
(5) Clean near-duplicate apps. We calculated a fuzzy hash of
the cleaned Groovy code using TLSH [5], computed the pair-wise
distances, and adopted an agglomerative clustering algorithm to
group the apps into clusters. The pair-wise distance of apps in the
same cluster is less than a preset threshold (30 in our approach)
[4]. We used a combination of regular expressions and parenthesis
matching to extract the descriptions, inputs, subscriptions, and
actions from each app. When two apps in the same cluster have
different inputs, subscriptions, or actions, they were both preserved.
We removed all other near-duplicate apps.

3 STATISTICS
We collected 51,336 Groovy files from 7,841 GitHub repositories,
which included 22,421 SmartApps, 27,273 device type handlers,
and 1,642 Groovy files that were neither SmartApps nor device
type handlers. In particular, 405 Groovy files in SmartThings’ offi-
cial repository and 13 IoTBench third-party apps were device-type
handlers. To ensure the accuracy of our categorization, we randomly
selected Groovy files from each category for manual verification.

Table 1: Statistics of SmartApps datasets.

Datasets Official IoTBench SmartAppZoo
number of apps 184 652 3526

number of descriptions 170 444 2566
number of capabilities 38 54 118

We used the app cleaning pipeline described in Section 2 to re-
move non-functional and invalid SmartApps and eliminate identical
and near-duplicate apps. We removed 17,309 duplicate apps, 277
non-functional and invalid apps, 669 code-identical apps, and 640
near-duplicate apps. Finally, SmartAppZoo contains 3,526 Smar-
tApps, which are all valid, functional, and unique. Table 1 lists the
total number of apps, descriptions, and capabilities used in the
official SmartThings dataset, the IoTBench dataset, and the Smar-
tAppZoo dataset. As shown in the table, SmartAppZoo contains
significantly more SmartApps than the other two datasets.

4 CONVERSION AND LICENSE
The SmartThings platform has retired Groovy and introduced a new
API using Node.js SDK. The transition is ongoing. With searches
of SmartThings Community and Github, we found that the official
repositories are almost the only sources for Node.js SmartApps. We
believe that the SmartThings community still has a long way to
go in migrating all the apps from Groovy to Node.js, which means
SmartAppZoo will remain useful.

The main logic of Groovy and Node.js SmartApps is very similar,
making it relatively easy to convert Groovy apps into Node.js apps.
We have developed a conversion tool that accurately translates
the definition blocks, preference blocks, subscription functions,
schedule functions, and device commands from Groovy to Node.js.
However, translating other user-defined functions requires addi-
tional work. In SmartAppZoo, we include the converter software
and 50 sample Node.js SmartApps generated by the converter.

According to Github’s terms of service, we can fork the reposi-
tories and create our own copies of SmartApps. Hence, we forked
the SmartApps and acknowledged the original developers.

5 CONCLUSION
In this paper, we present a dataset of deduplicated and cleaned
real-world SmartApps to support the benchmarking of Smart home
automation systems. Our dataset captures a rich set of SmartApps,
including 184 SmartThings official apps, 468 IoTBench third-party
apps, and 2,874 GitHub third-party apps. With further updates and
expansion, the dataset will continue to be a valuable resource for
testing and evaluating research projects related to SmartApps.

REFERENCES
[1] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,

Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive information tracking in
commodity IoT. In USENIX Security Symposium.

[2] SmartThings Community. 2023. SmartApps & Automations. Retrieved Feb 2, 2023
from https://community.smartthings.com/c/smartapps/6

[3] Github. 2023. GitHub Docs. Retrieved Feb 2, 2023 from https://docs.github.com/
en/rest/search?apiVersion=2022-11-28#about-the-search-api

[4] Amanda Lee and Travis Atkison. 2017. A comparison of fuzzy hashes: evaluation,
guidelines, and future suggestions. In Proceedings of the SouthEast Conference.

[5] Jonathan Oliver, Chun Cheng, and Yanggui Chen. 2013. TLSH–a locality sensitive
hash. In Cybercrime and Trustworthy Computing Workshop.

https://community.smartthings.com/c/smartapps/6
https://docs.github.com/en/rest/search?apiVersion=2022-11-28#about-the-search-api
https://docs.github.com/en/rest/search?apiVersion=2022-11-28#about-the-search-api

	Abstract
	1 Introduction
	2 Data Collection and Cleaning
	3 Statistics
	4 Conversion and License
	5 Conclusion
	References

