
Introduction to

Real-Time Systems

Note: Slides are adopted from Lui Sha and Marco Caccamo

1

2

Overview

• Today: this lecture explains how to use Utilization Bound, it introduces the

POSIX.4 scheduling interface and the exact analysis

• To learn more on real-time scheduling:

- see chapter 4 on “Hard Real-Time Computing Systems” book from G.

Buttazzo

• To learn more on POSIX.4 scheduling interface:

• Book: Programming for The Real World, Bill O. Gallmeister, O’Reilly&Associates, Inc.

See pp.159-171 and 200-207 (available in the Lab)

• Basic tutorial at http://www.netrino.com/Publications/Glossary/RMA.html

http://www.netrino.com/Publications/Glossary/RMA.html

3

RMS: Less Than 100% Utilization but not Schedulable

4 4

6

0 10 14

• In this example, 2 tasks are scheduled under RMS, an optimal static priority method

4/10 + 6/14 = 0.83

• The task set is schedulable but if we try to increase the computation time of task T1,

the task set becomes unschedulable in spite of the fact that total utilization is 83%!

• To achieve 100% utilization when using fixed priorities, assign periods so that all

tasks are harmonic. This means that for each task, its period is an exact multiple of

every other task that has a shorter period.

• For example, a three-task set whose periods are 10, 20, and 40, respectively, is

harmonic, and preferred over a task set with periods 10, 20, and 50

T1 (4,10)

T2 (6,14)

4

The Liu & Layland Bound

• A set of n periodic tasks is schedulable if:

• U(1) = 1.0 U(4) = 0.756 U(7) = 0.728

• U(2) = 0.828 U(5) = 0.743 U(8) = 0.724

• U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

• For harmonic task sets, the utilization bound is U(n)=1.00 for all n.

Otherwise, for large n, the bound converges to ln 2 ~ 0.69.

• The L&L bound for rate monotonic algorithm is one of the most significant

results in real-time scheduling theory. It allows to check the schedulability of

a group of tasks with a single test! It is a sufficient condition; hence, it is

inconclusive if it fails!

 12... /1

2

2

1

1 n

n

n n
p

c

p

c

p

c

C. Liu, J. Layland. “Scheduling algorithms for multiprogramming in a hard-real-time environment,” JACM, 1973

http://dl.acm.org/citation.cfm?id=321743

5

Sample Problem: Applying UB Test

• Are all the tasks schedulable?

• What if we double the execution time of task t1?

C P U

Task t1: 20 100 0.200

Task t2: 40 150 0.267

Task t3: 100 350 0.286

6

Sample Problem: Applying UB Test

• Are all the tasks schedulable?

• Check the schedulability of T1, T2, and T3: U1 + U2 + U3 = 0.753 < U(3) Schedulable!

• What if we double the execution time of task t1?
• Check schedulability of T1 and T2:

• Check schedulability of T1, T2 and T3:

• UB test is a sufficient condition and thus inconclusive if it fails!

C P U

Task t1: 20 100 0.200

Task t2: 40 150 0.267

Task t3: 100 350 0.286

)2(67.027.04.0
150

40

100

40
U Schedulable!

779.0)3(953.0
350

100

150

40

100

40
 U

7

Sample Problem: draw the schedule by using RM and EDF

t1

t2

t3

t1

t2

t3

t1

t2

t3

(20, 100

RM

(40, 150)

(100, 350)

(40, 100

RM

(40, 150)

(110, 350)

(40, 100

EDF

(40, 150)

(110, 350)

8

Sample Problem: draw the schedule by using RM and EDF

t1

t2

t3

t1

t2

t3

t1

t2

t3

(20, 100

RM

(40, 150)

(100, 350)

(40, 100

RM

(40, 150)

(110, 350)

(40, 100

EDF

(40, 150)

(110, 350)

deadline miss!

9

Posix.4 scheduling interfaces

• The real-time scheduling interface offered by POSIX.4 (available on Linux kernel)

• Each process can run with a particular scheduling policy and associated

scheduling attributes. Both the policy and the attributes can be changed

independently. POSIX.4 defines three policies:

• SCHED_FIFO: preemptive, priority-based scheduling.

• SCHED_RR: Preemptive, priority-based scheduling with quanta.

• SCHED_OTHER: an implementation-defined scheduler

10

Posix.4 scheduling interfaces

• SCHED_FIFO: preemptive, priority-based scheduling.

• The available priority range can be identified by calling:
sched_get_priority_min(SCHED_FIFO) Linux 2.6 kernel: 1
sched_get_priority_max(SCHED_FIFO); Linux 2.6 kernel: 99

• SCHED_FIFO can only be used with static priorities higher than 0, which means

that when a SCHED_FIFO process becomes runnable, it will always preempt

immediately any currently running normal SCHED_OTHER process.

SCHED_FIFO is a simple scheduling algorithm without time slicing.

• A process calling sched_yield will be put at the end of its priority list. No other

events will move a process scheduled under the SCHED_FIFO policy in the wait

list of runnable processes with equal static priority. A SCHED_FIFO process runs

until either it is blocked by an I/O request, it is preempted by a higher priority

process, it calls sched_yield, or it finishes.

11

Posix.4 scheduling interfaces

• SCHED_RR: preemptive, priority-based scheduling with quanta.

• The available priority range can be identified by calling:
sched_get_priority_min(SCHED_RR) Linux 2.6 kernel: 1
sched_get_priority_max(SCHED_RR); Linux 2.6 kernel: 99

• SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described

above for SCHED_FIFO also applies to SCHED_RR, except that each process is

only allowed to run for a maximum time quantum. If a SCHED_RR process has

been running for a time period equal to or longer than the time quantum, it will be

put at the end of the list for its priority.

• A SCHED_RR process that has been preempted by a higher priority process and

subsequently resumes execution as a running process will complete the

unexpired portion of its round robin time quantum. The length of the time quantum

can be retrieved by sched_rr_get_interval.

12

Posix.4 scheduling interfaces

• SCHED_OTHER: an implementation-defined scheduler

• Default Linux time-sharing scheduler

• SCHED_OTHER can only be used at static priority 0. SCHED_OTHER is the

standard Linux time-sharing scheduler that is intended for all processes that do

not require special static priority real-time mechanisms. The process to run is

chosen from the static priority 0 list based on a dynamic priority that is determined

only inside this list.

• The dynamic priority is based on the nice level (set by the nice or setpriority

system call) and increased for each time quantum the process is ready to run, but

denied to run by the scheduler. This ensures fair progress among all

SCHED_OTHER processes.

13

Posix.4 scheduling interfaces

• Child processes inherit the scheduling algorithm and parameters across a fork.

• Memory locking is usually needed for real-time processes to avoid paging delays,

this can be done with mlock or mlockall.

• Do not forget!!!!

 a non-blocking end-less loop in a process scheduled under SCHED_FIFO or

SCHED_RR will block all processes with lower priority forever, a software

developer should always keep available on the console a shell scheduled under a

higher static priority than the tested application. This will allow an emergency kill

of tested real-time applications that do not block or terminate as expected.

• Since SCHED_FIFO and SCHED_RR processes can preempt other processes

forever, only root processes are allowed to activate these policies under Linux.

14

Posix.4 scheduling interfaces

#include <sched.h>

#include <sys/types.h>

#include <stdio.h>

int fifo_min, fifo_max;

int sched, prio, i;

pid_t pid;

struct sched_param attr;

main()

{

fifo_min = sched_get_priority_min(SCHED_FIFO); fifo_max = sched_get_priority_max(SCHED_FIFO);

printf("\n Scheduling informations: input a PID?\n");

scanf("%d", &pid);

sched_getparam(pid, &attr);

printf("process %d uses scheduler %d with priority %d \n", pid,

sched_getscheduler(pid), attr.sched_priority);

printf("\n Let’s modify a process sched parameters: Input the PID, scheduler type, and priority \n");

scanf("%d %d %d", &pid, &sched, &prio);

attr.sched_priority = prio;

i = sched_setscheduler(pid, sched, &attr);

}

15

The Exact Schedulability Test

Critical instant theorem: If a task meets its first deadline when all higher priority tasks are

started at the same time, then this task’s future deadlines will always be met. The exact

test for a task checks if this task can meet its first deadline[Liu73].

Timeline

t1

t2

tasks’

schedule

Task set

It holds only for fixed priority scheduling!

16

Exact Schedulability Test (Exact

Analysis)

Test terminates when ri
k+1 > pi (not schedulable)

or when ri
k+1 = ri

k < pi (schedulable).

Tasks are ordered according to their priority: T1 is the highest priority task.

The superscript k indicates the number of iterations in the calculation.

The index i indicates it is the ith task being checked.

The index j runs from 1 to i-1, i.e. all the higher priority tasks. Recall from the

convention - task 1 has a higher priority than task 2 and so on.

We check the schedulability of a single task at the time!!!

i

j

jij

i

j j

k

i
i

k

i crc
p

r
cr

1

0
1

1

1 where,

17

The Exact Schedulability Test

• Basically, “Enumerate” the schedule

• “Task by Task” schedulability test

4 4 4 4

0 10 20 30

15 30

35

0

0

4 4 4

2 1 1 6

Q: Now, we can say Task 3 is schedulable.

Is this correct?

4.0),10,4(111 Upc

27.0),15,4(222 Upc

28.0),35,10(333 Upc

18

How long should we enumerate the

schedule?

4 4 4 4

0 10 20 30

15 30

35

0

0

4 4 4

2 1 1 6

Ans: Checking the critical instant is OK!!

Critical instant theorem: If a task meets its first deadline when all higher

priority tasks are started at the same time, then this task’s future deadlines will

always be met. The exact test for a task checks if this task can meet its first

deadline[Liu73].

4.0),10,4(111 Upc

27.0),15,4(222 Upc

28.0),35,10(333 Upc

19

Intuitions of Exact Schedulability Test

• Obviously, the response time of task 3 should be larger than or equal to

c1+c2+c3

181044321

3

1

0

3

ccccr
j

j

20

4

0 10 20 30

15 30

35

0

0

4

10

r3
0 = 18

4.0),10,4(111 Upc

27.0),15,4(222 Upc

28.0),35,10(333 Upc

Intuitions of Exact Schedulability Test

21

Intuitions of Exact Schedulability Test

• Obviously, the response time of task 3 should be larger than or equal to

c1+c2+c3

• The high priority jobs released before r3
0, should lengthen the response time

of task 3

181044321

3

1

0

3

ccccr
j

j

264
15

18
4

10

18
10

2

1

0

3
3

1

3

j

j j

c
p

r
cr

22

4

0 10 20 30

15 30

35

0

0

4

2

r3
1 = 26

4

4

1 7

Intuitions of Exact Schedulability Test

4.0),10,4(111 Upc

27.0),15,4(222 Upc

28.0),35,10(333 Upc

23

Intuitions of Exact Schedulability Test

• Keep doing this until either r3
k no longer increases or r3

k > p3

304
15

26
4

10

26
10

2

1

1

3
3

2

3

j

j j

c
p

r
cr

304
15

30
4

10

30
10

2

1

2

3
3

3

3

j

j j

c
p

r
cr Done!

24

4

0 10 20 30

15 30

35

0

0

4

2

r3
2 = r3

3 = 30

4

4

1 6

4

1

Intuitions of Exact Schedulability Test

4.0),10,4(111 Upc

27.0),15,4(222 Upc

28.0),35,10(333 Upc

25

Intuition for the Exact Schedulability Test

• Suppose we have n tasks, and we pick a task, say i, to see if it is schedulable.

• We initialize the testing by assuming all the higher priority tasks from 1 to i-1 will

only preempt task i once.

• Hence, the initially presumed finishing time for task i is just the sum of C1 to Ci,

which we call r0.

• We now check the actual arrival of higher priority tasks within the duration r0 and

then presume that it will be all the preemption task i will experience. So we

compute r1 under this assumption.

• We will repeat this process until one of the two conditions occur:

- 1. The rn eventually exceeds the deadline of task i. In this case we terminate

the iteration process and conclude that task i is not schedulable.

- 2. The series rn converges to a fixed point (i.e., it stops increasing). If this fixed

point is less than or equal to the deadline, then the task is schedulable and we

terminate the schedulability test.

26

Assumptions under UB & Exact Analysis

• Both the Utilization Bound and the Exact schedulability test make the following

assumptions:

- All the tasks are periodic

- Tasks are scheduled according to RMS

- All tasks are independent and do not share resources (data)

- Tasks do not self-suspend during their execution

- Scheduler overhead (context-switch) is negligible

