Protecting Real-Time GPU Kernels in
Integrated CPU-GPU SoC Platforms

Wagar Ali, Heechul Yun

University of Kansas

THE UNIVERSITY OF
KANSAS

GPU in Autonomous CPS

* Needed for real-time processing of high
bandwidth sensor data (e.g., vision), deep
neural networks, Al, etc.

 Must meet size, weight, and power (SWaP)
and cost constraints

EEEEEEEEEEEEE

Discrete GPU

Nvidia Tesla K80 Intel Core i7
4992 GPU cores 4 CPU cores
8 >cooco:| 20 c0/s I
Graphic DRAM Host DRAM
(GDDR5) (DDR4)

PCIE 3.0

* GPU uses dedicated GPU memory

* Good for performance, but bad for cost & SWaP
KU

THE UNIVERSITY OF

Integrated CPU-GPU SoC

e CPU and GPU use the same shared DRAM
 Good for cost, SWaP, data movement, ... BUT

1111
Corel Core2 Core3 Core4d GPU cores

Shared Memory Controller

>20 GB/s

Shared DRAM (LPDDR4)

Nvidia Jetson TX2

THE UNIVERSITY OF
KANSAS

Memory Bandwidth Contention

Iintensive

Co-scheduling memory

CPU task affects GPU performance
on Integrated CPU-GPU SoC

GPU App

Co-runners

GPU

CPU

PR

g

g

%

P

s
Ibm

stenc

b yx\f.\/,\/, A
\

xﬂxy&ﬁ>m©{ MHJ,iwca e
23:» yyﬁyx ?x» f,xi:f; «C& Y
400 wi/ VCQ K mw\ x»wxyyv.c xyxx\xx b

0 e N
R R R KRR T
SOSEELEEEEILEEEELEEEEESELEEEEEXLEEEENEEELEE @

xyw,ﬁyxyx:>:f%,xf:xxw>wxx vxyxyﬁy<v H KA KA
e R e A % I

SSediteians

./x % %w

/ya\ KK

XX AIAHXR AR

A v v\%\ 9 xs KA

«fff:;i ,VQ

AAK

histo

250

200

]
n
]

=]
=]
™

UMopMo|s abejuadiaq

50

spmv

KU

THE UNIVERSITY OF

KANSAS

CPU Memory Access Characteristic

 “low Latency (LL) — the dominant characteristics
of memory traffic coming from the CPUs are
random, small size accesses (typically cache line
fills) that are sporadic in nature. Key requirement
for CPU accesses is low latency so as to provide
maximum thread execution performance.”

Ashwin Matta, “Optimizing Performance for an ARM Mobile Memory Subsystem.” ARM White Paper, 2016

* Prioritizing CPU traffic over GPU is usually good,
but bad for real-time GPU kernels
KU

THE UNIVERSITY OF

Outline

* Motivation

 BWLOCK++

— Memory bandwidth throttling
— Binary instrumentation

— Throttle fair scheduler (TFS)

— Schedulability analysis

 Evaluation
* Conclusion

— K

THE UNIVERSITY OF

Real-Time Core

BWLOCK++

Best-Effort Core

Best-Effort Core

Best-Effort Core

RT GPU
App

NRT CPU
App

NRT CPU
App

NRT CPU
App

l NVIDIA CUDA Runtime APls

CUDAAPI Wrappd BINAry instrumentation

¥
Smart scheduling [GPYScheduer \ 0s
B/W B/MW [B/W NVIDIA
Reguiator Ll Daaviatar LLDagulator Driver
Throttling
| RT | |PI\I/IC| |PI\I/IC| | PmC | I T T 11
Core1 Core2 Core3 || Core4d ?F:U Icolr esl.
Jetson TX2
Shared Memory Controller
Shared DRAM

* Goal: automatically protect real-time GPU kernel
while minimizing CPU throughput impact

— K

THE UNIVERSITY OF

Real-Time Core

 Dedicated core to schedule ALL real-time tasks

— GPU kernels from diff tasks are serialized* anyway

Real-Time Core Best-Effort Core Best-Effort Core Best-Effort Core

RT GPU NRT CPU NRT CPU NRT CPU
App App App App
NVIDIA CUDA Runtime APIs
A
CUDA API Wrappers Dynamic Linker
¥
CPU Scheduler 0S
P \: = » N
B/W B/W B/W NVIDIA
Regulator Regulator Regulator Driver
L 1 N | \—
| rT [| Pmc | || [Pmc] || [Pmc | T T T
Core1 | |jCore2 Core3 Core4 ?PIU IC olr esl,
N Jetson TX2
Shared Memory Controller
Shared DRAM

KANGAS (*) They are time multiplexed rather than being truly concurrent. N. Otterness et al., "An eval
uation of the NVIDIA TX1 for supporting real-time computer-vision workloads.” RTAS, 2017

Memory Bandwidth Throttling

 MemGuard™: Throttle CPU core’s memory
bandwidth using its performance counters
Suspend the RT idle task

2
Budget

Core
activity
0 Ims 2ms
Schedule a RT idle task
KU _computation _memory fetch
KANSAS

(*) Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance
Isolation in Multi-core Platforms.” RTAS'13

Real-Time GPU Kernel Protection

* |dea: Throttle CPU memory bandwidth usage while
running real-time GPU kernels to protect their
performance

* Questions
* How much do we need to throttle?
 When and how to start/stop throttling?
* How to minimize CPU throughput loss?
* How to analyze schedulability?

— K

THE UNIVERSITY OF

* Based on each GPU task’s bandwidth sensitivity
1) Inject CPU memory traffic
2) Vary CPU bandwidth budget
s 3) Measure GPU kernel’s timing
2 4) Find tolerable budget
Chosen budget

Determining Throttling Budget

Corun Bandwidth Threshold (IMBps)

THE UNIVERSITY OF

Dynamic Instrumentation

Begin/stop throttling by instrumenting CUDA

CPU GPU

= Instrument binary
cudaMalloc (. ..) (T :

= Using LD_PRELOAD

cudaMemcg (...)

[T
—- cudalaunch@)
\ °
Acquire memory
kernel<<<...>>>(...)

bandwidth lock

THE UNIVERSITY OF
KANSAS

P
E _ cudaSynchronizef)
daM (...) [T
cudaXemcpy L Release memory
%\ L]
cudaFree(...) (I bandwidth lock

No source code modification is needed

CPU Throttling and Scheduling

 Completely Fair Scheduler (CFS)
— Linux’s default scheduler (for non-real-time tasks)
— Virtual runtime: weighted execution time
— Pick the task with smallest virtual runtime

* Destructive interplay of throttling and CFS
— More throttling = less virtual runtime increase
— CFS prefers throttled tasks = more throttling

— K

THE UNIVERSITY OF

Example Schedule under CFS

* CFS preferred memory intensive task t, .,

Real-Time
CPU Core TRT
Tcpy
Best-Effort i
CPU Core TMEM
' ------------- \ . .
| 1 Throttled duration: 2 ms
Throttle | ! N 1 | | | | | .
0! 1! 2! 3! 4l | 6! 7! 8/ g 10
| /
Vioimtim 1 1 1 1 1 2 3 3 3 4
A 0 0.33 | 0.67 1 2 2 pi 3 4

THE UNIVERSITY OF

Throttle Fair Scheduler (TFS)

e Account throttled time in virtual runtime

Scalle factor
new __ yrold J

yd I
Task’s virtual runtime Throttled duration

e Effect

— prefer more CPU intensive tasks
— less CPU throttling
— improved CPU throughput

— K

THE UNIVERSITY OF

Example Schedule under TFS

* TFS preferred CPU intensive task Tepu

Real-Time |
CPU Core TRt
Tepu
Best-Effort]
CPU Core TMEM .
' ------------- \ . .
| 1 Throttled duration: 0.67 ms
Throttle | :‘_ | | | | \ | | | L
ol 1 21 3 41 51 6! 7 g 9 10
‘ﬁ ------------ I
Vrﬁipn%ime 1 1 2 3 3 4 4 4 4
Veantime| O 234 | 234 | 234 | 334 | 334 | 434 | 5.34
(TFS-3X)
‘(iﬁﬁiﬂf 0 0.33 | 033|033 | 133 | 1.33 | 2.33 | 3.33 4
KANSAS

Schedulability Analysis

* Classical RTA for preemptive fixed priority

scheduling with blocking
Blockirlg time

-
R =B +Bi+), |5

P;

Task execution time Viehp(i)

L

e Treat GPU kernel execution as critical section

e Use priority ceiling protocol (PCP)

— K

givae (%) N. Audsley et al., "Applying new scheduling theory to static priority preemptive scheduling.”

Software Engineering Journal, 1993

Outline

* Motivation

* BWLOCK++

— Memory bandwidth throttling
— Binary instrumentation

— Throttle fair scheduler (TFS)
— Schedulability analysis

 Evaluation
* Conclusion

— K

THE UNIVERSITY OF

Setup

e Hardware
— Nvidia Jetson TX2

e 4x Cortex-A57 (used) + 2x Denver (not used)
— RT core: Core O

e Software
— Linux kernel 4.4.38 (+ TFS, BW regulator, ...)
— CUDA 8.0 + custom library (LD_PRELOAD)

 Benchmarks
— Parboil benchmark suite (GPU tasks)

— |solBench benchmark suite (CPU tasks)
— KU

THE UNIVERSITY OF

Real-Time Performance Impact

2.5

Corun XX BW-Locked-Auto

N
)

=
)

=
o
T
i
i

Faaaas A

Normalized Execution Time

SRR A
P e s ot R
SR
fee v e te ety ey
R
et et ety Jor st o te
|
et et ety st o te
|
leaonas oo nn
ooy
leaonas oo nn
R AR
et A3y Jose o 20
et f S 9

0 5 e s sy fe v g s g

s D[R o pron
bes s s sy I 2o 032 32 %
Yottt ey
et v ety stz
| forsrtrnse]
et et ety st o te
|
et et ety st o te
|
leaanas Joer e e
ooy
s s sesesy I se e 2 20
et S 9]

b s e st e sy Jo e e 2 2 R0
SRR

[y s s gt

0.0

uuuuu

v gr 4t Y]

histo } “sad B nbfs

* Real-time GPU kernel performance is improved

THE UNIVERSITY OF

CPU Throughput Impact

TFS-3

=
o
T
i
i

Feaanws

ittt trtr

R RRAR
et tttrsr

o
[

it tetetrtr

keaanns

ottt trtr

etk f st s

keaansns

it tetetrtr

R s ssss

o
o

St XK X Jesemrnsrad- - g

sttt trtr

s s

ettt tr

it tetetrtr

keaanns

frtete tetetrtr

ek s st s

frtets tetetrtr

S
I

R R RSy

A

ittt trtr

keannns

frtete tetetrtr
AAIIIAS
keaanns

A
e ool

Normalized System Throttle Time

o
N

""""""""" frrrauaad poaraaeal T

etk st s

AR

ke mssrs

e s o]

ittt trtr
RRRRRAR
A

A
R R R
wrn o]

[ttt trtr A

keaanns

e ool

0.0 -histo T sad bfs spmyv stencil T Ibm

* TFS improves CPU throughput (reduce throttling)

THE UNIVERSITY OF

22

Conclusion

* Integrated CPU-GPU SoC platforms

— Good: performance, cost, size, weight, power
— Bad: memory bandwidth contention

 BWLOCK++

— Automatically and efficiently protect real-time GPU
kernels on integrated CPU-GPU SoC

— Throttling + runtime instrumentation + scheduling
— Practical solution

* Availability
— https://github.com/wali-ku/BWLOCK-GPU

— K

THE UNIVERSITY OF

https://github.com/wali-ku/BWLOCK-GPU

KANSAS

Thank You

Disclaimer:
This research is supported by the National Science Foundation
(NSF) under the grant numbers CNS 1718880, CNS 1815959

24

