
Protecting Real-Time GPU Kernels in
Integrated CPU-GPU SoC Platforms

Waqar Ali, Heechul Yun

University of Kansas

1

GPU in Autonomous CPS

• Needed for real-time processing of high
bandwidth sensor data (e.g., vision), deep
neural networks, AI, etc.

• Must meet size, weight, and power (SWaP)
and cost constraints

2

Discrete GPU

• GPU uses dedicated GPU memory

• Good for performance, but bad for cost & SWaP

3

4992 GPU cores 4 CPU cores

Graphic DRAM
(GDDR5)

Host DRAM
(DDR4)

PCIE 3.0

Nvidia Tesla K80 Intel Core i7

>400 GB/s >20 GB/s

Integrated CPU-GPU SoC

• CPU and GPU use the same shared DRAM

• Good for cost, SWaP, data movement, … BUT

4

GPUSync: A Famework for R
eal-Time GP Management

Core1

Shared DRAM (LPDDR4)

Shared Memory Controller

GPU coresCore2 Core3 Core4

>20 GB/s

Nvidia Jetson TX2

Memory Bandwidth Contention

5

3
GPU

2 1 0

GPU AppCo-runners

CPU

Co-scheduling memory intensive
CPU task affects GPU performance
on Integrated CPU-GPU SoC

CPU Memory Access Characteristic

• “Low Latency (LL) – the dominant characteristics
of memory traffic coming from the CPUs are
random, small size accesses (typically cache line
fills) that are sporadic in nature. Key requirement
for CPU accesses is low latency so as to provide
maximum thread execution performance.”

• Prioritizing CPU traffic over GPU is usually good,
but bad for real-time GPU kernels

6

Ashwin Matta, “Optimizing Performance for an ARM Mobile Memory Subsystem.” ARM White Paper, 2016

Outline

• Motivation

• BWLOCK++

– Memory bandwidth throttling

– Binary instrumentation

– Throttle fair scheduler (TFS)

– Schedulability analysis

• Evaluation

• Conclusion

7

BWLOCK++

• Goal: automatically protect real-time GPU kernel
while minimizing CPU throughput impact

8

Throttling

Binary instrumentation

Smart scheduling

Real-Time Core

• Dedicated core to schedule ALL real-time tasks

– GPU kernels from diff tasks are serialized* anyway

9
(*) They are time multiplexed rather than being truly concurrent. N. Otterness et al., “An eval
uation of the NVIDIA TX1 for supporting real-time computer-vision workloads.” RTAS, 2017

Memory Bandwidth Throttling

• MemGuard*: Throttle CPU core’s memory
bandwidth using its performance counters

10

1ms 2ms0

Schedule a RT idle task

Suspend the RT idle task

Budget

Core

activity

2
1

computation memory fetch

(*) Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance
Isolation in Multi-core Platforms.” RTAS’13

Real-Time GPU Kernel Protection

• Idea: Throttle CPU memory bandwidth usage while
running real-time GPU kernels to protect their
performance

• Questions
• How much do we need to throttle?

• When and how to start/stop throttling?

• How to minimize CPU throughput loss?

• How to analyze schedulability?

11

Determining Throttling Budget

• Based on each GPU task’s bandwidth sensitivity

12

1) Inject CPU memory traffic
2) Vary CPU bandwidth budget
3) Measure GPU kernel’s timing
4) Find tolerable budget

Chosen budget

Dynamic Instrumentation

• Begin/stop throttling by instrumenting CUDA

13

CPU GPU

cudaMalloc(...)

cudaMemcpy(...)

cudaMemcpy(...)

kernel<<<...>>>(...)

cudaFree(...)

cudaLaunch	()

cudaSynchronize	()

Acquire memory
bandwidth lock

Instrument binary
Using LD_PRELOAD

Release memory
bandwidth lock

No source code modification is needed

CPU Throttling and Scheduling

• Completely Fair Scheduler (CFS)

– Linux’s default scheduler (for non-real-time tasks)

– Virtual runtime: weighted execution time

– Pick the task with smallest virtual runtime

• Destructive interplay of throttling and CFS

– More throttling  less virtual runtime increase

– CFS prefers throttled tasks more throttling

14

Example Schedule under CFS

• CFS preferred memory intensive task τmem

15

Throttled duration: 2 ms

Throttle Fair Scheduler (TFS)

• Account throttled time in virtual runtime

• Effect
– prefer more CPU intensive tasks
– less CPU throttling
– improved CPU throughput

16

Task’s virtual runtime Throttled duration

Scale factor

Example Schedule under TFS

• TFS preferred CPU intensive task τcpu

17

Throttled duration: 0.67 ms

Schedulability Analysis

• Classical RTA for preemptive fixed priority
scheduling with blocking

• Treat GPU kernel execution as critical section

• Use priority ceiling protocol (PCP)

18

Task execution time

Blocking time

(*) N. Audsley et al., “Applying new scheduling theory to static priority preemptive scheduling.”
Software Engineering Journal, 1993

Outline

• Motivation

• BWLOCK++

– Memory bandwidth throttling

– Binary instrumentation

– Throttle fair scheduler (TFS)

– Schedulability analysis

• Evaluation

• Conclusion

19

Setup

• Hardware
– Nvidia Jetson TX2

• 4x Cortex-A57 (used) + 2x Denver (not used)

– RT core: Core 0

• Software
– Linux kernel 4.4.38 (+ TFS, BW regulator, …)

– CUDA 8.0 + custom library (LD_PRELOAD)

• Benchmarks
– Parboil benchmark suite (GPU tasks)

– IsolBench benchmark suite (CPU tasks)

20

Real-Time Performance Impact

• Real-time GPU kernel performance is improved

21

CPU Throughput Impact

• TFS improves CPU throughput (reduce throttling)

22

Conclusion

• Integrated CPU-GPU SoC platforms
– Good: performance, cost, size, weight, power

– Bad: memory bandwidth contention

• BWLOCK++
– Automatically and efficiently protect real-time GPU

kernels on integrated CPU-GPU SoC

– Throttling + runtime instrumentation + scheduling

– Practical solution

• Availability
– https://github.com/wali-ku/BWLOCK-GPU

23

https://github.com/wali-ku/BWLOCK-GPU

Thank You

24

Disclaimer:
This research is supported by the National Science Foundation

(NSF) under the grant numbers CNS 1718880, CNS 1815959

