Understanding and Mitigating
Hardware Interference Channels
on Heterogeneous Multicore

Heechul Yun
Associate Professor, EECS
University of Kansas
https://www.ittc.ku.edu/~heechul

https://www.ittc.ku.edu/~heechul

Heechul Yun

Associate Professor, EECS, University of Kansas

e Education
e UIUC (PhD, 2013)
e KAIST (MS, 2001; BS, 1999)

e Employment
e Assistant/Associate Professor at KU (2013-current)
* Intern at NVIDIA (2011)
 Visiting Scholar/Graduate Research Assistant at UIUC (2009-2013)
e Software Engineer at Samsung Electronics (2004-2009)
 Researcher at ETRI (2001-2003)

 Research areas
 Embedded real-time/cyber-physical systems

Agenda

 Understanding hardware interference channels

* Non-blocking cache
* Banked cache and DRAM organizations
* Effective “attack” strategies to cause massive cross-core interference

 AR-HUD automotive case study (ARM industrial challenge)
* Effects of interference on real-time application performance
* Limitations of existing mitigation solutions
* Qur solution to mitigate the interference problem

e Discussion and conclusion

Agenda

 Understanding hardware interference channels

* Non-blocking cache
* Banked cache and DRAM organizations
* Effective “attack” strategies to cause massive cross-core interference

Memory-level parallelism (MLP)

* MLP is the key to understand modern multicore processors (MCP)
e essential for performance (throughput)

* A core can request multiple concurrent memory accesses at a time
e times the number of cores (and accelerators)

* Interconnect (bus) supports split-transactions
* multiple outstanding transactions can occur simultaneously

* Non-blocking cache can handle multiple outstanding cache misses
* it can continue to serve hits under multiple misses

* Cache and DRAM are composed of multiple independent resources
e cache/dram banks can be accessed simultaneously in parallel

Memory-level parallelism (MLP)

Out-of-order core:
Multiple memory requests

Last Level Cache (LLC) = Non-blocking caches:

Multiple cache-misses
MSHRs, WB Buffer

Memory Controller (MC)

Request buffers
Read Write Request buffering, re-ordering

Memory controller:
Scheduler » Y

DRAM:

Bank Bank Bank Bank - Multiple banks serve multiple requests
1 2 N¢-1 Nd

Split-transaction bus

Req A

Rsp ~A |Read A from DRAM | Xmit A
I

l I
I I I

ReqB | Rsp~B |Read B from DRAM| XmitB |
I I I I

(a) Simple bus with atomic transactions

Req A Rsp ~A |Read A from DRAM Xmit A
| I
Req B Rsp ~B | Read B from DRAM Xmit B
Req C Rsp ~C |Read C from DRAM Xmit C
I
Req D Rsp~D Read D from DRAM Xmit D
I ! I

(b) Split-transaction bus with separate requests and responses

A split-transaction bus enables higher throughput by pipelining requests, responses, and data transmission.

Figure 11.9
Simple Versus Split-Transaction Busses.

Figure source: John Paul Shen and Mikko H Lipasti. “Modern processor design: fundamentals of superscalar processors.” Waveland Press, 2013

Non-blocking cache

* A core can generate multiple simultaneous accesses to a cache
* Multiple cores/accelerators can simultaneously access a shared cache

* S0, a shared cache can get lots of parallel requests
* A non-blocking shared cache is essential for performance

Non-blocking cache

stall only when
. _ ~ resultis needed
miss hit miss hit miss ﬂ
cpu cpu cpu CRU
Miss penalty Miss penalty
Miss penalty
Blocking cache Non-blocking cache

e Can serve cache hits under multiple cache misses
* Essential for performance in multicore

D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

Non-blocking cache

Core Core Core Core

EI|IEI [11[o] III|IEI E|IEI

Writeback Buffer

Miss Status Holding Registers

® Track outstanding cache misses. L2 cache / e Hold evicted dirty lines
e Allow high memory-level Tag array Data array (writebacks)
parallelism W T ® Prevent cache refills from waiting
MSHR | WB Buffer |«
address/respond bus data bus

* Cache internal structures are potential interference channels

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In [EEE RTAS, 2016 (Best Paper Award)
Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019 (Outstanding Paper Award)

Multi-bank cache/DRAM organizations

e Shared cache and DRAM are not a single resource

e Each is composed of multiple resources---banks

* Banks are (largely) independent and can be accessed in parallel
* Generally, more banks = more parallelism/throughput

Cache bank organization

* Multiple banks can be accessed simultaneously

Tag Bank 1 Tag Bank 2 memory address mapping
63 6514 0
Data Bank 1 Data Bank 1
Data Bank 2 Data Bank 2
Data Bank 3 Data Bank 3 l l
Data Bank 4 Data Bank 4 Tag bank Data bank

ARM Cortex A72/A57 L2 cache bank organization

DRAM bank organization

* Multiple banks can be accessed simultaneously

[/ 3NN o 7,70
| v~ Last Level Cache (LLC), oo

memory address mapping

63 14131211 0

bank #

Raspberry Pi 4 DRAM bank
mapping (16 banks)

Multi-bank cache/DRAM organizations

* Can be a problem when all try to access the same cache/dram bank

Corel Core2 Core3 Core4d
L1l 117 - 27

Last Level Cache (LLC)

Tag bank 1 Tag bank 2

Memory controller (MC)

* Schedule memory requests on DRAM chips
e Subject to DDR timing constraints
Write request

e Can re-order the requests to Reagl:ffqe‘r‘est o
maximize memory throughput

Memory requests from cores

* Often prioritize reads over writes N B Banki.

unless too many writes are pending

Channel scheduler

* Scheduling algorithms can greatly
Impact worst-case timing DRAM chips

H. Yun, R. Pellizzoni, P. K. Valsan. “Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems.” In ECRTS, 2015

Effective strategies to cause interference

* Try to exhaust various internal hardware queues/buffers
* Try to generate many requests targeting a single resource (bank)
* Writes often cause worse contention than reads

Effects of cache internal buffer attacks

>300X
25 I [[|
solo 1 . .
64.48 +1 attacker KX < Sequential writes
u +2 attackers EZZzZ3 4? ‘ ’
20 T3 e p (a.k.a. ‘MemBomb’)
230.6
g 15 - -
\ 4 _g -
5
\ : 3
w10 - 2o -
]
victim attackers §§§5
TRt
e
| Lic . N e
0 % Oty awevs: e |

Pi3(A53) C2(A53) XU4(A15) Pi2(A7) XU4(A7)

* Observed worst-case: >300X (times) slowdown on popular multicores
* Even when the cache is partitioned to protect the victim

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019

Effects of DRAM bank attacks Sequential writes

>A44X (a.k.a. ‘MemBomb’)

BwWrite 1
326 4.2 ‘ PLLWrite D«
25 - BKPLLWrite mmm—.

20 |- —\ Bank-aware parallel

30

Parallel pointer chasing

| -
§ s pointer chasing
=
S
w
10 .
0' II I|III| II||I||IIIIII I|IIIIII|II|
R@goxxaﬁmhcgsg T EESg3Izgooco=xocI3Lygeggw
- ERRIEREE o s IS8 08R 38875524
Victim on Core 1 | £33 ¢ 8 gg°ore g = 3§ 5 238
5 2 a8 ® g2 = "5 K 2 3
= 3
5
=3

e Targeting a single DRAM bank caused up to 44X slowdown in real apps
* LLC space partitioning was not effective

M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.” In IEEE Transactions on Computers, 2021

Effects of cache bank attacks
~10X

10

KA

Raspberry Pi4 C—1
Jetson Nano K==

KX

AN

Slowdown
|
ERKXKKK

</
Pal

“uar—g-cache

of 1] 2]/ 3f || 4] 5] 6] 7, 2 |

S

X
£

KRXHKK

£

v

KK

0 1 2 3 4 5 6 7
Attacker Data Bank

* Accessing the same tag bank (and diff. data bank) = up to 10X slowdown
* Accessing different tag bank = near perfect isolation

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023

Effects of cache bank attacks LLC fitting paralle

Solo C——1 PLLWrite(LLC) s+ pointer chasing

LLC fitting > BwWrite(LLC) EXX3 BkPLLWrite(LLC) —\
sequential writes 2

Bank-aware LLC fitting

parallel pointer chasing
1.5 o
q g
=]_ = ’:: bl u u s E:: ‘;: 7] ;‘E B e
= [UKl | PEd o NG e ;
o ¢ e we I |l | O 0
b Ol | [E O | bE G e)
¢ e pe IS o |l | O 0
D 5 — | b bt 4k s k] %] [b
‘ el [b ol | K6 o | | G
| L o e | ol | 8
Ll | bR Ol | LE o | | B
0 s B0 A8 | DY | KON |
. . L LA,
- U 7202 e % . %, %,
Victim on Core 1 ———> "9, * 2 S %,

e Targeting a single cache bank caused up to 2.3X slowdown in real apps
* LLC space partitioning and DRAM bandwidth throttling were not effective

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023

Summary

 Memory-level parallelism (MLP) is key to understand modern
multicore processors (MCPs)

* High MLP designs at all levels of the memory hierarchy are essential
for performance/throughput, but they also can be problematic
hardware interference channels from a real-time perspective

* Contrary to popular beliefs, interconnects are usually not major
interference channels in modern MCPs. Major ones are at the edges

* There are effective “attack” strategies to cause massive cross-core
interference, which cannot be easily mitigated by existing
software/hardware partitioning techniques

Agenda

 AR-HUD automotive case study (ARM industrial challenge)
* Effects of interference on real-time application performance
* Limitations of existing mitigation solutions
* Qur solution to mitigate the interference problem

ft = ¥ iy 55'/‘

um li 3

-'_

e -p
- ¥x I

Image Source: https://www.ecrts.org/industrial-challenge-current-challenge/

https://www.ecrts.org/industrial-challenge-current-challenge/

Augmented reality head-up display (AR-HUD)

ARM 2022 industrial challenge case study application
Visual SLAM (OV?SLAM)

 Determine orientation and trajectory + generate a map of the surroundings
e High-criticality real-time task

* Head-pose estimation DNN (Hope-Net)

* Estimate driver’s pose for better AR rendering that accounts for the driver’s
viewpoint

* high-priority real-time task
e “Aggressor” tasks

* Other (synthetic) tasks that compete for the shared hardware resources of the SoC
e Best-effort (non real-time) priority

M. Andreozzi, G. Gabrielli, B. Venu, G. Travaglini. “Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm.” In ECRTS, 2022

Analysis and Mitigation of Shared Resource
Contention on Heterogeneous Multicore: An
Industrial Case Study

Michael Bechtel
University of Kansas, USA

Heechul Yun
University of Kansas, USA

—— Abstract

In this paper, we address the industrial challenge put forth by ARM in ECRTS 2022. We
systematically analyze the effect of shared resource contention to an augmented reality head-up
display (AR-HUD) case-study application of the industrial challenge on a heterogeneous multicore
platform, NVIDIA Jetson Nano. We configure the AR-HUD application such that it can process
incoming image frames in real-time at 20Hz on the platform. We use micro-architectural denial-
of-service (DoS) attacks as aggressor tasks of the challenge and show that they can dramatically
impact the latency and accuracy of the AR-HUD application, which results in significant deviations
of the estimated trajectories from the ground truth, despite our best effort to mitigate their influence
by using cache partitioning and real-time scheduling of the AR-HUD application. We show that
dynamic LLC (or DRAM depending on the aggressor) bandwidth throttling of the aggressor tasks is
an effective mean to ensure real-time performance of the AR-HUD application without resorting to
over-provisioning the system.

2012 ACM Subject Classification Computer systems organization — Real-time systems; Computer
systems organization — Embedded and cyber-physical systems

Keywords and phrases Industrial Challenge, Real Time, SLAM, Microarchitectural DoS Attack

AR-HUD mapping on Jetson Nano

Head Pose Head Pose
OVSLAM ROS Bag Estimation Estimation
Core 0 Core 1 Core 2 Core 3 GPU
!
¥
LLC
DRAM

M. Bechtel, H. Yun. "Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study.” arXiv:2304.13110, 2023.

AR-HUD mapping on Jetson Nano

Real-Time | Rate

Task Thread Core(s) Priority (Hz)
Front-End 20
OVZSLAM Mapping 0,1 2 -
State Optimization -
ROS bag - 2 2 20
Head Pose Est. - 3,GPU 1 20

Real-time tasks (Linux SCHED FIFO) threads/core mapping and scheduling parameters

e Aggressor (DoS attack) tasks are scheduled on all cores as best-
effort tasks (using Linux CFS scheduler) to fully load the system

* L2 cache is partitioned w/ page coloring (*): OV?SLAM vs. all else

(*) H. Yun, R. Mancuso, Z. Wu, R. Pellizzoni. "PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on Multicore Platforms." In [EEE RTAS, 2014

NS 'S I S T

Micro-architectural DoS attacks

for (int64_t 1 = 0; i<mem_size; 1 += LINE_SIZE)
{

}

ptr[i] = Oxff;

Sequential Attacker
(BwWrite)

p—
iR ele LN ie WU NN US I S

L e g S g
~N N R W =

static intx listt MAX_MLP];
static int nextftMAX_MLP];

for (int64_t i = 0; 1 < iter; i++) {
switch (mlp) {
case MAX_MLP:

case 2:
list[1][next[1]+1] = Oxff;
next[1] = list[1][next[1]];
/% fall—through +/

case 1:
list[O][next[0]+1] = Oxft;
next[0] = list[O][next[0]];

}

}

Parallel Linked-List Attacker
(PLLWrite)

* Configurable synthetic workloads to cause resource contention
* Sequential vs. random, read vs. write access patterns

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023

28

Cache bank-aware DoS attack

=1 O Lh B D —

 Same as Parallel Linked-List (PLL) attacks but only keeps the
addresses that map to a target LLC data bank

e LLC bank-aware PLL write attack = BKkPLLWrite(LLC)

#define bit(addr,x) ((addr >> (x)) & OxI)
int paddr_to_sram_bank(unsigned long addr)
{
return ((bit(addr, 6) << 2) |
(bit(addr, 5) << 1) |
bit(addr, 4));

<*:s,ed Cache
Tag bank 1 Tag bank 2

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023

29

Impact

ATE (m)

of DoS attacks on the OV2SLAM

4.0

3.5+

3.04

2.51

1.5

1.0

=

Py p—— J_ o -

£ &
b, .
] 4y

S,
@C}

Y-axis: Absolute Trajectory Error (ATE) = a standard measure of accuracy of SLAM. Lower is better.
X-axis: different micro-architectural denial-of-service (DoS) attacks

Working-set sizes:
(LLC) -> LLC fitting
(DRAM) -> DRAM fitting

Impact of DNN and DoS attacks on OV?SLAM

—-—= Ground Truth 5.0 H
— 5Solo

. — +DNN E 2.5 === Ground Truth
—— +DNN&DoS < 00 | i‘g:m \‘-.
— +DNN&DoS
. . =25
Significantly ¢
deviated from
the true O ES
. = -
trajectory ,
2
0 1 :
Completely g,
failed to X
.72 -1
generate valid
. -4 -2 0 2 4 B 575 600 625 650 675 700 725 750
trajectory x (m) t(s) +1.403636e9

(a) Trajectory in XY plane (b) X, Y and Z positions over time

Our approach: RT-Gang++

Cache bandwidth throttling

» Throttle attacker’s access (from CPU) to the shared LLC
« Using per-core performance counters (based on MemGuard*)
 To limit cache (bank) bandwidth contention

GPU bandwidth throttling

« Throttle HopeNet DNN’s access (from GPU) to the shared DRAM
« Using NVIDIA's memory controller level throttling mechanism
 To limit GPU induced memory b/w interference on CPU (running SLAM)

Partitioned gang scheduling

« To avoid inter-application interference on multiple multi-threaded RT apps.

(*) H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Platforms." In /EEE RTAS, 2013

Impact of RT-Gang++ on OV2SLAM

Successful 6

Interference
mitigation _ ,
&
=y
2
0
-2
-4 -2 0 2 4
x (m)

(a) Trajectory in X-Y plane

-==Ground Truth

Solo
Co-run
RT-Gang++

5.0 .M_{Q\

= 2.5 = —==- Ground Truth
= —— Solo
>
0.0 H— Co-run
25 T RT-Gang++
E 5
B
0 ‘a
1
E o
N
-1

575 600 625 650 675 700 725 750
t (s) +1.403636€9

(b) X, Y, and Z positions over time.

Summary

* Consolidating multiple RT/NRT tasks on heterogeneous multicore is
challenging due to interference on shared hardware resources

e Cache bank-aware DoS attacks are especially effective in impacting
performance of the real-time SLAM task in the AR-HUD case-study

* Executing a DNN task on the integrated GPU also significantly
impact the performance of the SLAM on the CPU

 RT-Gang++ mitigates the interference problem via (1) software-
based cache bandwidth throttling, (2) hardware-based GPU
bandwidth throttling, and (3) partitioned real-time gang scheduling.

Agenda

 Understanding hardware interference channels

* Non-blocking cache
* Banked cache and DRAM organizations
* Effective “attack” strategies to cause massive cross-core interference

e AR-HUD automotive case study (ARM industrial challenge)
* Effects of interference on real-time application performance
* Limitations of existing mitigation solutions
* Qur solution to mitigate the interference problem

e Discussion and conclusion

“Better” hardware support?

* Intel Resource Director Technology (RDT)
* Available on recent Intel server processors
e Cache space (CAT) and memory bandwidth (MBA) control
* Not satisfactory for real-time, according to our studies (*)

 ARM Memory System Resource Partitioning and Monitoring (MPAM)
* Not widely available yet (Where can | find one?)
* Also focus on (cache) space and (memory) bandwidth
* May not be sufficient for real-time systems?

(*) P. Sohal, M. G. Bechtel, R. Mancuso, H. Yun, O. Krieger. “A Closer Look at Intel Resource Director Technology (RDT),” in RTNS, 2022
M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Resources in Intel’s Integrated CPU-GPU Platforms,” in ISORC, 2022

MPAM functionality

Portion partitioning

PARTID PARTID PARTID PARTID
1 2 3 4

Min/Max limit partitioning

PARTID /X PARTID "jZ PARTID /x\/\’{
1) 2 3
Min Max Min Max

Priority partitioning

PARTID . PARTID . PARTID QoSs-8 PARTID .
1 2 3 4

Proportional stride partitioning

PARTID G o PARTID R o PARTID R g PARTID e g
a Every 600 £ Every 30 3 Every 700 * Every 40

Figure source: ARM, “Learn the architecture - Memory System Resource Partitioning and Monitoring (MPAM) Software Guide,” 2023

MPAM cache portion (way) control

Figure 4-1: MPAM cache_portion_interface

Representing cache portion in Cache Allocation

(tf-fjrjrjojojofoftjrfrjtfr 111 cache-portion

bitmap
May not allocate this portion May allocate this portion

cache ways

Figure source: ARM, “Learn the architecture - Memory System Resource Partitioning and Monitoring (MPAM) Software Guide,” 2023

* Problem: can control way, but what about bank? (*)

(*) M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In I[EEE RTAS, 2023

MPAM memory bandwidth control

* Min/max limit partitioning

2

0 4800MBps OMBps —
%f/ DRAM
Memory Controller 1 1200MBps 1000MBps
2 600M Bps 600M BpS Balnk Baznk Ba3nk Ba4nk

Figure source: ARI\)I, “Learn the architecture - Memory System Resource Partitioning and Monitoring
(MPAM) Software Guide,” 2023

* Problem: stressing one DRAM bank (1/N peak b/w) can cause more
delay than stressing all DRAM banks (*)

(*) M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.” In IEEE Transactions on Computers, 2021

Better hardware support: a wish list

* Better monitoring and throttling capabilities
e E.g., Per-bank (cache/dram) perf. counters and bandwidth regulators

* Better control over address-based resource mapping
e E.g., s/w controlled paddr -> bank mapping (of shared cache and DRAM)

e Better control over other internal shared hardware resources
 E.g.,, MSHRs (*), write-back buffer, etc.

* Better memory abstraction
* E.g., deterministic memory type (**)

(*) P. K. Valsan, H. Yun, F. Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In RTAS, 2016
(**) F. Farshchi, P. K. Valsan, R. Mancuso, H. Yun. “Deterministic Memory Abstraction and Supporting Multicore System Architecture.” In ECRTS, 2018

Conclusion

 Hardware interference channels on heterogeneous multicore are a
serious threat to safety-critical real-time applications

e Existing techniques such as cache (space) partitioning and memory
bandwidth throttling may not be sufficient

 Unaware of cache/DRAM banks, internal shared hardware structures
* Do not necessarily provide worst-case execution time guarantees

* Better hardware support is needed for critical real-time systems

References

° Michael Garrett Bechtel, Heechul Yun. Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study. arXiv
preprint (arXiv:2304.13110), August 2023. [paper] [arXiv]

° Michael Garrett Bechtel and Heechul Yun. Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors. IEEE Intl. Conference on Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2023. [paper] [slides] [code]

° Parul Sohal, Michael Bechtel, Renato Mancuso, Heechul Yun, Orran Krieger. A Closer Look at Intel Resource Director Technology (RDT). International
Conference on Real-Time Networks and Systems (RTNS), 2022 [paper]

° Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Resources in Intel’s Integrated CPU-GPU Platforms. IEEE International
Symposium on Real-Time Distributed Computing (ISORC), 2022 [paper] [code]

° Michael Bechtel and Heechul Yun. Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems. IEEE Transactions on Computers,
2021. [paper] [code]

° Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth Regulation Unit for Real-Time Multicore Processors. IEEE Intl. Conference on Real-Time and
Embedded Technology and Applications Symposium (RTAS), April 2020. [paper] [slides] [code]

° Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl. Conference on Real-Time
and Embedded Technology and Applications Symposium (RTAS), April 2019. [paper] [arXiv] [slides] [code] [data] (Outstanding Paper Award)

° Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, Heechul Yun. Deterministic Memory Abstraction and Supporting Multicore System Architecture.
Euromicro Conference on Real-Time Systems (ECRTS), 2018 [paper] [slides] [code]

° Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems. IEEE Intl. Conference
on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016. [paper] [slides] [code] (Best Paper Award)

° Heechul Yun, Rodolfo Pellizzoni, Prathap Kumar Valsan. Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems. Euromicro
Conference on Real-Time Systems (ECRTS), 2015. [paper] [slides]

° Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on Multicore
Platforms. IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014. [paper] [slides] [code]

° Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Memory Bandwidth Reservation System for Efficient Performance
Isolation in Multi-core Platforms. IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS),
2013. [paper][slides] [code]

https://arxiv.org/pdf/2304.13110.pdf
https://arxiv.org/abs/2304.13110
https://ittc.ku.edu/~heechul/papers/cachebank-rtas2023-camera.pdf
https://ittc.ku.edu/~heechul/papers/cachebank-rtas2023-slides.pdf
https://github.com/CSL-KU/CacheBankDOS
https://cs-people.bu.edu/rmancuso/files/papers/CloserLookRDT_RTNS22.pdf
https://ittc.ku.edu/~heechul/papers/intelcpugpuattack-isorc2022-camera.pdf
https://github.com/mbechtel2/GTCOS-DoS
https://ittc.ku.edu/~heechul/papers/hp_attack-tc2021.pdf
https://github.com/mbechtel2/MemoryAwareDOS
https://ittc.ku.edu/~heechul/papers/bru-rtas2020-camera.pdf
https://ittc.ku.edu/~heechul/papers/bru-rtas2020-slides.pdf
https://github.com/CSL-KU/bru-firesim
https://ittc.ku.edu/~heechul/papers/cachedos-rtas2019-camera.pdf
https://arxiv.org/abs/1903.01314
https://ittc.ku.edu/~heechul/papers/cachedos-rtas2019-slides.pdf
https://github.com/mbechtel2/memguard
https://github.com/mbechtel2/CacheDOS
http://drops.dagstuhl.de/opus/volltexte/2018/9001/pdf/LIPIcs-ECRTS-2018-1.pdf
https://ittc.ku.edu/~heechul/papers/2018-07-ECRTS-DM-web.pdf
https://github.com/CSL-KU/detmem
http://ittc.ku.edu/~heechul/papers/taming-rtas2016-camera.pdf
http://ittc.ku.edu/~heechul/papers/taming-rtas2016-slides.pdf
https://github.com/CSL-KU/IsolBench
https://ittc.ku.edu/~heechul/papers/analysis-ecrts15.pdf
https://ittc.ku.edu/~heechul/papers/analysis-ecrts15-slide.pdf
https://ittc.ku.edu/~heechul/papers/palloc-rtas2014.pdf
https://ittc.ku.edu/~heechul/papers/palloc-rtas2014-slides.pdf
https://github.com/heechul/palloc
https://ittc.ku.edu/~heechul/papers/memguard-rtas13.pdf
https://ittc.ku.edu/~heechul/papers/memguard-rtas13-slides.pdf
https://github.com/heechul/memguard/wiki/MemGuard

	Default Section
	Slide 1: Understanding and Mitigating Hardware Interference Channels on Heterogeneous Multicore
	Slide 2: Heechul Yun Associate Professor, EECS, University of Kansas
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Memory-level parallelism (MLP)
	Slide 6: Memory-level parallelism (MLP)
	Slide 7: Split-transaction bus
	Slide 8: Non-blocking cache
	Slide 9: Non-blocking cache
	Slide 10: Non-blocking cache
	Slide 11: Multi-bank cache/DRAM organizations
	Slide 12: Cache bank organization
	Slide 13: DRAM bank organization
	Slide 14: Multi-bank cache/DRAM organizations
	Slide 15: Memory controller (MC)
	Slide 16: Effective strategies to cause interference
	Slide 17: Effects of cache internal buffer attacks
	Slide 18: Effects of DRAM bank attacks
	Slide 19: Effects of cache bank attacks
	Slide 20: Effects of cache bank attacks
	Slide 21: Summary
	Slide 22: Agenda
	Slide 23
	Slide 24: Augmented reality head-up display (AR-HUD)
	Slide 25
	Slide 26: AR-HUD mapping on Jetson Nano
	Slide 27: AR-HUD mapping on Jetson Nano
	Slide 28: Micro-architectural DoS attacks
	Slide 29: Cache bank-aware DoS attack
	Slide 30: Impact of DoS attacks on the OV2SLAM
	Slide 31: Impact of DNN and DoS attacks on OV2SLAM
	Slide 32: Our approach: RT-Gang++
	Slide 33: Impact of RT-Gang++ on OV2SLAM
	Slide 34: Summary
	Slide 35: Agenda
	Slide 36: “Better” hardware support?
	Slide 37: MPAM functionality
	Slide 38: MPAM cache portion (way) control
	Slide 39: MPAM memory bandwidth control
	Slide 40: Better hardware support: a wish list
	Slide 41: Conclusion
	Slide 42: References

