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 Understanding hardware interference channels

* Non-blocking cache
* Banked cache and DRAM organizations
* Effective “attack” strategies to cause massive cross-core interference

 AR-HUD automotive case study (ARM industrial challenge)
* Effects of interference on real-time application performance
* Limitations of existing mitigation solutions
* Qur solution to mitigate the interference problem

e Discussion and conclusion
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Memory-level parallelism (MLP)

* MLP is the key to understand modern multicore processors (MCP)
e essential for performance (throughput)

* A core can request multiple concurrent memory accesses at a time
e times the number of cores (and accelerators)

* Interconnect (bus) supports split-transactions
* multiple outstanding transactions can occur simultaneously

* Non-blocking cache can handle multiple outstanding cache misses
* it can continue to serve hits under multiple misses

* Cache and DRAM are composed of multiple independent resources
e cache/dram banks can be accessed simultaneously in parallel



Memory-level parallelism (MLP)
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Split-transaction bus
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(a) Simple bus with atomic transactions

Req A Rsp ~A |Read A from DRAM Xmit A
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Req B Rsp ~B | Read B from DRAM Xmit B
Req C Rsp ~C |Read C from DRAM Xmit C
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Req D  Rsp~D Read D from DRAM Xmit D
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(b) Split-transaction bus with separate requests and responses

A split-transaction bus enables higher throughput by pipelining requests, responses, and data transmission.

Figure 11.9
Simple Versus Split-Transaction Busses.

Figure source: John Paul Shen and Mikko H Lipasti. “Modern processor design: fundamentals of superscalar processors.” Waveland Press, 2013




Non-blocking cache

* A core can generate multiple simultaneous accesses to a cache
* Multiple cores/accelerators can simultaneously access a shared cache

* S0, a shared cache can get lots of parallel requests
* A non-blocking shared cache is essential for performance



Non-blocking cache

stall only when
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e Can serve cache hits under multiple cache misses
* Essential for performance in multicore

D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81



Non-blocking cache

Core Core Core Core
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Writeback Buffer

Miss Status Holding Registers

® Track outstanding cache misses. L2 cache / e Hold evicted dirty lines
e Allow high memory-level Tag array Data array (writebacks)
parallelism W T ® Prevent cache refills from waiting
MSHR | WB Buffer |«
address/respond bus data bus

* Cache internal structures are potential interference channels

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In [EEE RTAS, 2016 (Best Paper Award)
Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019 (Outstanding Paper Award)



Multi-bank cache/DRAM organizations

e Shared cache and DRAM are not a single resource

e Each is composed of multiple resources---banks

* Banks are (largely) independent and can be accessed in parallel
* Generally, more banks = more parallelism/throughput



Cache bank organization

* Multiple banks can be accessed simultaneously

Tag Bank 1 Tag Bank 2 memory address mapping
63 6514 0
Data Bank 1 Data Bank 1
Data Bank 2 Data Bank 2
Data Bank 3 Data Bank 3 l l
Data Bank 4 Data Bank 4 Tag bank Data bank

ARM Cortex A72/A57 L2 cache bank organization



DRAM bank organization

* Multiple banks can be accessed simultaneously

[ / 3NN o 7,70
| v~ Last Level Cache (LLC), oo

memory address mapping
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Raspberry Pi 4 DRAM bank
mapping (16 banks)



Multi-bank cache/DRAM organizations

* Can be a problem when all try to access the same cache/dram bank

Corel Core2 Core3 Core4d
L1l 117 - 27

Last Level Cache (LLC)

Tag bank 1 Tag bank 2




Memory controller (MC)

* Schedule memory requests on DRAM chips
e Subject to DDR timing constraints
Write request

e Can re-order the requests to Reagl:ffqe‘r‘est o
maximize memory throughput

Memory requests from cores

* Often prioritize reads over writes N B Banki.

unless too many writes are pending

Channel scheduler

* Scheduling algorithms can greatly
Impact worst-case timing DRAM chips

H. Yun, R. Pellizzoni, P. K. Valsan. “Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems.” In ECRTS, 2015



Effective strategies to cause interference

* Try to exhaust various internal hardware queues/buffers
* Try to generate many requests targeting a single resource (bank)
* Writes often cause worse contention than reads



Effects of cache internal buffer attacks
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* Observed worst-case: >300X (times) slowdown on popular multicores
* Even when the cache is partitioned to protect the victim

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019



Effects of DRAM bank attacks Sequential writes
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e Targeting a single DRAM bank caused up to 44X slowdown in real apps
* LLC space partitioning was not effective

M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.” In IEEE Transactions on Computers, 2021



Effects of cache bank attacks
~10X

10

KA

Raspberry Pi4 C—1
Jetson Nano K==

KX

AN

Slowdown
|
ERKXKKK

</
Pal

“uar—g-cache

of 1] 2]/ 3f || 4] 5] 6] 7, 2 |

S

X
£

KRXHKK

£

v

KK

0 1 2 3 4 5 6 7
Attacker Data Bank

* Accessing the same tag bank (and diff. data bank) = up to 10X slowdown
* Accessing different tag bank = near perfect isolation

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023



Effects of cache bank attacks LLC fitting paralle
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e Targeting a single cache bank caused up to 2.3X slowdown in real apps
* LLC space partitioning and DRAM bandwidth throttling were not effective

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023



Summary

 Memory-level parallelism (MLP) is key to understand modern
multicore processors (MCPs)

* High MLP designs at all levels of the memory hierarchy are essential
for performance/throughput, but they also can be problematic
hardware interference channels from a real-time perspective

* Contrary to popular beliefs, interconnects are usually not major
interference channels in modern MCPs. Major ones are at the edges

* There are effective “attack” strategies to cause massive cross-core
interference, which cannot be easily mitigated by existing
software/hardware partitioning techniques



Agenda

 AR-HUD automotive case study (ARM industrial challenge)
* Effects of interference on real-time application performance
* Limitations of existing mitigation solutions
* Qur solution to mitigate the interference problem
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Image Source: https://www.ecrts.org/industrial-challenge-current-challenge/
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Augmented reality head-up display (AR-HUD)

ARM 2022 industrial challenge case study application
Visual SLAM (OV?SLAM)

 Determine orientation and trajectory + generate a map of the surroundings
e High-criticality real-time task

* Head-pose estimation DNN (Hope-Net)

* Estimate driver’s pose for better AR rendering that accounts for the driver’s
viewpoint

* high-priority real-time task
e “Aggressor” tasks

* Other (synthetic) tasks that compete for the shared hardware resources of the SoC
e Best-effort (non real-time) priority

M. Andreozzi, G. Gabrielli, B. Venu, G. Travaglini. “Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm.” In ECRTS, 2022



Analysis and Mitigation of Shared Resource
Contention on Heterogeneous Multicore: An
Industrial Case Study

Michael Bechtel
University of Kansas, USA

Heechul Yun
University of Kansas, USA

—— Abstract

In this paper, we address the industrial challenge put forth by ARM in ECRTS 2022. We
systematically analyze the effect of shared resource contention to an augmented reality head-up
display (AR-HUD) case-study application of the industrial challenge on a heterogeneous multicore
platform, NVIDIA Jetson Nano. We configure the AR-HUD application such that it can process
incoming image frames in real-time at 20Hz on the platform. We use micro-architectural denial-
of-service (DoS) attacks as aggressor tasks of the challenge and show that they can dramatically
impact the latency and accuracy of the AR-HUD application, which results in significant deviations
of the estimated trajectories from the ground truth, despite our best effort to mitigate their influence
by using cache partitioning and real-time scheduling of the AR-HUD application. We show that
dynamic LLC (or DRAM depending on the aggressor) bandwidth throttling of the aggressor tasks is
an effective mean to ensure real-time performance of the AR-HUD application without resorting to
over-provisioning the system.

2012 ACM Subject Classification Computer systems organization — Real-time systems; Computer
systems organization — Embedded and cyber-physical systems

Keywords and phrases Industrial Challenge, Real Time, SLAM, Microarchitectural DoS Attack



AR-HUD mapping on Jetson Nano

Head Pose Head Pose
OVSLAM ROS Bag Estimation Estimation
Core 0 Core 1 Core 2 Core 3 GPU
!
¥
LLC
DRAM

M. Bechtel, H. Yun. "Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study.” arXiv:2304.13110, 2023.



AR-HUD mapping on Jetson Nano

Real-Time | Rate

Task Thread Core(s) Priority (Hz)
Front-End 20
OVZSLAM Mapping 0,1 2 -
State Optimization -
ROS bag - 2 2 20
Head Pose Est. - 3,GPU 1 20

Real-time tasks (Linux SCHED FIFO) threads/core mapping and scheduling parameters

e Aggressor (DoS attack) tasks are scheduled on all cores as best-
effort tasks (using Linux CFS scheduler) to fully load the system

* L2 cache is partitioned w/ page coloring (*): OV?SLAM vs. all else

(*) H. Yun, R. Mancuso, Z. Wu, R. Pellizzoni. "PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on Multicore Platforms." In [EEE RTAS, 2014
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Micro-architectural DoS attacks

for (int64_t 1 = 0; i<mem_size; 1 += LINE_SIZE)
{

}

ptr[i] = Oxff;

Sequential Attacker
(BwWrite)
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static intx listt MAX_MLP];
static int nextftMAX_MLP];

for (int64_t i = 0; 1 < iter; i++) {
switch (mlp) {
case MAX_MLP:

case 2:
list[1][next[1]+1] = Oxff;
next[1] = list[1][next[1]];
/% fall—through +/

case 1:
list[O][next[0]+1] = Oxft;
next[0] = list[O][next[0]];

}

}

Parallel Linked-List Attacker
(PLLWrite)

* Configurable synthetic workloads to cause resource contention
* Sequential vs. random, read vs. write access patterns

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023
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Cache bank-aware DoS attack

=1 O Lh B D —

 Same as Parallel Linked-List (PLL) attacks but only keeps the
addresses that map to a target LLC data bank

e LLC bank-aware PLL write attack = BKkPLLWrite(LLC)

#define bit(addr,x) ((addr >> (x)) & OxI)
int paddr_to_sram_bank(unsigned long addr)
{
return ( (bit(addr, 6) << 2) |
(bit(addr, 5) << 1) |
bit(addr, 4) );

<*:s,ed Cache
Tag bank 1 Tag bank 2

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In IEEE RTAS, 2023
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Impact
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Y-axis: Absolute Trajectory Error (ATE) = a standard measure of accuracy of SLAM. Lower is better.
X-axis: different micro-architectural denial-of-service (DoS) attacks

Working-set sizes:
(LLC) -> LLC fitting
(DRAM) -> DRAM fitting



Impact of DNN and DoS attacks on OV?SLAM
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Our approach: RT-Gang++

Cache bandwidth throttling

» Throttle attacker’s access (from CPU) to the shared LLC
« Using per-core performance counters (based on MemGuard* )
 To limit cache (bank) bandwidth contention

GPU bandwidth throttling

« Throttle HopeNet DNN’s access (from GPU) to the shared DRAM
« Using NVIDIA's memory controller level throttling mechanism
 To limit GPU induced memory b/w interference on CPU (running SLAM)

Partitioned gang scheduling

« To avoid inter-application interference on multiple multi-threaded RT apps.

(*) H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Platforms." In /EEE RTAS, 2013



Impact of RT-Gang++ on OV2SLAM
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Summary

* Consolidating multiple RT/NRT tasks on heterogeneous multicore is
challenging due to interference on shared hardware resources

e Cache bank-aware DoS attacks are especially effective in impacting
performance of the real-time SLAM task in the AR-HUD case-study

* Executing a DNN task on the integrated GPU also significantly
impact the performance of the SLAM on the CPU

 RT-Gang++ mitigates the interference problem via (1) software-
based cache bandwidth throttling, (2) hardware-based GPU
bandwidth throttling, and (3) partitioned real-time gang scheduling.



Agenda

 Understanding hardware interference channels

* Non-blocking cache
* Banked cache and DRAM organizations
* Effective “attack” strategies to cause massive cross-core interference

e AR-HUD automotive case study (ARM industrial challenge)
* Effects of interference on real-time application performance
* Limitations of existing mitigation solutions
* Qur solution to mitigate the interference problem

e Discussion and conclusion



“Better” hardware support?

* Intel Resource Director Technology (RDT)
* Available on recent Intel server processors
e Cache space (CAT) and memory bandwidth (MBA) control
* Not satisfactory for real-time, according to our studies (*)

 ARM Memory System Resource Partitioning and Monitoring (MPAM)
* Not widely available yet (Where can | find one?)
* Also focus on (cache) space and (memory) bandwidth
* May not be sufficient for real-time systems?

(*) P. Sohal, M. G. Bechtel, R. Mancuso, H. Yun, O. Krieger. “A Closer Look at Intel Resource Director Technology (RDT),” in RTNS, 2022
M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Resources in Intel’s Integrated CPU-GPU Platforms,” in ISORC, 2022



MPAM functionality

Portion partitioning

PARTID PARTID PARTID PARTID
1 2 3 4

Min/Max limit partitioning

PARTID /X PARTID "jZ PARTID /x\/\’{
1 ) 2 3
Min Max Min Max

Priority partitioning

PARTID . PARTID . PARTID QoSs-8 PARTID .
1 2 3 4

Proportional stride partitioning

PARTID G o PARTID R o PARTID R g PARTID e g
a Every 600 £ Every 30 3 Every 700 * Every 40

Figure source: ARM, “Learn the architecture - Memory System Resource Partitioning and Monitoring (MPAM) Software Guide,” 2023




MPAM cache portion (way) control

Figure 4-1: MPAM cache_portion_interface

Representing cache portion in Cache Allocation

(tf-fjrjrjojojofoftjrfrjtfr 111 cache-portion

bitmap
May not allocate this portion May allocate this portion

cache ways

Figure source: ARM, “Learn the architecture - Memory System Resource Partitioning and Monitoring (MPAM) Software Guide,” 2023

* Problem: can control way, but what about bank? (*)

(*) M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.” In I[EEE RTAS, 2023



MPAM memory bandwidth control

* Min/max limit partitioning

2

0 4800MBps OMBps —
%f/ DRAM
Memory Controller 1 1200MBps 1000MBps
2 600M Bps 600M BpS Balnk Baznk Ba3nk Ba4nk

Figure source: ARI\)I, “Learn the architecture - Memory System Resource Partitioning and Monitoring
(MPAM) Software Guide,” 2023

* Problem: stressing one DRAM bank (1/N peak b/w) can cause more
delay than stressing all DRAM banks (*)

(*) M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.” In IEEE Transactions on Computers, 2021



Better hardware support: a wish list

* Better monitoring and throttling capabilities
e E.g., Per-bank (cache/dram) perf. counters and bandwidth regulators

* Better control over address-based resource mapping
e E.g., s/w controlled paddr -> bank mapping (of shared cache and DRAM)

e Better control over other internal shared hardware resources
 E.g.,, MSHRs (*), write-back buffer, etc.

* Better memory abstraction
* E.g., deterministic memory type (**)

(*) P. K. Valsan, H. Yun, F. Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In RTAS, 2016
(**) F. Farshchi, P. K. Valsan, R. Mancuso, H. Yun. “Deterministic Memory Abstraction and Supporting Multicore System Architecture.” In ECRTS, 2018



Conclusion

 Hardware interference channels on heterogeneous multicore are a
serious threat to safety-critical real-time applications

e Existing techniques such as cache (space) partitioning and memory
bandwidth throttling may not be sufficient

 Unaware of cache/DRAM banks, internal shared hardware structures
* Do not necessarily provide worst-case execution time guarantees

* Better hardware support is needed for critical real-time systems
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