
Parallelism-Aware Memory Interference
Delay Analysis for COTS Multicore Systems

Heechul Yun +, Rodolfo Pellizzoni*, Prathap Kumar Valsan+
+University of Kansas

*University of Waterloo

1

High-Performance Multicores for
Embedded Real-Time Systems

• Why?

– Intelligence  more performance

– Space, weight, power (SWaP), cost

2

Challenge: Shared Memory Hierarchy

3

Core1 Core2 Core3 Core4

Memory Controller (MC)

Shared Cache

• Hardware resources are contented among the cores

• Tasks can suffer significant memory interference
delays

DRAM

Memory Interference Delay
• Can be extremely high in the worst-case

4

8.0

33.5

45.8

0

5

10

15

20

25

30

35

40

45

50

ARM
Cortex A15

Intel
Nahelem

Intel
Haswell

solo

+ 1 co-runner

+ 2 co-runners

+ 3 co-runners

N
o

rm
a

liz
ed

 e
xe

cu
ti

o
n

 t
im

e

45.8X
slowdown

DRAM

LLC

Core1 Core2 Core3 Core4

bench co-runner(s)

banks

Modeling Memory Interference

• Common (false) assumptions on COTS systems
– A single resource

• Reality: multiple parallel resources (banks)

– A constant memory service cost
• Reality: it varies depending on the DRAM bank state

– Round-robin arbitration, in-order processing
• Reality: FR-FCFS can re-order requests

– Both read and write requests are treated equally
• Reality: writes are buffered and processed opportunistically

– One outstanding request per core
• Reality: an out-of-order core can generate parallel reqs.

5

Addressed in This Work

Addressed in [Kim’14]

[Kim’14] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R.Rajkumar. “Bounding Memory Interference
Delay in COTS-based Multi-Core Systems,” RTAS’14

Our Approach

• Realistic memory interference model for COTS systems
– Memory-level parallelism (MLP) in COTS architecture

– Write-buffering and opportunistic batch processing in MC

• DRAM bank-partitioning
– Reduce interference

• Delay analysis
– Compute worst-case memory interference delay of the

task under analysis

6

Outline

• Motivation

• Background

– COTS multicore architecture

– DRAM organization

– Memory controller

• Our approach

• Evaluation

• Conclusion

7

Memory-Level Parallelism (MLP)

• Broadly defined as the number of concurrent
memory requests that a given architecture
can handle at a time

8

Last Level Cache (LLC)

DRAM DIMM

Memory Controller (MC)

Core1

Core2

Core3

Core4

Request buffers
 Read Write

Scheduler

MSHRs

CMD/ADDR DATA

COTS Multicore Architecture

Out-of-order core:
Multiple memory requests

Non-blocking caches:
Multiple cache-misses

MC and DRAM:
Multiple banks

Bank
4

Bank
3

Bank
2

Bank
1

MSHRs MSHRs MSHRs MSHRs

9

DRAM Organization

LLC

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

Mess

• intra-bank conflicts

• Inter-bank conflicts

10

DRAM Bank Partitioning

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• Private banking

– OS kernel allocates
pages from
dedicated banks for
each core

Eliminate
intra bank
conflicts

11

Bank Access Cost

Row 1

Row 2

Row 3

Row 4

Row 5

A DRAM Bank

Row Buffer activate

precharge

Read/write

• State dependent access cost
– Row hit: fast

– Row miss: slow

READ (Bank 1, Row 3, Col 7)

Col7

12

Memory Controller

13

Read request
 buffer

Write request
buffer

Bank 1
scheduler

Channel scheduler

Bank 2
scheduler

Bank N
scheduler

DRAM chip

Memory requests from cores

Writes are buffered and processed opportunistically

“Intelligent” Read/Write Switching

• Intuition

– Writes are not in the critical path. So buffer and
process them opportunistically

• Algorithm [Hansson’14]

– If there are reads, process them unless the write
buffer is almost full (high watermark)

– If there’s no reads and there is enough buffered
writes (low watermark), process the writes until
reads arrive

14
[Hansson’14] Hansson et al., “Simulating DRAM controllers for future syste
m architecture exploration,” ISPASS’14

FR-FCFS Scheduling [Rixner’00]

• Priority order

1. Row hit request

2. Older request

• Maximize memory throughput

15

Bank 1
scheduler

Channel scheduler

Bank 2
scheduler

Bank N
scheduler

[Rixner’00] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. Owens. Memo
ry access scheduling. ACM SIGARCH Computer Architecture News. 2000

Outline

• Motivation

• Background

• Our approach

– System model

– Delay analysis

• Evaluation

• Conclusion

16

System Model
• Task

– Solo execution time C
– Memory demand (#of LLC misses): H

• Core
– Can generate multiple, but bounded, parallel requests

• Upper-bounded by L1 cache’s MSHR size

• Cache (LLC)
– Assume no cache-level interference

• Core-private or partitioned LLC
• No MSHR contention

• DRAM controller
– Efficient FR-FCFS scheduler, open-page pollicy
– Separate read and write request buffer

• Watermark scheme on processing writes

17

Delay Analysis

• Goal
– Compute the worst-case memory interference delay of a

task under analysis

• Request driven analysis

– Based on the task’s own memory demand: H
– Compute worst-case per request delay: RD
– Memory interference delay = RD x H

• Job driven analysis
– Based on the other tasks’ memory requests over time
– See paper

18

Key Intuition #1

• The #of competing requests Nrq is bounded
– Because the # of per-core parallel requests is bounded.

– Example
• Cortex-A15’s per-core bound = 6

• Nrq = 6 x 3 (cores) = 18

19

Key Intuition #2

• DRAM sub-commands of the competing
memory requests are overlapped

– Much less pessimistic than [Kim’14], which simply
sums up each sub-command’s maximum delay

– See paper for the proof

20

Key Intuition #3

• The worst-case delay happens when
– The read buffer has Nrq requests
– And the write request buffer just becomes full

• Start a write batch

– Then the read request under analysis arrives

21

RD = read batch delay + write batch delay

Outline

• Motivation

• Background

• Our approach

• Evaluation

• Conclusion

22

Evaluation Setup

• Gem5 simulator
– 4 out-of-order cores (based on Cortex-A15)

• L2 MSHR size is increased to eliminate MSHR contention

– DRAM controller model [Hansson’14]

– LPDDR2 @ 533Mhz

• Linux 3.14
– Use PALLOC[Yun’14] to partition

DRAM banks and LLC

• Workload
– Subject: Latency, SPEC2006

– Co-runners: Bandwidth (write)

23

DRAM

LLC

Core1 Core2 Core3 Core4

subject co-runner(s)

Results with the Latency benchmark

• Ours(ideal): Read only delay analysis (ignore writes)
• Ours(opt): assume writes are balanced over multiple banks
• Ours(worst): all writes are targeting one bank & all row misses

24

0

5

10

15

20

25

30

Measured [Kim'14] Ours(ideal) Ours(opt) Ours(worst)

N
o

rm
al

iz
e

d
 R

e
sp

o
n

se
 T

im
e

underestimate

overestimate

[Kim’14] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R.Rajkumar. “Bounding Memory Interference
Delay in COTS-based Multi-Core Systems,” RTAS’14

Results with SPEC2006 Benchmarks

• Main source of pessimism:
– The pathological case of write (LLC write-backs) processing

25

Conclusion

• Memory interference delay on COTS multicore
– Existing analysis methods rely on strong assumptions

• Our approach
– A realistic model of COTS memory system

• Parallel memory requests
• Read prioritization and opportunistic write processing

– Request and job-driven delay analysis methods
• Pessimistic but still can be useful for low memory intensive tasks

• Future work
– Reduce pessimism in the analysis

26

Thank You

27

