
Parallelism-Aware Memory Interference 
Delay Analysis for COTS Multicore Systems 

Heechul Yun +, Rodolfo Pellizzoni*, Prathap Kumar Valsan+ 
+University of Kansas 

*University of Waterloo 

1 



High-Performance Multicores for 
Embedded Real-Time Systems 

• Why? 

– Intelligence  more performance 

– Space, weight, power (SWaP), cost 
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Challenge: Shared Memory Hierarchy 

3 

Core1 Core2 Core3 Core4 

Memory Controller (MC) 

Shared Cache 

• Hardware resources are contented among the cores 

• Tasks can suffer significant memory interference 
delays 

DRAM 



Memory Interference Delay 
• Can be extremely high in the worst-case 
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Modeling Memory Interference 

• Common (false) assumptions on COTS systems 
– A single resource 

• Reality: multiple parallel resources (banks)  

– A constant memory service cost 
• Reality: it varies depending on the DRAM bank state 

– Round-robin arbitration, in-order processing 
• Reality: FR-FCFS can re-order requests 

– Both read and write requests are treated equally 
• Reality: writes are buffered and processed opportunistically  

– One outstanding request per core 
• Reality: an out-of-order core can generate parallel reqs. 
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Addressed in This Work 

Addressed in [Kim’14] 

[Kim’14] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R.Rajkumar. “Bounding Memory Interference 
Delay in COTS-based Multi-Core Systems,” RTAS’14 



Our Approach 

• Realistic memory interference model for COTS systems 
– Memory-level parallelism (MLP) in COTS architecture 

– Write-buffering and opportunistic batch processing in MC 

 

• DRAM bank-partitioning 
– Reduce interference 

 

• Delay analysis 
– Compute worst-case memory interference delay of the 

task under analysis 
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Outline 

• Motivation 

• Background 

– COTS multicore architecture 

– DRAM organization 

– Memory controller  

• Our approach 

• Evaluation 

• Conclusion 
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Memory-Level Parallelism (MLP) 

• Broadly defined as the number of concurrent 
memory requests that a given architecture 
can handle at a time 
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Last Level Cache (LLC) 
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COTS Multicore Architecture 

Out-of-order core: 
Multiple memory requests 

Non-blocking caches: 
Multiple cache-misses 

MC and DRAM: 
Multiple banks 

Bank 
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MSHRs MSHRs MSHRs MSHRs 
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DRAM Organization 
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• intra-bank conflicts 

• Inter-bank conflicts  
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DRAM Bank Partitioning 
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• Private banking 

– OS kernel allocates 
pages from 
dedicated banks for 
each core 

Eliminate 
intra bank 
conflicts 
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Bank Access Cost 

Row 1 

Row 2 

Row 3 

Row 4 

Row 5 

A DRAM Bank 

Row Buffer activate 

precharge 

Read/write 

• State dependent access cost 
– Row hit: fast 

– Row miss: slow  

READ (Bank 1, Row 3, Col 7) 

Col7 
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Memory Controller 
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Read request 
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Memory requests from cores 

Writes are buffered and processed opportunistically 
 



“Intelligent” Read/Write Switching 

• Intuition 

– Writes are not in the critical path. So buffer and 
process them opportunistically  

• Algorithm [Hansson’14] 

– If there are reads, process them unless the write 
buffer is almost full (high watermark) 

– If there’s no reads and there is enough buffered 
writes (low watermark), process the writes until 
reads arrive   
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[Hansson’14] Hansson et al., “Simulating DRAM controllers for future syste
m architecture exploration,” ISPASS’14 



FR-FCFS Scheduling [Rixner’00]  

• Priority order 

1. Row hit request  

2. Older request 

 

 

• Maximize memory throughput 
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Bank 1 
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Channel scheduler 
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[Rixner’00] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. Owens. Memo
ry access scheduling. ACM SIGARCH Computer Architecture News. 2000 



Outline 

• Motivation 

• Background 

• Our approach 

– System model 

– Delay analysis 

• Evaluation 

• Conclusion 
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System Model 
• Task 

– Solo execution time C 
– Memory demand (#of LLC misses): H 

• Core 
– Can generate multiple, but bounded, parallel requests 

• Upper-bounded by L1 cache’s MSHR size 

• Cache (LLC) 
– Assume no cache-level interference 

• Core-private or partitioned LLC 
• No MSHR contention 

• DRAM controller  
– Efficient FR-FCFS scheduler, open-page pollicy 
– Separate read and write request buffer 

• Watermark scheme on processing writes 
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Delay Analysis 

• Goal 
– Compute the worst-case memory interference delay of a 

task under analysis 

 
• Request driven analysis 

– Based on the task’s own memory demand: H 
– Compute worst-case per request delay: RD 
– Memory interference delay = RD x H  

 

• Job driven analysis 
– Based on the other tasks’ memory requests over time  
– See paper 
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Key Intuition #1 

• The #of competing requests Nrq is bounded 
– Because the # of per-core parallel requests is bounded.  

– Example 
• Cortex-A15’s per-core bound = 6  

• Nrq = 6 x 3 (cores) = 18 
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Key Intuition #2 

• DRAM sub-commands of the competing 
memory requests are overlapped 

– Much less pessimistic than [Kim’14], which simply 
sums up each sub-command’s maximum delay  

– See paper for the proof 
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Key Intuition #3 

• The worst-case delay happens when 
– The read buffer has Nrq requests 
– And the write request buffer just becomes full 

• Start a write batch 

– Then the read request under analysis arrives 
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RD = read batch delay + write batch delay 



Outline 

• Motivation 

• Background 

• Our approach 

• Evaluation 

• Conclusion 
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Evaluation Setup 

• Gem5 simulator 
– 4 out-of-order cores (based on Cortex-A15) 

• L2 MSHR size is increased to eliminate MSHR contention 

– DRAM controller model [Hansson’14] 

– LPDDR2 @ 533Mhz 

• Linux 3.14 
– Use PALLOC[Yun’14] to partition  

DRAM banks and LLC 

• Workload 
– Subject: Latency, SPEC2006 

– Co-runners: Bandwidth (write) 
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Results with the Latency benchmark 

• Ours(ideal): Read only delay analysis (ignore writes) 
• Ours(opt): assume writes are balanced over multiple banks 
• Ours(worst): all writes are targeting one bank & all row misses 
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[Kim’14] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R.Rajkumar. “Bounding Memory Interference 
Delay in COTS-based Multi-Core Systems,” RTAS’14 



Results with SPEC2006 Benchmarks 

• Main source of pessimism: 
– The pathological case of write (LLC write-backs) processing 
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Conclusion 

• Memory interference delay on COTS multicore 
–  Existing analysis methods rely on strong assumptions 

 

• Our approach 
– A realistic model of COTS memory system 

• Parallel memory requests 
• Read prioritization and opportunistic write processing 

– Request and job-driven delay analysis methods 
• Pessimistic but still can be useful for low memory intensive tasks 

 

• Future work 
– Reduce pessimism in the analysis 
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Thank You 
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