
Improving Performance of ARM Linux Kernel ∗

Heechul Yun
Department of Computer Science

University of Illinois at Urbana and Champaign

August 5, 2011

Abstract

Architecture specific part of Linux kernel is small but important in
overall performance. It is, however, difficult to know whether a partic-
ular implementation is well optimized for a specific architecture. To
answer such a question in a reasonable way, we compared performance
of a version of Linux kernel on both ARM and x86 platforms using
hardware counter based profiling framework. We also developed a tool
that prioritizes kernel functions based on time difference to accelerate
the comparison. We found four unnecessary overheads in ARM Linux
kernel which resulted in 20-37% performance improvement, after op-
timizations, on four categories Lmbench scores.

1 Introduction

Architecture specific part of the Linux kernel is small but has profound im-
pact in overall kernel performance. In this study, we focus on ARM architec-
ture. ARM is popular processor architecture for low power mobile systems
such as cell phones. Recently, ARM is also improving performance targeting
high-end systems even including server systems[4]. It now supports features
like SMP and multi-level cache [1, 2] like many today’s x86 systems does.

∗This paper is based on the work the author did during his internship at Nvidia. Do
not distribute without permission.

1



Our primary question is weather ARM Linux kernel is well optimized to
take advantages of those architectural improvements. Such a question is very
hard to answer without very deep knowledge on both architecture and the
related kernel implementation details. Even for one with such knowledge, it
is still time consuming to manually inspecting all related kernel code without
knowing proper priorities based on performance impact.

To ease such difficulty, our approach is to compare performance with
another architecture, namely x86, taking advantage of multi architecture
support of Linux. x86 is the most widely used architecture and well opti-
mized for performance. Furthermore, looking at the recent changes in ARM
architecture, many of them resemble x86 architecture especially in the areas
of cache and MMU. While apple-to-apple comparison is still impossible due
to other architectural and platform differences, having a single kernel source
that supports both ARM and x86 allows us to compare kernel performance
in a reasonable way which can be used to prioritize optimization effort.

Given this intuition, we profiled kernel while running benchmark appli-
cations from Lmbench 3.0 [6], a popular OS benchmark, on a Cortex-A9
(ARM) and a intel i7 (x86) based systems. We developed a tool that helps
the comparison by ranking potential candidate kernel functions based on ex-
ecution time difference when running the same benchmark program on each
architecture. We then manually inspected kernel source code for the candi-
date functions looking for some missed optimization opportunities allowed in
ARM architecture.

We identified four ARM Linux specific performance issues in its page table
update, page table allocation, page copy, and page access synchronization
implementation. All of them are caused by not taking advantage of the new
architectural changes. We made patches to address the identified problems
which resulted in 20-37% improved performance in the benchmark. We also
reported our findings to kernel developers and got acknowledges that they
are indeed correct 1.

Outline The remainder of this article is organized as follows. Section 2
describes ARM architecture background. Section 3 describes our methodol-
ogy. Section 4 describes our main results. Section 5 gives our discussions.
Finally, Section 6 gives the conclusions.

1two patches (PK2 and PK3) were officially applied and included in the mainline kernel
as of Jul 30, 2011.

2



2 Background

ARM is popular processor architecture for low power embedded processors
that most today’s cell phones use. While it is well known for its low power, its
performance is also improved significantly recently. Today’s highest available
ARM core, Cortex-A9, implements out-of-order execution, cache-coherent
SMP, and L2 caches all were not available a few years ago [2]. Such rapid
changes pose challenges in Linux kernel development because some of them
require careful OS coordination. In this paper we focus on two major changes
in MMU and cache that affect OS implementation.

2.1 MMU supports page table read from cache

MMU is a hardware unit that translates virtual address to physical address.
The translation tables, page tables, are stored in memory which is managed
by operating systems. While TLB cache the translations, whenever there is
a TLB miss the MMU hardware ’walk’ the page tables to find the transla-
tion. In this process, it may read page table entries from cache memory or
from main memory only depending on MMU implementation. In older ARM
processors, MMU only can read from memory, therefore OS must ensure con-
sistency between cache and memory whenever it updates page table entries.
In Cortex-A9, however, MMU can read directly from L1 cache eliminating
the OS burden.

2.2 Physically Indexed Physically Tagged (PIPT) cache

Traditionally ARM used virtually indexed caches—Virtually Indexed Vir-
tually Tagged (VIVT) or Virtually Indexed Physically Tagged (VIPT) —
which use virtual address to index cache content for faster cache access with-
out accessing MMU for address translation. Cache maintenance is, however,
complicated in virtually indexed caches because of problems like aliasing,
i.e., multiple virtual address map to same page, and homonyms, i.e., same
virtual address maps to different pages. ARM Linux, therefore, has to han-
dle all those issues carefully. Cortex-A9, however, has Physically Indexed
Physically Tagged (PIPT) caches similar to x86. With PIPT caches, kernel’s
cache maintenance can be simplified because there is no need to worry about
aliasing and homonyms.

3



3 Methodology

Our approach to compare kernel performance is using a kernel profiling frame-
work [3]. We profiled kernels while running the same benchmark programs
and the compared time spent on each kernel function to see the difference.
If a kernel function kfunc spend 1% of times on x86 but it spend 10% of
times on ARM, it may indicate poor kernel implementation on ARM ver-
sion. Of course such difference also can be attributed from actual architec-
tural difference—e.g., instructions set, cache type & size, and other hardware
dependencies. Therefore, determinining the cause of performance difference
requires careful inspection.

In order to ease this process, we developed a tool, called kperfdiff, which
prioritizes kernel functions to investigate. It takes two inputs— profiled result
of the same program on two architectures, and computes time differences and
sorts them. Since there are many architecture specific functions whose sym-
bol names are not shared across architectures, it also separately shows such
non-shared functions for each of the architecture. Figure 1 and 2 show exam-
ple outputs for two our benchmark programs, described in the next section,
using profile results of ARM and x86. We investigated the listed functions
and the underlined functions are what we actually found performance issues.
Notice that many architecture specific functions are declared as inline func-
tions. Since profiling tool only can handle ”normal” function, which have
dedicated labels, such inline functions are accounted in both common and
arch specific function categories in the output.

3.1 Environment

We used two benchmarks from Lmbench 3.0 suite. lat pagefault measures
kernel’s pagefault handling performance. It first maps a large file into the pro-
cess’s address space using mmap() system call. Then it accesses the mapped
address range to generate page faults. lat proc measures fork/exec perfor-
mance. It consists of three sub-tests: fork, exec, and shell. fork creates a
child process but do not call execve(); exec calls execve() on the forked
child using a simple hello world program; shell execve() a /bin/sh—bigger
than a hello world. The exact commands are as follows 2:

lat_pagefault -N 2 -P <core count> /tmp/XXX

2XXX is 400MB file and /tmp is memory file system

4



>> Top 5 candidates among common kernel functions

%diff | symbol | ARM | x86

--------------------------------------------------------------

12.88 | unmap_vmas | 17.32 | 4.44

5.91 | __do_fault | 6.85 | 0.94

5.71 | find_get_page | 8.70 | 2.99

3.96 | unlock_page | 4.54 | 0.58

3.95 | free_pgd_range | 5.87 | 1.92

>> Top 5 candidates among ARM specific kernel functions

%time | symbol

--------------------------------------------------------------

9.07 | __dabt_usr

5.21 | _raw_spin_unlock_irqrestore

2.78 | __memzero

1.51 | cpu_v7_set_pte_ext

1.36 | v7wbi_flush_user_tlb_range

>> Top 5 candidates among x86 specific kernel functions

%time | symbol

--------------------------------------------------------------

15.04 | page_fault

6.64 | __memset

5.90 | __ticket_spin_lock

1.44 | mem_cgroup_update_file_mapped

1.32 | __memcpy

Figure 1: Output of kperfidff for lat pagefault benchmark.

5



>> Top 5 candidates among common kernel functions

%diff | symbol | ARM | x86

--------------------------------------------------------------

17.66 | unmap_vmas | 1.01 | 18.67

3.43 | _raw_spin_unlock_irqrestore | 3.66 | 0.23

2.76 | release_pages | 0.04 | 2.80

2.68 | page_remove_rmap | 0.14 | 2.82

1.98 | finish_task_switch | 2.02 | 0.04

>> Top 5 candidates among ARM specific kernel functions

%time | symbol

--------------------------------------------------------------

14.42 | cpu_v7_dcache_clean_area

7.45 | v7_flush_kern_dcache_area

6.53 | __memzero

4.34 | copy_page

3.20 | memcpy

>> Top 5 candidates among x86 specific kernel functions

%time | symbol

--------------------------------------------------------------

9.32 | page_fault

4.58 | __ticket_spin_lock

2.46 | clear_page_c

1.62 | copy_page_c

1.15 | lookup_page_cgroup

Figure 2: Output of kperfidff for lat fork benchmark

6



lat_proc -N 2 -P <core count> <fork|exec|shell>

We used 2.6.36 version of Linux kernel on both platforms. However, the
ARM version is slightly modified for Android OS by google, while we used a
vanilla kernel for x86. We configured kernel configuration as close as possible
but there could be some differences. Nevertheless, we compare performance
to accelerate finding hot-spots, small difference does not affect our finding.
For profiling kernel functions, we enabled CONFIG PERF EVENT, and used perf
tool which is included in the kernel source tree.

We used a 4-core Cortex-A9 based ARM SMP platform and 8-core i7
based PC for comparison 3. The Cortex-A9 ARM processor has 32K I-Cache
and 32K D-cache per core, 1MB unified L2 cache shared by all cores, and
runs at 1.3GHz. The Intel i7 processor has 32K private I&D Cache, 1MB
private L2 cache, and 8MB unified L3 cache; it runs at 1.6GHz 4. In both
platforms, we manually disabled dynamic power management 5

4 The Problems

In this section, we discuss four performance issues we found in ARM Linux
kernel which are related to MMU and cache.

4.1 Unnecessary cache flushes for page table entry up-
date

Linux kernel updates page table entries when it maps a page frame for a user
process, change protection level, or swap out a page. To update a page table
entry, Linux kernel call architecture specific set pte at() function. Figure
3 shows a call sequence when a page fault occurs to access a memory location
which is mapped to a file. While most kernel functions in page fault handling
are non-architecture specific, architecture specific set pte at() is called in
the end to actually update the page table entry.

Part of profiling results of lat pagefault on both x86 and ARM are shown
in Figure 4. While the absolute percentage is rather small, ARM Linux
clearly spend more time on set pte at compared to x86 Linux.

3We used only four cores by disabling unused cores using hotplug subsystem
4The chip support up to 3.0GHz, but we used lowest available clock for fairer compar-

ison
5Both kernels used userspace cpufreq governor not to dynamically adjust frequencies

7



do_page_fault -- architecture specific (exception handle)

+- handle_mm_fault -- mm/memory.c

+- handle_pte_fault -- mm/memory.c

+- do_linear_fault() -- mm/memory.c

+- __do_fault() -- mm/memory.c

+- set_pte_at() -- architecture specific

Figure 3: Call sequence of set pte at() function.

# Overhead Command Shared Object Symbol

# ........ ........ ................. .................................

1.51% lat_pagefault [kernel.kallsyms] [k] cpu_v7_set_pte_ext

(a) ARM

# Overhead Command Shared Object Symbol

# ........ ........ ................. .................................

0.07% lat_pagefault [kernel.kallsyms] [k] native_set_pte_at

(b) x86

Figure 4: Profiled CPU cycles of lat pagefault

8



<arch/arm/mm/proc-v7.S>

ENTRY(cpu_v7_set_pte_ext)

str r1, [r0] @ linux version

bic r3, r1, #0x000003f0

bic r3, r3, #PTE_TYPE_MASK

orr r3, r3, r2

orr r3, r3, #PTE_EXT_AP0 | 2

tst r1, #1 << 4

orrne r3, r3, #PTE_EXT_TEX(1)

eor r1, r1, #L_PTE_DIRTY

tst r1, #L_PTE_RDONLY | L_PTE_DIRTY

orrne r3, r3, #PTE_EXT_APX

tst r1, #L_PTE_USER

orrne r3, r3, #PTE_EXT_AP1

#ifdef CONFIG_CPU_USE_DOMAINS

@ allow kernel read/write access to read-only user pages

tstne r3, #PTE_EXT_APX

bicne r3, r3, #PTE_EXT_APX | PTE_EXT_AP0

#endif

tst r1, #L_PTE_XN

orrne r3, r3, #PTE_EXT_XN

tst r1, #L_PTE_YOUNG

tstne r1, #L_PTE_PRESENT

moveq r3, #0

ARM( str r3, [r0, #2048]! )

mcr p15, 0, r0, c7, c10, 1 @ flush_pte

mov pc, lr

(a) ARM version.

<arch/x86/include/asm/pgtable_64.h>

static inline void native_set_pte(pte_t *ptep, pte_t pte)

{
*ptep = pte;

}
(b) x86 version.

Figure 5: Architecture specific set pte at().

9



 0

 10

 20

 30

 40

 50

1 2 3 4

Im
p
ro

v
em

en
t(

%
)

# of cores

PK1

Figure 6: Performance improvement of lat pagefault benchmark on PK1 com-
pared to stock ARM Linux kernel.

10



do_page_fault -- mm/memory.c

+- handle_mm_fault -- mm/memory.c

+- handle_pte_fault -- mm/memory.c

+- do_linear_page() -- mm/memory.c

+- __do_fault() -- mm/memory.c

+- unlock_page() -- mm/filemap.c

Figure 7: Call sequence of unlock page()

Figure 5 shows the code for ARM and x86. ARM needs more code because
it maintains two copies of the page tables—one for kernel, and one for the
MMU hardware, while x86 only maintains one copy. Furthermore, we noticed
that it cleans the cache-line at the end of the update. The latter part, clean
the cache-line, can be optimized on Cortex-A9. This clean was needed for
many ARM processors who’s MMU cannot read from L1 cache but only from
main memory. It is, however, not the case on the tested Cortex-A9 processor
and therefore we can remove it safely.

The effect of the change is shown in Figure 6 which was obtained using
lat pagefault benchmark. PK1 is the modified kernel as described in this
section and the improvement is compared to the original 2.6.36 kernel we
used. PK1 is modified kernel described in this section. When the number
of core is one, the performance improvement is high at 24%. Interestingly,
however, the improvement diminishes as the number of cores increase. This
indicates that there is a scalability issue in the kernel which we will investigate
in the following section.

4.2 Unnecessary L2 cache synchronization on bitops

Since the benchmark we used, lat pagefault, do not use synchronization op-
erations in the user level, the kernel is likely to be responsible for scalability
issues observed in the previous section. From the profiling result, we found
it is due to poorly implemented memory barrier on bit operation macros in
ARM Linux kernel. Memory barrier is needed to order memory read/write
instructions in SMP [1, 5]. Low level kernel synchronization primitives are im-
plemented using such memory barrier operations in conjunction with atomic
operations (LDREX, STREX).

In our benchmark, the problem was rooted from unlock page() function.

11



<mm/filemap.c>

void unlock_page(struct page *page)

{
VM_BUG_ON(!PageLocked(page));

clear_bit_unlock(PG_locked, &page->flags);

smp_mb__after_clear_bit();

wake_up_page(page, PG_locked);

}

Figure 8: unlock page() code.

<arch/arm/include/asm/bitops.h>

#define smp_mb__before_clear_bit() mb()

#define smp_mb__after_clear_bit() mb()

<arch/arm/include/asm/system.h>

#define mb() do { dsb(); outer_sync(); } while (0)

#define smp_mb() dmb()

Figure 9: smp mb [before|after] clear bit implementation in ARM
Linux.

12



 0

 10

 20

 30

 40

 50

1 2 3 4

Im
p
ro

v
em

en
t(

%
)

# of cores

PK1
PK2

Figure 10: Performance improvement of lat pagefault.

13



do_page_fault() -- architecture specific

+- handle_mm_fault() -- mm/memory.c

+- handle_pte_fault() -- mm/memory.c

+- do_wp_page() -- mm/memory.c

+- cow_user_page() -- mm/memory.c

+- copy_user_highpage() -- architecture specific function

Figure 11: Call sequence of copy user highpage() function

A call sequence is shown in Figure 7 and the source code is in Figure 8. In
the lat pagefault benchmark, it is called after mapping a page frame for the
calling process’s address space so that the page frame can be accessed by
others. It uses bit operation, which clears a lock bit and wake up waiting
processes for the page.

In stock ARM Linux, smp mb after clear bit() is defined as mb()

function which calls dsb() and outer sync() in sequence; see Figure 9. The
dsb() is one of ARM specific memory barrier instruction and outer sync()
is L2 cache synchronization function. For most ARM systems which have
only L1 cache, the outer sync() does nothing. In Cortex-A9 system we
used, however, there is a unified L2 cache shared with other cores in the sys-
tem. Therefore, calling outer sync() synchronize updates in store buffers
into the unified L2 cache (updates for the area declared with write-combined
will be flushed to main memory). As ARMv7 SMP ensures cache coherence
in L1 D-cache level, such L2 cache synchronization is unnecessary and is
a major source of the scalability problem, because it is shared with other
cores. By replacing mb() with smp mb() we can eliminate such unnecessary
L2 synchronization.

Figure 10 shows the effect of the change. PK2 is the modified kernel as
described in this section on top of PK1. The improvement is again compared
to the original 2.6.36 kernel. While the improvement is small when the
number of core is small, it is becoming more evident as the number of cores
increases; we observed up to 17% in quad core configuration.

4.3 Unnecessary cache flushes for COW copypage

On handling Copy-On-Write (COW) page fault, kernel copy a page from the
parent process to a newly allocated page frame for the child. A call sequence

14



# Overhead Command Shared Object Symbol

# ........ ........ ................. .................................

7.50% lat_proc [kernel.kallsyms] [k] v7_flush_kern_dcache_area

4.91% lat_proc [kernel.kallsyms] [k] copy_page

(a) ARM

# Overhead Command Shared Object Symbol

# ........ ........ ................. .................................

1.76% lat_proc [kernel.kallsyms] [k] copy_page_c

(b) x86

Figure 12: Profiled CPU cycles of lat proc (fork).

<arch/arm/mm/copypage-v6.c>

static void v6_copy_user_highpage_nonaliasing(struct page *to,

struct page *from, unsigned long vaddr, struct vm_area_struct *vma)

{
void *kto, *kfrom;

kfrom = kmap_atomic(from, KM_USER0);

kto = kmap_atomic(to, KM_USER1);

copy_page(kto, kfrom);

__cpuc_flush_dcache_area(kto, PAGE_SIZE);

kunmap_atomic(kto, KM_USER1);

kunmap_atomic(kfrom, KM_USER0);

}

Figure 13: ARM architecture specific copy user highpage().

15



 0

 10

 20

 30

 40

 50

1 2 3 4

Im
p
ro

v
em

en
t(

%
)

# of cores

PK1
PK2
PK3

Figure 14: Performance improvement of lat proc (fork).

16



do_fork() -- kernel/fork.c

+- copy_process() -- kernel/fork.c

+- dup_mm() -- kernel/fork.c

+- copy_page_range() -- mm/memory.c

+- __pte_alloc() -- mm/memory.c

+- pte_alloc_one()// -- architecture specific function

Figure 15: Call sequence of pte alloc one()

for the architecture specific copy user highpage() is shown in Figure 11. In
ARM Linux, the copy user highpage() is defined as v6 copy user highpage nonaliasing()

for the Cortex-A9 processor we used.
Profiling information shown in Figure 12 suggests that ARM kernel spend

a significant time on copying and flushing the page. We could not find
similar overhead in x86 system therefore we can infer that this is either
ARM architectural deficiency or kernel implementation issue.

Investigating the kernel source shown in Figure 13 reveals that precisely
where the overhead is—in addition to copy a page, the kernel spent significant
time on flusing the cache for the newly copied page frame.

Originally, the cache flush was introduced for COW on text page can cause
coherence issue when I-cache tries to access copied code page from mem-
ory but actual data is only in D-cache. Such consistency issue is, however,
currently handled in other place (sync icache dcache()) with checking ex-
ecutable bit is enabled so that kernel only flush cache for the executable
pages. In majority of cases, i.e., COW on data pages, we do not need to
flush the cache. Therefore, removing the unnecessary cache flush improves
performance.

The effect of this change is shown in Figure 14. PK1 and PK2 are de-
scribed in the previous sections. PK3 is the kernel that applied the opti-
mization described in this section on top of PK2. Previous two patches, PK1
and PK2, also improve performance of lat proc because lat proc also benefits
from improve page table update and page unlock performance. The effect of
PK3 is, however, higher–up to 12%–as the lat proc generates lots of COW
requests.

17



# Overhead Command Shared Object Symbol

# ........ ........ ................. .................................

14.09% lat_proc [kernel.kallsyms] [k] cpu_v7_dcache_clean_area

Figure 16: Profiled CPU cycles of lat proc (fork) on ARM.

4.4 Unnecessary D cache clean on page table creation

When a process fork a child process, kernel copy the page table of the par-
ent for the child. Figure 15 shows a call sequence when pte alloc one()

function is called to create a page table.
Figure 16 shows that CPU spent significant time on cleaning D-cache on

ARM while we cannot find any similar activities in x86.
Investigating source code shown in Figure 17 revealed that ARM Linux

kernel cleans D-cache for the newly allocated page table. It is needed for the
ARM processors whose MMU only can read from memory but it is not needed
for Cortex-A9 whose MMU can read directly from D1 cache (Same reason
described in unnecessary cache line flush for page table update). Therefore
the page table creation function is defined in the following locations can be
optimized not to clean the cache for the created tables

The effect of the above optimization, removing the clean dcache area(),
can be seen in Figure 18. PK4 is the modified kernel that is described in
this section on top of PK3. Because lat proc (fork) frequently allocate page
tables, this optimization significantly improves performance.

4.5 Summary of the result

Table 1 shows the summary of the performance improvement from the orig-
inal ARM Linux kernel. Each patch is added on top of the previous patch:
PK1 removes cache clean in set pte ext function; PK2 replaces mb() to
smp mb() in bitops on top of PK1; PK3 removes cache clean for a copied
page in copy user highpage() on top of PK2; PK4 removes cache clean on
page table creations on top of PK3. PK1 and PK2 primary improve page
fault performance as shown in the last column pagefault which is measured
by lat pagefault benchmark. PK3 and PK4 improve page table manipulation
performance, fork,exec and shell, which are measured by lat proc benchmark.
Collectively, we improved four categories of LMBench 3.0 from 20-37% while
varying the number of cores from 1 to 4. Notice that PK3, removing dcache

18



<arch/arm/include/asm/pgalloc.h>

static inline pte_t *

pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr)

{
...

pte = (pte_t *)__get_free_page(PGALLOC_GFP);

if (pte) {
clean_dcache_area(pte, sizeof(pte_t) * PTRS_PER_PTE);

pte += PTRS_PER_PTE;

}
...

}
static inline pgtable_t

pte_alloc_one(struct mm_struct *mm, unsigned long addr)

{
...

#ifdef CONFIG_HIGHPTE

pte = alloc_pages(PGALLOC_GFP | __GFP_HIGHMEM, 0);

#else

pte = alloc_pages(PGALLOC_GFP, 0);

#endif

if (pte) {
if (!PageHighMem(pte)) {

void *page = page_address(pte);

clean_dcache_area(page, sizeof(pte_t) * PTRS_PER_PTE);

...

}
<kernel/arch/arm/mm/pgd.c>

pgd_t *get_pgd_slow(struct mm_struct *mm)

{
...

new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);

...

clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));

...

}

Figure 17: page table creation implementation in ARM Linux kernel.

19



 0

 10

 20

 30

 40

 50

1 2 3 4

Im
p
ro

v
em

en
t(

%
)

# of cores

PK1
PK2
PK3
PK4

Figure 18: Performance improvement of lat proc (fork).

20



Cores fork(%) exec(%) shell(%) pagefault(%)

PK1 1 5 6 0 24
setpte 2 1 2 0 19

3 1 0 2 13
4 1 0 2 6

PK2 1 3 0 6 5
bitops 2 6 6 4 8

3 6 5 4 11
4 5 2 4 17

PK3 1 12 10 7 -4
copypage 2 7 6 6 -3

3 7 6 5 -3
4 9 8 5 -3

PK4 1 17 18 11 1
dclean 2 20 16 10 1

3 13 15 9 1
4 14 17 10 1

Overall 1 37 34 23 27
2 33 29 21 25
3 27 25 20 23
4 29 27 21 21

Table 1: Summary of performance improvement.

21



flush in copypage, slightly degrades pagefault performance which we are still
investigating.

5 Discussion

Investigating source code of two different architecture is difficult and time
consuming even with the help of our kperfdiff, because the reason of perfor-
mance difference can be attributed from real architectural difference (e.g.,
cache size and associativity) or just different algorithm used. For example,
the time difference of unmap vmas, unmap a virtual memory area from the
process address space, is the biggest and so it is ranked as a first candidate
by kperfdiff as shown in Figure 1. It is, however, simply because the algo-
rithm used in each architecture is different: ARM Linux flush TLB which
is belong to the unmmaped region while x86 flush entire TLB. If the size of
unmap is small, ARM implementation will be beneficial because most TLB
entries are preserved. On the other hand, it pays high cost when the size is
big because virtual address based flushing takes much longer than flushing
the entire TLB. In this case, the difference is attributed from the algorithmic
difference which has different tradeoff.

6 Conclusions

We systematically compared Linux kernel performance on a Cortex-A9 ARM
processor and an Intel i7 x86 processor based system to identify potential
performance improvements on ARM Linux kernel. We developed a tool that
prioritize candidate functions based on difference of spent time ratio to min-
imize manual inspection. We identified four spots in ARM Linux kernel
2.6.36—page table update, page table allocation, page copy, and page ac-
cess synchronization implementation— which can be optimized for Cortex-
A9. We developed patches to address the identified issues which resulted
in 20-36% of performance improvement on four categories of Lmbench 3.0
suite. We also shared our findings through the ARM kernel mailing list and
confirmed from kernel developers that the changes are correct. Future work
includes (1) improving on the candidate prioritization tool that utilize impor-
tant hardware events such as cache and TLB miss ratio, to help inspection;
(2) applying our approach to other architecture such as PowerPC.

22



References

[1] ARM. ARM Architecture Reference Manual ARMv7-A and ARMv7-R
Edition.

[2] ARM. Cortex-A9 Technical Reference ManualRevision: r2p2.

[3] A. C. de Melo. Performance counters on linux. In Linux Plumbers Con-
ference, 2009.

[4] T. Lanier. Exploring the Design of the Cortex-A15 Processor.

[5] P. McKenney. Memory barriers: a hardware view for software hackers.
Linux Technology Center, IBM Beaverton, 2010.

[6] L. McVoy and C. Staelin. lmbench: Portable tools for performance anal-
ysis. In Proceedings of the 1996 annual conference on USENIX Annual
Technical Conference, pages 23–23. Usenix Association, 1996.

23


