
1

Analysis and Mitigation of Shared Resource
Contention on Heterogeneous Multicore: An

Industrial Case Study
Michael Bechtel, Heechul Yun

✦

Abstract—In this paper, we present a solution to the industrial challenge
put forth by ARM in 2022. We systematically analyze the effect of shared
resource contention to an augmented reality head-up display (AR-HUD)
case-study application of the industrial challenge on a heterogeneous
multicore platform, NVIDIA Jetson Nano. We configure the AR-HUD
application such that it can process incoming image frames in real-time
at 20Hz on the platform. We use Microarchitectural Denial-of-Service
(DoS) attacks as aggressor workloads of the challenge and show that
they can dramatically impact the latency and accuracy of the AR-HUD
application. This results in significant deviations of the estimated trajec-
tories from known ground truths, despite our best effort to mitigate their
influence by using cache partitioning and real-time scheduling of the AR-
HUD application. To address the challenge, we propose RT-Gang++, a
partitioned real-time gang scheduling framework with last-level cache
(LLC) and integrated GPU bandwidth throttling capabilities. By applying
RT-Gang++, we are able to achieve desired level of performance of
the AR-HUD application even in the presence of fully loaded aggressor
tasks.

Index Terms—Industrial Challenge, Real Time, SLAM, Microarchitec-
tural DoS Attack

1 INTRODUCTION

Heterogeneous multicore computing platforms are increas-
ingly utilized in safety-critical cyber physical systems (CPS)
as they can offer significant performance improvements
while simultaneously meeting size, weight, and power
(SWaP) constraints. However, contention on shared mi-
croarchitectural resources, such as shared cache and main
memory, between the computing elements in such a plat-
form remains a significant challenge because it can impact
the execution timings of critical real-time tasks and thus
jeopardize the safety of the CPS. Moreover, shared resource
contention can also be intentionally induced by malicious
actors with the goal of compromising the performance and
safety of CPS. Such adversaries are known as microarchitec-
tural Denial-of-Service (DoS) attacks [9], and are especially
problematic for high-performance CPS that need to run
multiple concurrent applications simultaneously on a single
multicore platform. Given the recent trends towards con-
nected CPS, as can be seen in ARM’s SOAFEE initiative [4]

1. Dr. Bechtel is currently with Garmin. This work was conducted while he
was with the University of Kansas. E-mail: mgbechte@gmail.com

2. Dr. Yun is with the University of Kansas and is the corresponding author
of this manuscript. E-mail: heechul.yun@ku.edu

for the automotive industry, it is conceivable that such DoS
attacks could be remotely deployed on future CPS.

Understanding and addressing shared resource con-
tention in multicore has been of intense interest for both
academia and industry in recent years. In particular, ARM
issued an Industrial Challenge in 2022 to address the prob-
lem of shared resource contention [3]. The challenge is
centered around an augmented reality head-up display (AR-
HUD) case-study for automotive applications. The case-
study application is composed of two main components:
a Visual Simultaneous Localization and Mapping (SLAM)
task [15] and a DNN-based driver head pose estimation
task [16]. The SLAM task is composed of three main threads,
all of which run on the CPU, whereas the DNN-based head-
pose estimation task (we henceforth refer to it as the DNN
task) may utilize the GPU. The application represents a
computationally intensive mixed-criticality real-time system
that must leverage high-performance heterogeneous multi-
core embedded platforms. As such, the challenge seeks to
find ways to analyze and optimize performance bounds
of such critical real-time tasks even in the presence of
“aggressor tasks”, which may contend with the critical real-
time task in accessing shared resources.

In this paper, we first study the impact of shared resource
contention to the performance of the AR-HUD case-study
application of ARM’s Industrial Challenge. Through our
study, we aim to answer the following questions: (1) Can we
safely consolidate the two real-time tasks (the SLAM algo-
rithm and head pose detection) in the AR-HUD case-study
on a representative heterogeneous system-on-chip (SoC)
processor and achieve required real-time performance (i.e.,
meeting the deadlines)? (2) Does shared resource contention
between the two AR-HUD tasks impact the accuracy of the
obtained position/trajectory estimates of the SLAM task? (3)
Can we guarantee a desired level of performance, in terms of
both accuracy and latency, of the AR-HUD application in the
presence of aggressor tasks—which may be maliciously de-
signed to cause high shared resource contention—without
excessive over-provisioning?

To answer these questions, we systematically conduct
experiments on an NVIDIA Jetson Nano, a representative
heterogeneous embedded multicore platform that features
a quad-core ARM Cortex-A57 CPU and an integrated GPU.
Our findings are as follows: We are able to configure the



2

AR-HUD application such that it can process incoming
image frames in real-time at 20Hz. However, we find that
contention between the two real-time tasks does signifi-
cantly impact the accuracy of the SLAM task, which results
in significant deviations of the estimated trajectories from
the ground truth even when it could process all input
image frames in real-time at 20Hz. In addition, we find
that cache bank-aware DoS attack [7] is especially effective
in impacting the accuracy and real-time performance of
the AR-HUD application. Concretely, when the cache bank-
aware DoS attack tasks are co-scheduled as best-effort (non-
RT) tasks together with the real-time tasks of the AR-HUD
application to fully load the system, the SLAM task fails to
even generate the trajectory as it has to drop most of the
incoming image frames due to increased latency caused by
contention.

To address the challenge, we propose RT-Gang++, a par-
titioned real-time gang scheduling framework with iGPU
and last level cache (LLC) bandwidth throttling capabilities.
RT-Gang++ is based on [2] but extends its capabilities as
follows: (1) add support for partitioned gang-scheduling to
allow for multiple real-time gangs of different priorities to
execute concurrently; (2) add support for LLC and iGPU
bandwidth throttling to protect against contention on those
shared resources. These additional capabilities are crucial to
address the ARM industrial challenge problem.

By employing RT-Gang++, we are able to safely consoli-
date the AR-HUD application on the Jetson Nano platform,
even in the presence of malicious DoS attacks, and achieve
desired real-time performance and accuracy. In addition,
we also ported RT-Gang++ on a Raspberry Pi 4 platform,
and evaluate its effectiveness. For reproducible dissemina-
tion, we release the AR-HUD application setup, including
our ROS2 port of OV2SLAM, evaluation scripts, and RT-
Gang++, as open-source 1.

The rest of this paper is organized as follows. Sec-
tion 2 describes the ARM Industrial Challenge problem. Sec-
tion 3 describes microarchitectural DoS attacks for the chal-
lenge. Section 4 discusses our experimental setup. Section 5
presents our empirical evaluation of the challenge’s case-
study application. Section 6 presents a mitigation approach.
Section 7 presents the results. We review related work in
Section 8 and conclude in Section 9.

2 ARM INDUSTRIAL CHALLENGE 2022: AUG-
MENTED REALITY HEAD-UP DISPLAY (AR-HUD)
APPLICATION

Addressing the impacts of shared resource contention is of
critical importance for many high-performance CPS, such as
those in the robotics and automotive fields. This is especially
the case given the increased importance of consolidating
high-performance mixed criticality applications in CPS. To
stimulate further research on this topic, ARM introduced
an Industrial Challenge in ECRTS 2022. The challenge pre-
sented an augmented reality head-up display (AR-HUD)
application in the automotive context as a case-study. As an
advanced driver assistance system (ADAS), this application
provides additional alerts and notifications to the driver of

1. https://github.com/CSL-KU/ArmArHudChallenge

a vehicle in real-time. In particular, these alerts are overlaid
on real-world objects using augmented reality (AR) technol-
ogy. For the suggested AR-HUD application, it is mainly
comprised of two components: a Visual SLAM task, and a
head pose estimation task. We now briefly introduce and
discuss both AR-HUD components.

For many autonomous cyber physical systems (CPS),
localization and 3D map generation are important steps for
real-world performance. Increasingly, many CPS employ Si-
multaneous Localization and Mapping (SLAM) algorithms
to perform both operations in a single step. In a SLAM algo-
rithm, input sensor data is received and utilized to both esti-
mate a system’s current position in, and generate/update a
3D map of a given environment. Vision (camera) and range
sensors such as LIDARs, lasers and sonars can be used for
SLAM. The category of SLAM algorithms that utilize vision
has come to be known as Visual SLAM.

In the ARM industrial challenge, the OV2SLAM al-
gorithm [15] is suggested as part of the AR-HUD case
study [3]. OV2SLAM is a Visual SLAM algorithm that
is geared toward real-time applications and emphasizes
processing time in addition to SLAM performance. It is
composed of four main components with each one being
assigned to a separate thread:

1) The Front-End thread performs real-time pose esti-
mation of the camera sensor. It is also responsible
for creating the keyframes used to generate 3D maps
of surrounding environments, but does not create
a keyframe for every given frame. Note that this
thread runs for every input frame that is received,
meaning that it is a periodic task in nature. For
our purposes, we target a per-frame deadline of 50
ms as the input datasets we use in our evaluations
playback data at a frequency of 20 Hz.

2) The Mapping thread uses keyframes generated in
the Front-End to generate new 3D map points. It
primarily does this by performing triangulation on
the keyframes. Then, if a new keyframe has not
arrived, it will also perform local map tracking in
order to minimize drift. Unlike the Front-End, the
Mapping thread is aperiodic as it is event-driven and
only runs when a new keyframe is generated.

3) The State Optimization thread performs two main
operations. First, it runs a local bundle adjustment
(BA) to refine camera pose estimations. Second, it
runs a keyframe filtering pass that prevents redun-
dant keyframes from being processed in future BA
operations. Note that this thread is also aperiodic as
it relies on input from the Mapping thread, meaning
that it is also event-driven.

4) The Loop Closer thread performs an online bag-of-
words (BoW) operation to detect loop closures in
a system’s given trajectory. However, we do not
employ this thread in our case study as it is not
necessary for the target AR-HUD application [3].

Note that only the Front-End thread runs for every input
frame that is fed to OV2SLAM. The remaining threads
will then only run when necessary, such as when a new
keyframe is created.

https://github.com/CSL-KU/ArmArHudChallenge


3

By default, the OV2SLAM algorithm can be run in one
of three different modes: accurate, fast, and average. The
accurate mode of operation performs all four steps described
above, including Loop Closure, and is intended to maximize
accuracy while still maintaining a control frequency of 20
Hz. On the other hand, the fast mode of operation instead
sacrifices some accuracy so that it can operate at a much
faster 200 Hz control frequency. To achieve this, the fast
version uses a faster (but less accurate) keypoint detection
algorithm and does not perform the Loop Closure step.
The average version then operates in between the other
two versions performance-wise. In other words, it runs at
a control frequency between 20 and 200 Hz, and achieves
accuracy worse than the accurate version but better than the
fast version. Like the accurate version, though, the average
version also performs Loop Closure. The Industrial Chal-
lenge suggests to use the fast version for its superior real-
time performance and good accuracy.

For the AR-HUD application, it is also important that
the ADAS alerts provided to the driver are displayed in a
way that matches the driver’s viewpoint. To achieve this,
the head pose of the driver can be estimated so that the
AR display can be corrected as necessary. As such, the AR-
HUD application employs a head pose estimation task for
its second component. The Industrial Challenge suggests
to use the HopeNet-Lite head pose estimator [16], as it
can run in real-time on many embedded heterogeneous
multicore platforms. We further discuss this component in
our evaluation setup.

3 MICROARCHITECTURAL DENIAL-OF-SERVICE
(DOS) ATTACKS

As part of the Industrial Challenge, ARM also envisioned
the presence of aggressor workloads in the AR-HUD case
study [3]. These aggressor workloads may be co-scheduled
alongside the AR-HUD application and may contend for
shared resources.

For our aggressor workloads, we employ microarchi-
tectural denial-of-service (DoS) attacks that have been de-
scribed in literature [38], [9], [7]. These DoS attacks target
various microarchitectural resources in multicore platforms
(e.g. LLC, DRAM) and can cause significant execution time
delays to cross-core real-time tasks, even if they run on
dedicated cores and have dedicated LLC partitions. In this
work, we want to know the impacts such DoS attacks can
have on the AR-HUD application. The specific DoS attacks
we employ in our evaluations are as follows:

• The bandwidth benchmark from the IsolBench
suite [38]. This benchmark is designed to perform
continuous accesses to a target shared resource (e.g.
LLC or DRAM) in a sequential manner. To be more
specific, it performs sequential accesses over a 1D
array at a cache line granularity (i.e. all accesses are
64B apart). We refer to DoS attacks based on this
benchmark as Bw.

• The latency-mlp benchmark from the IsolBench
suite [38]. Much like the bandwidth benchmark,
latency-mlp continually accesses a target resource but
differs in its access pattern due to its pointer chasing

nature. Namely, it performs random accesses over
multiple parallel linked lists (PLL). We refer to DoS
attacks based on this benchmark as PLL.

• The cache bank-aware attacks from [7]. Much like
memory-aware attacks [6], these attacks are based on
the PLL attacks above but are modified to only access
a specific cache bank in order to generate maximum
cache bank contention in accessing the LLC. We refer
to this attack as BkPLL.

Furthermore, these DoS attacks can be configured in two
additional facets. First, they can all be configured to perform
either read or write accesses. As such, we test DoS attacks of
both access variations in our testing. Second, as mentioned
above, the attackers can be configured to access the LLC or
DRAM, so we employ separate DoS attacks targeting each
shared resource. Note that we configure the BkPLL attacks
to only access the LLC, as they are specifically designed for
that resource. Putting it altogether notation wise, we use the
following naming convention for DoS attacks:

<DoS attack type><access type>(<target resource>)
Where DoS attack type is one of the attacks from the

above list, the access type is either read or write, and the
target resource is either the LLC or DRAM. For example,
an instance of the Bw attack that performs read accesses
targeted to the LLC would be referred to as BwRead(LLC).
In total, we employ 10 different DoS attacker tasks in our
evaluation.

4 EXPERIMENT SETUP

In this section, we describe the experimental setup for our
case study of the AR-HUD application.

Hardware Platform: For the hardware platform, we use
an Nvidia Jetson Nano platform, which equips a quad-core
Cortex-A57 cores with each core having its own private L1
instruction and data caches and all cores sharing a global L2
cache. Table 1 shows the basic characteristics of the platform.

Platform Nvidia Jetson Nano
SoC Tegra X1
CPU 4x Cortex-A57 @ 1.43GHz
GPU 128-core Maxwell

Shared LLC (L2) 2MB (16-way)
Memory (Peak B/W) 4GB LPDDR4 (25.6 GB/s)

TABLE 1: Nvidia Jetson Nano hardware specifications.

Application Setup: As discussed in Section 2, the AR-
HUD application is comprised of two main components: the
OV2SLAM Visual SLAM task and the HopeNet-Lite head
pose estimation task.

For the SLAM task, we use the fast setting of OV2SLAM,
as recommended in the Industrial Challenge [3], which is
comprised of three threads: Front End, Mapping, and State
Optimization. The Front End thread is invoked whenever the
camera provides a new image frame, which is at a fixed
rate of 20Hz. The Mapping and State Optimization threads are
invoked conditionally when the Front End thread generates
a new key frame (See Section 2 for details.)

As the SLAM task is real-time critical [3], we use the Linux
SCHED_FIFO real-time scheduler and assign it a real-time
priority of 2. Furthermore, we assign all three threads of the



4

SLAM task onto two CPU cores, Core 0 and 1, which we
experimentally determined to be sufficient when they run
in isolation. Note that the maximum observed per-core CPU
utilization of the SLAM threads is less than 70%, meaning
there is additional slack that can potentially be used by best-
effort tasks.

As for input data for the SLAM task, we use the five
Machine Hall (MH) scenarios of the EuRoC dataset [10].
Note that the EuRoC dataset includes visual-inertial data of
a micro aerial vehicle (MAV), which includes stereo images,
IMU measurements, and accurate motion and structure
ground-truth data. In the MH scenarios, the data were
collected while traversing through an indoor environment
populated with various machinery with a varying degree of
complexities, with the MH01 scenario being the easiest one
for SLAM and the MH05 scenario being the hardest one.

The image frames from the dataset are fed to the SLAM
task through an instance of rosbag2 [17], a tool that plays
back datasets recorded in ROS bag files, which was running
on Core 2 with a real-time priority of 2 such that it is not
delayed by any best-effort tasks. Note that all MH datasets
playback input data at a frequency of 20Hz. The observed
CPU utilization of rosbag2 is about ∼5-10% of the Core 2.

Core 0 Core 1 Core 2 Core 3

DRAM

LLC

GPU

OV2SLAM ROS Bag
Head Pose 
Estimation

Head Pose 
Estimation

Fig. 1: Tasks to core assignments of the AR-HUD case-study
on Jetson Nano.

For the head pose estimation task, we use the rec-
ommended HopeNet-Lite DNN model [16], which is a
lightweight version of the original HopeNet model [33].
Note that the Jetson Nano mainly processes the HopeNet-
Lite model on the GPU but a single CPU core (Core 3) is also
used to launch the GPU kernel and monitor its progress.
On the Jetson Nano we configure the DNN task to run
periodically at the same 20Hz rate as the SLAM task and
assign it a real-time priority of 1 as the task is determined
to be a non-critical, high priority task [3]. In addition, we
pin the HopeNet-Lite task to a CPU core distinct from the
SLAM task cores, Core 3, so that none of its required CPU
operations (e.g. CUDA kernel launch, etc.) are interfered
with by the OV2SLAM threads.

Figure 1 gives a visual representation of the setup we
use and how we assign the AR-HUD tasks to CPU cores
on the target platform. In addition, Table 2 shows the
task/thread/core mapping and real-time scheduling pa-
rameters of all real-time tasks in the AR-HUD case study.

Operating System Setup: For the Jetson Nano’s oper-
ating system we run Ubuntu 18.04 with Linux kernel 4.9,
which is patched with PALLOC [42] to support LLC parti-

Task Thread Core(s) RT Rate
Priority (Hz)

OV2SLAM
Front-End

0,1 2
20

Mapping -
State Optimization -

ROS Bag - 2 2 20
Head Pose Est. - 3,GPU 1 20

TABLE 2: Real-time tasks/threads/core mapping and
scheduling parameters in the AR-HUD case study on the
Jetson Nano. Note that all real-time tasks are scheduled
using the SCHED_FIFO real-time scheduler and a bigger
priority value indicates a higher real-time priority.

tioning. PALLOC exploits virtual memory page translations
to enforce page allocations to specific page colors. With
PALLOC, we partition the LLC into four equally sized par-
titions (colors) and perform a 2 by 2 split of those partitions.
Namely, the OV2SLAM algorithm gets two LLC partitions,
and all other tasks share the remaining two cache partitions.
Note that all best-effort tasks—those that are scheduled
using Linux’s default CFS scheduler—also share the latter
two cache partitions in order to minimize any performance
impact to the SLAM task, which is real-time critical. Note
that, in PALLOC, tasks—not cores—can be mapped to any
cache partitions.

5 ANALYZING THE EFFECTS OF SHARED RE-
SOURCE CONTENTION

In this section, we evaluate the impact of shared resource
contention on the performance of the OV2SLAM algorithm.

5.1 Impact of Co-scheduling DoS Attacks

In this experiment, we evaluate the impacts of DoS attack
co-runners and whether they are effective in degrading
OV2SLAM performance in a given scenario. Note that we do
not execute the HopeNet-Lite DNN task in this experiment
in order to focus on SLAM performance and its sensitivity
to DoS attacks.

The experiment setup is as follows: We first run an
instance of the OV2SLAM task using the MH01 scenario
in the EuRoC dataset [10]. Once finished, we calculate the
algorithm’s Absolute Trajectory Error (ATE) relative to the
known ground-truth trajectory [10]. We then repeat the
experiment but with instances of a DoS attacker on all four
available cores. We again calculate the ATE and compare it
to the solo case to determine whether the attackers had any
noticeable impact.

Note that we run the DoS attacks as best-effort
tasks (scheduled using the CFS scheduler) while run the
OV2SLAM task as a real-time task (using the SCHED_FIFO).
Because Linux strictly prioritizes real-time tasks over best-
effort ones, the DoS attack tasks can only be executed on
cores which are not executing any of the RT tasks. In other
words, whenever the threads of the SLAM task become
ready, they immediately preempt any DoS attacker tasks.
Note also that, as mentioned earlier, the DoS attack tasks are
assigned to a separate LLC cache partition from the SLAM
task. This separation minimizes any negative effect of co-
scheduling as the DoS attack tasks cannot evict cache-lines



5

Solo
BwRead(LLC)

BwRead(DRAM)

BwWrite(LLC)

BwWrite(DRAM)

PLLRead(LLC)

PLLRead(DRAM)

PLLWrite(LLC)

PLLWrite(DRAM)

BkPLLRead(LLC)

BkPLLWrite(LLC)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

AT
E 

(m
)

Fig. 2: Impact of DoS attacks on the Absolute Trajectory Error (ATE) of the OV2SLAM generated trajectory.

of the SLAM task. Therefore, any observed delays are not
attributable to CPU scheduling or cache space contention.

Figure 2 shows a boxplot of the OV2SLAM ATE collected
over the entire duration of the MH01 dataset, both alone
(Solo) and alongside each of the tested DoS attacks (the rest
in the X-axis).

Firstly, note that all of the tested DoS attacks cause
significant negative impacts to the tracking performance,
resulting in ATE increase of up to 4.0 meters. This occurs
despite the fact that the DoS attacks cannot preempt the
SLAM task or evict its cache-lines. This is because there
are many other shared hardware resources that can impact
execution timing in modern multicore. These shared hard-
ware resources include DRAM bandwidth [43], [6], DRAM
bank [42], cache internal buffers/queues [38], [9], and cache
bank [7]. The DoS attacks in the X-axis are designed to
induce maximum contention in those shared resources.
Note that, for this scenario, ATEs of ∼0.3 or more indicate
significant deviations from the ground truth, which could
potentially cause failure (e.g., a crash) in the real-world [23].

In particular, we observe that the cache bank-aware
DoS attacks recently proposed in [7], denoted as BkPLL-
Read(LLC) and BkPLLWrite(LLC) for read and write, re-
spectively, are particularly effective in influencing ATE.
Specifically, the BkPLLRead(LLC) attack increased the me-
dian ATE to over 1.7 (49X increase over solo), and the BkPLL-
Write(LLC) attack increased it to over 1.9 (55X increase). In
simpler terms, these attacks caused OV2SLAM’s detected
trajectory to deviate from the ground truth trajectory by a
median value of two meters, and more than four meters
in the worst case. Both cache bank-aware DoS attacks are
specially designed to generate many concurrent accesses
to a specific LLC cache bank, causing contention on the
bank. The shared L2 cache of Cortex-A57 consists of two
tag banks, each composed of four data banks that can be
accessed in parallel [7]. By directing concurrent accesses to a

single data bank, the SLAM task’s access to the cache bank is
delayed, subsequently delaying the execution of the SLAM
task.

5.2 Impact of Co-scheduling HopeNet-Lite on Inte-
grated GPU
In this experiment, we evaluate the impact of co-scheduling
the HopeNet-Lite head pose estimator on the performance
of the OV2SLAM task. We compare the following con-
figurations: Solo, +DNN, and +DNN&DoS. In Solo, the
OV2SLAM runs alone; In +DNN, the HopeNet-Lite DNN
is co-scheduled with OV2SLAM; In +DNN&DoS, both
HopeNet-Lite and the DoS attack tasks are co-scheduled
with OV2SLAM. Note that the DoS attackers are best-
effort tasks while both OV2SLAM and HopeNet-Lite are
real-time tasks. This implies that the DoS attackers cannot
preempt OV2SLAM or HopeNet-Lite. Based on the findings
in Section 5.1, we opt for the BkPLLWrite(LLC) attack as the
aggressor workloads as it is the most effective at degrading
the performance of the SLAM task.

Figure 3 shows the ground-truth and the three gen-
erated trajectories. First, in Solo, the generated trajectory
almost completely overlaps with the ground-truth, indi-
cating OV2SLAM achieves good accuracy, with a median
ATE of 0.03m, meaning the observed trajectory error is only
about 3 centimeter. In +DNN, however, the addition of the
HopeNet-Lite DNN task significantly impacts the accuracy
of OV2SLAM with the median ATE increasing to over 0.8m
(approximately 27X increase over solo). This is because the
OV2SLAM and the HopeNet-Lite DNN task compete for
shared hardware resources, particularly the shared DRAM,
which is shared between the CPU (executing the SLAM)
and the integrated GPU (executing the DNN). Lastly, in
+DNN&DoS, when HopeNet-Lite is combined with the DoS
attacks, OV2SLAM suffers a drastic performance degra-
dation, leading to a complete failure in generating a full



6

4 2 0 2 4 6
x (m)

2

0

2

4

6

8

10

y 
(m

)

Ground Truth
Solo
+DNN
+DNN&DoS

(a) Trajectory in XY plane

2.5

0.0

2.5

5.0

x 
(m

) Ground Truth
Solo
+DNN
+DNN&DoS

0

5

10

y 
(m

)

575 600 625 650 675 700 725 750
t (s) +1.403636e9

1

0

1

z (
m

)

(b) X, Y and Z positions over time

Fig. 3: OV2SLAM trajectory when run alongside both BkPLLWrite(LLC) DoS attackers and a GPU-based DNN application.

trajectory. This failure is due to OV2SLAM’s inability to keep
up with the input data, resulting in dropping a majority
of the input camera frames. Our analysis shows that only
about 26% of the input image frames were processed in
+DNN&DoS, compared to over 97% in either the Solo or
+DNN cases. Once again, contention on shared hardware
resources among the co-scheduled tasks, particularly on the
shared DRAM (caused by the DNN task) and the LLC bank
(caused by the DoS attacks), contributes to this performance
degradation.

In summary, co-scheduling HopeNet-Lite DNN and/or
BkPLLWrite(LLC) DoS attacks significantly affects the accu-
racy of OV2SLAM due to contention on shared hardware re-
sources, despite the CPU and cache space being partitioned
to protect the OV2SLAM task.

5.3 Runtime Analysis of OV2SLAM and HopeNet-Lite

To further investigate the impacts of shared resource con-
tention on the AR-HUD application, we perform a detailed
execution time analysis on the three CPU threads of the
OV2SLAM task—the Front End, Mapping and State Opti-
mization threads—and the DNN-based head pose estimator
HopeNet-Lite.

For OV2SLAM (visual SLAM), we measure and record
the execution times of each thread of the task when they ex-
ecute their main computational loop (e.g. Front End receives
a new input frames, Mapping receives a new keyframe, etc.).
We re-run the experiments on the following three scenarios:
Solo when the SLAM task and its three threads run alone;
+DoS when the co-schedule the BkPLLWrite(LLC) DoS attack
tasks alongside with the SLAM; and +DNN when we co-
schedule the HopeNet-Lite task.

For HopeNet-Lite (head pose estimation), we measure its
inference times across 1000 input frames. We then compute
the distribution of execution times for all tasks and threads

to determine whether any of them experience execution
delays due to co-runner interference. We re-run the ex-
periments on the following three scenarios: Solo when it
runs alone, +SLAM when run with the OV2SLAM task, and
+SLAM&DoS when run with both the OV2SLAM task and
BkPLLWrite(LLC) DoS attack.

Figure 4 shows the execution time distributions for all
real-time tasks (OV2SLAM and HopeNet-Lite DNN) and
their threads in each of the tested scenarios. First, for the
OV2SLAM task, we observe execution time increases in all
three threads when co-runners (the HopeNet-Lite DNN or
DoS attacks) are present. In case of the Front End thread,
inset (a), the execution time increases due to either type of
the co-runners are relatively small. In case of the Mapping
thread, inset (b), both the DNN and the DoS attackers
significantly increase the mapping thread’s execution time.
In case of the State Optimization thread, inset (c), on the
other hand, the DoS attackers are more effective than the
DNN co-runner in increasing its execution time. Recall that
the DNN and the DoS tasks cause contention on different
shared hardware resources, namely DRAM (bandwidth)
and LLC (bank), respectively. As such, we can infer that
(1) the Front End thread is not very sensitive to either of
the shared resources, (2) the Mapping thread is sensitive to
both DRAM and LLC, and (3) the State Optimization thread
is more sensitive to the LLC. These execution time increases,
especially in Mapping and State Optimization threads, due
to contention result in the ATE increases we observe when
the DNN or the DoS attack tasks are present. Note that the
observed ATE loss is much higher when the DoS attackers
are present, compared to when only the DNN co-runner
is present (55X vs. 27X ATE increase over Solo), suggesting
the importance of State Optimization in the overall accuracy
of the OV2SLAM algorithm, which is consistent with prior
findings [23].



7

Solo +DNN +DoS
0

10

20

30

40

50

60

Ex
ec

ut
io

n 
tim

e 
(m

s)

(a) Front End

Solo +DNN +DoS
0

10

20

30

40

50

60

Ex
ec

ut
io

n 
tim

e 
(m

s)

(b) Mapping

Solo +DNN +DoS

0

50

100

150

200

250

300

350

Ex
ec

ut
io

n 
tim

e 
(m

s)

(c) State Optimization

Solo +SLAM +SLAM&DoS
0

10

20

30

40

50

60

Ex
ec

ut
io

n 
tim

e 
(m

s)

(d) Head Pose Estimation

Fig. 4: Execution time distributions of all real-time tasks of the AR-HUD: (a)-(c) OV2SLAM; (d) HopeNet-Lite

Second, inset (d) shows the execution time distribu-
tions of the HopeNet-Lite DNN task. Note that when it
runs together with the SLAM (on different cores/GPU),
its average inference time increase from ∼34 ms (solo) to
∼37 ms (+SLAM). When the DoS attacks are then added
(+SLAM&DoS), however, the average inference time in-
creases again to ∼48 ms. From these, we can infer that
the DNN task itself is sensitive to both the SLAM task—
especially with its Mapping thread, which may be contend-
ing DRAM bandwidth with the DNN—and the DoS attack
task, which causes contention on a specific LLC bank.

6 MITIGATING SHARED RESOURCE CONTENTION

In this section, we present a mitigation solution to pro-
tect the real-time AR-HUD application in the presence of
aggressor tasks (i.e., DoS attacks).

6.1 RT-Gang++

In this work, we leverage the RT-Gang scheduling frame-
work, which is a real-time gang scheduler, implemented as
an extension to the SCHED_FIFO real-time scheduler in the
Linux kernel [2]. RT-Gang supports a simple real-time gang
scheduling policy, which allows only one parallel real-time
gang at a time across all cores. Moreover, RT-Gang supports
memory bandwidth throttling of best-effort tasks to protect
any currently running real-time gang task. In other words,
RT-Gang throttles any cores that execute best-effort tasks
whenever a real-time gang task is running on any cores

in the system. On the other hand, if no real-time gang is
scheduled on the system, then the best-effort tasks have full
access to the memory bandwidth.

When we tried to apply RT-Gang to mitigate the shared
resource contention problem in the AR-HUD application of
the ARM industrial challenge, we encountered the follow-
ing challenges. First, the original RT-Gang supports only
a single gang task at a time. When we schedule the real-
time tasks as separate gang tasks in the original RT-Gang,
they cannot meet the necessary real-time requirements be-
cause they are not fully parallelized, not taking advantage
of all available cores and the GPU. Second, even if we
group them together to form a “virtual gang” task [1] to
improve resource utilization, RT-Gang does not offer any
contention mitigation mechanisms between the real-time
tasks within the virtual gang. This means that there is no
way to minimize negative performance impact on a higher
priority OV2SLAM task due to co-scheduling the lower
priority DNN real-time task, which runs on the iGPU. Lastly,
when we deploy the cache bank-aware DoS attack [7] as the
best-effort aggressor tasks, RT-Gang’s memory bandwidth
throttling capability becomes ineffective in protecting the
real-time tasks because the aggressors do not consume any
memory bandwidth as they target LLC bank contention.

To address these challenges, we make three extensions to
the vanilla RT-Gang: (1) partitioned real-time gang schedul-
ing capability; (2) iGPU bandwidth throttling; (3) LLC band-
width throttling. We call the resulting system RT-Gang++.



8

6.2 Partitioned Gang Scheduling

One major feature of the baseline RT-Gang is that it allows
only one real-time gang task at a time across all the cores
in a multicore CPU. While it does prevent shared resource
contention between RT tasks by design, which is desirable
for predictability, it is also a limitation in terms of scalability
because not all tasks can benefit from a large number of
cores and the number of cores in CPUs keeps increasing.
While RT-Gang somewhat mitigates the problem by sup-
porting so called “virtual gangs”, which is a collection of
multiple real-time tasks with the same period and the same
priority that collectively acts like a single gang task, it cannot
be used when either the priority or the period of any RT
task differs from the rest. Moreover, many modern multicore
CPUs are often composed of multiple clusters, each of which
may have different sets of computing and memory resources
that are not shared with the rest. For example, many ARM
multicore CPUs incorporate the big.LITTLE architecture
where one cluster is composed of powerful “big” cores and
the other cluster is composed of efficient “little” cores. Not
only do the clusters have different types of CPU cores, but
they also often have cluster-private shared resources that
are not shared across the clusters, which reduces the need
to strictly adhere to the one-gang-task-at-a-time policy of
RT-Gang.

In RT-Gang++, we support multiple partitions where
each partition is composed of a statically determined set
of cores. The one-gang-task-at-a-time is then applied to each
partition rather then being applied globally. This means that
multiple gang tasks, each with different priority and/or pe-
riod, can run simultaneously as long as they are assigned to
different partitions. For our AR-HUD case-study in Table 2,
we assign OV2SLAM and EuRoC playback tasks to form a
virtual gang task and assign it into a gang partition, which is
comprised of core 0, 1, and 2, while assigning the DNN task
(head pose estimation) on another gang partition, which is
composed of the core 3 and the iGPU. In this way, the system
can run two active gang tasks with different priority and
period simultaneously.

6.3 iGPU Memory Bandwidth Throttling

When multiple real-time tasks run together, however, they
inevitably contend on the shared resources. As observed in
Section 5.2, co-scheduling the DNN task in particular has
detrimental effect to the more critical OV2SLAM task’s accu-
racy. The baseline RT-Gang, unfortunately, does not provide
any means to address the contention between the two co-
scheduled RT tasks. In this work, we leverage hardware-
level GPU bandwidth throttling capability of the platform
we used for evaluation. Specifically, the Tegra X1 SoC of the
Jetson Nano platform supports a number of QoS features
at its memory controller, one of which is hardware-level
throttling of subsets of hardware components that access the
memory controller [30]. The throttling feature of the mem-
ory controller provides 32 programmable throttling levels
that can be applied to throttle the integrated GPU, which
we used to throttle the DNN task whose memory access
from the GPU impacts the performance of the OV2SLAM
task.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Av
g.

 I
nf

er
en

ce
 T

im
e 

(m
s)

Throttle Level

Fig. 5: Impact of GPU throttling on HopeNet-Lite DNN.

Figure 5 shows the average HopeNet-Lite inference la-
tencies under each of the 32 throttling levels when running
alone in isolation. Note that GPU throttling does not impact
the performance of the DNN task until the throttling level
reaches around 15, indicating that sufficient bandwidth is
provided until that point. After that, more aggressive throt-
tling does impact the performance of the DNN. When the
throttling level is 31, which is the maximum, the average
inference latency is increased to ∼73 ms, which is about
twice longer than without throttling. Note that there is a
tradeoff between the accuracy of the SLAM task and the
latency of the DNN task as more aggressive throttling of the
GPU, which is used by the latter, will be helpful to achieve
higher accuracy (lower ATE) for the SLAM task but it will
increase the latency of the DNN task. As such, finding a
“sweet spot” for the target application is necessary. For our
study, we experimentally chose the level 20 as it was the
maximum throttling level that still can provide 20Hz real-
time performance for the DNN inference task. However, one
can choose a more aggressive throttling level (e.g., the level
31) if achieving the highest accuracy of the SLAM task is
more important than processing the DNN task at 20Hz. In
our testing, using the GPU throttling level 31 allows the
SLAM task to achieve near perfect isolation but at the cost
of doubling the latency of the DNN task.

6.4 LLC Bandwidth Throttling
For our case-study application, both the OV2SLAM and
DNN real-time tasks must be protected from the interfer-
ence of co-scheduled aggressor tasks, which are scheduled
in a best-effort manner (i.e., scheduled on any cores that do
not execute RT tasks). As discussed in Section 5.1, when DoS
attackers are used as the aggressor tasks, the performance
of the OV2SLAM algorithm is significantly reduced even
though the DoS attackers cannot preempt the SLAM task
due to shared resource contention. In particular, we find that
cache bank-aware DoS attack [7] is particularly effective in
negatively impacting accuracy of the SLAM task. Unfortu-
nately, however, the baseline RT-Gang’s memory bandwidth
throttling capability does not provide any protection against
the cache-bank DoS attack, as it generates LLC cache hits
and does not consume any memory bandwidth.

In RT-Gang++, we add support for LLC bandwidth
throttling capability by utilizing the L1-D cache miss per-
formance counter (L1D_CACHE_REFILL) of the CPU cores



9

to track and throttle LLC (L2) bandwidth used by the best-
effort DoS attacker tasks. Note that the throttling imple-
mentation is based on MemGuard [43] and we use an
experimentally determined LLC bandwidth threshold of 100
MB/s when LLC throttling is enabled and the regulation
interval is 1ms.

7 EVALUATION RESULTS

In this section, we evaluate the performance of RT-
Gang++ on two popular embedded multicore platforms:
Jetson Nano and Raspberry Pi 4.

7.1 Jetson Nano
The basic experiment setup is the same as described in
Section 4: that is, we execute the SLAM task on Cores 0
and 1, the EuRoC dataset playback task on Core 2, and the
DNN task on Core 3 and the iGPU.

For evaluation, we repeat the experiment in Section 5.2
but with using RT-Gang++. Recall that in this experiment,
we co-schedule BkPLLWrite(LLC) DoS attackers as aggres-
sors on all CPU cores to incur contention on the shared
hardware resources, specifically on a single LLC bank. As
such, we want to know how well RT-Gang++ can protect the
performance of the SLAM and the DNN task in the presence
of the DoS attackers.

7.1.1 Results
Figure 6 shows the trajectories generated by the OV2SLAM
task, and the X, Y and Z positions of the trajectory over time.
Note that Co-run denotes the baseline configuration without
using RT-Gang++, while RT-Gang++ denotes the same con-
figuration with RT-Gang++ enabled. As observed earlier,
in Co-run, the OV2SLAM fails to generate valid trajectory
due to contention. In RT-Gang++, however, the generated
trajectory of the OV2SLAM is valid and much closer to that
of the Solo and ground-truth, showing the effectiveness of
the RT-Gang++ in protecting the performance of the SLAM
task.

Configuration Avg. inference time (ms)
Solo 34.23

Co-run 36.32
RT-Gang++ 48.69

TABLE 3: Average inference latency of the DNN task

Table 3 shows the average inference times achieved by
the HopteNet-Lite DNN task on three different test config-
urations. In Solo, the DNN task runs alone in isolation and
achieves an average inference latency of ∼34ms per image
frame. In Co-run, the SLAM and the DoS attackers are co-
scheduled with the DNN, which results in a slight increase,
going from ∼34 to ∼36 ms on average. In RT-Gang++, on
the other hand, the average latency of the DNN task is
increased to ∼49 ms. This is because iGPU throttling limits
the iGPU’s DRAM bandwidth usage, which makes the DNN
task runs slower, which in turn help protect the performance
of the SLAM task, at the cost of the DNN. Nevertheless, it is
important to note that the DNN task is still able to achieve
the desired 20Hz rate (per Table 2).

Core Solo Co-run RT-Gang++
0 8241 2413 956
1 8470 1304 792
2 7643 5628 1211
3 7496 156 119

TABLE 4: Average LLC bandwidth (in MB/s) consumed by
all best-effort BkPLLWrite(LLC) attackers.

Table 4 shows the average LLC bandwidth consumed
by the best-effort DoS attackers on each core first alone
in isolation, in Solo, together with both SLAM and DNN
real-time tasks without and with RT-Gang++, in Co-run
and RT-Gang++, respectively. Recall that RT-Gang++ throt-
tles LLC bandwidth of best-effort tasks to limit the LLC
bank contention. As a result, the average LLC bandwidth
numbers of RT-Gang++ is much lower than that of Co-run
or Solo, which is expected. Nevertheless, it is important
to note that these best-effort DoS attackers are still able
to use a significantly higher LLC bandwidth that the set
threshold of 100MB/s (which was chosen experimentally
per Section 6.4). This is because, in RT-Gang++, the LLC
bandwidth throttling is dynamically enabled only when
there are currently scheduled real-time tasks in any of the
CPU cores in the platform. When there are no active real-
time tasks, which happen often as they can finish earlier
than the deadlines, LLC bandwidth throttling is automati-
cally disabled, which allows the best-effort DoS attackers to
fully utilize the full LLC bandwidth without throttling, until
any of the real-time tasks become active again. This is

Dataset Solo RT-Gang++ RT-Gang++(No iGPU throttling)
MH01 0.03 0.36 0.11
MH02 0.04 0.47 0.07
MH03 0.08 0.24 0.20
MH04 0.15 2.86 0.29
MH05 0.12 0.80 0.23

TABLE 5: OV2SLAM median ATE (in meters) on the Ma-
chine Hall scenarios from the EuRoC dataset.

Table 5 then shows the median ATE values of the
OV2SLAM generated trajectories on all five machine hall
scenarios of the EuRoC dataset. Note that Co-run is not
included as OV2SLAM fails to generate full trajectories due
to contention. Even with RT-Gang++, we still see notable
increases in reported ATE values when the iGPU bandwidth
throttling is not enabled. On the other hand, when both LLC
and iGPU bandwidth throttling are enabled in RT-Gang++,
we observe significant improvements in ATE. The degree
of improvements differs depending on the scenarios. For
example, the MH04 scenario, which is among the hardest
ones, is particularly sensitive to the iGPU throttling as the
SLAM’s ATE is whopping 2.86 meters without iGPU throt-
tling, while it is only 0.29 meters with iGPU throttling. The
results show that both iGPU throttling and LLC bandwidth
throttling are important to protect the performance of the
SLAM task. Note that an ATE value less than 0.3 meters is
required for these scenarios [23], which we are able to satisfy
in all cases with RT-Gang++ fully enabled.



10

4 2 0 2 4 6
x (m)

2

0

2

4

6

8
y 

(m
)

Ground Truth
Solo
Co-run
RT-Gang++

(a) Trajectory in X-Y plane

2.5

0.0

2.5

5.0

x 
(m

) Ground Truth
Solo
Co-run
RT-Gang++

0

5

y 
(m

)

575 600 625 650 675 700 725 750
t (s) +1.403636e9

1

0

1

z (
m

)

(b) X, Y, and Z positions over time.

Fig. 6: Impact of RT-Gang++ on OV2SLAM performance on the Jetson Nano.

7.2 Raspberry Pi 4

To demonstrate the generality of RT-Gang++, we addition-
ally evaluate it on a Raspberry Pi 4 platform.

7.2.1 Hardware and Software Setup

The Raspberry Pi 4 features a Broadcom BCM2711 SoC,
which includes a quad-core ARM Cortex-A72 CPU with
a 1MB shared L2 cache, a VideoCore 6 GPU, and 4GB
LPDDR4 SDRAM. Note that the Raspberry Pi 4’s Cortex-
A72 CPU cores are more advanced and powerful than the
Jetson Nano’s Cortex-A57 cores. The Pi 4’s VideoCore 6
GPU, though, is weaker than the Nano’s 128-core Maxwell
GPU and lacks software framework support for GPU of-
floading. Table 6 shows the hardware specification for the
Raspberry Pi 4.

Platform Raspberry Pi 4
SoC BCM2711
CPU 4x Cortex-A72 @ 1.5GHz
GPU VideoCore 6 (not used)

Shared LLC (L2) 1MB (16-way)
Memory (Peak B/W) 4GB LPDDR4 (25.6 GB/s)

TABLE 6: Raspberry Pi 4 hardware specifications.

The basic application setup is the same as that of the
Jetson Nano in Table 2, except that HopeNet-Lite DNN task
runs entirely on the CPU due to the lack of DNN software
support for the Pi 4’s GPU.

For the software, the Pi 4 runs Raspberry Pi OS with
Linux kernel 5.15 and is also patched with PALLOC [42]
to support LLC space partitioning, as was the case for
the Jetson Nano platform. We use the same 2/2 split LLC
partitioning setup as we did on the Jetson Nano, although
the size of each cache partition is halved as the Pi 4’s L2
cache size is a half of Nano’s.

Lastly, we ported RT-Gang++ on the Pi 4’s Linux kernel,
including partitioned gang scheduling and LLC bandwidth
throttling capabilities. However, the iGPU throttling is not
implemented because the iGPU is not used as noted earlier.

7.2.2 Results
First, we repeat the experiment in Section 5.1 to understand
the effect of various DoS attacks on the Pi 4 platform.

Figure 7 shows the results. Similar to the results on Jetson
Nano in Figure 2, all DoS attacks increase ATE scores in the
SLAM generated trajectories due to increased contention.
Note also that BkPLLWrite(LLC) is again the most effective
DoS attack, same as the Jetson Nano platform, although its
median ATE increase of 1.3 is somewhat smaller than the
median ATE of 1.9 we observe on the Jetson Nano platform.
This suggests that Pi 4’s Cortex-A72 CPU cores are also
highly susceptible to LLC bank contention as in Nano’s
Cortex-A57. As such, we again use the BkPLLWrite(LLC)
as the DoS attacker task in the subsequent experiments.

Next, we repeat the experiment in Section 5.2 to evaluate
the performance of RT-Gang++ in protecting the perfor-
mance of the OV2SLAM in the presence of the DoS attacks
and the HopeNet-Lite DNN task.

Figure 8 shows the OV2SLAM generated trajectories and
XYZ positions over time with and without RT-Gang++ on
the Pi 4 platform. Note first that, like the results on the Jetson
Nano platform (Figure 6), we find that contention from
the co-scheduled DoS attacks and the DNN task do impact
performance of the SLAM. Unlike on Jetson Nano, however,
the SLAM task is able to generate a full trajectory although
the ATE is increased significantly and the generated trajec-
tory in the Co-run case is far from the ground-truth or that
of the Solo case. This is mainly because the DNN task is
running on a CPU core on the Pi 4 instead of running on
the GPU. On the Pi 4, the DNN task running on a CPU core
does not generate as much DRAM bandwidth contention



11

Solo
BwRead(LLC)

BwRead(DRAM)

BwWrite(LLC)

BwWrite(DRAM)

PLLRead(LLC)

PLLRead(DRAM)

PLLWrite(LLC)

PLLWrite(DRAM)

BkPLLRead(LLC)

BkPLLWrite(LLC)

0.0

0.5

1.0

1.5

2.0

2.5

AT
E 

(m
)

Fig. 7: Impact of DoS attacks on the Absolute Trajectory Error (ATE) of the OV2SLAM generated trajectory on the Pi 4.

4 2 0 2 4 6 8
x (m)

4

2

0

2

4

6

8

y 
(m

)

Ground
Solo
Corun
RT-Gang++

(a) Trajectory in X-Y plane

2.5

0.0

2.5

5.0

x 
(m

) Ground
Solo
Corun
RT-Gang++

5

0

5

y 
(m

)

575 600 625 650 675 700 725 750
t (s) +1.403636e9

1

0

1

2

z (
m

)

(b) X, Y, and Z positions over time.

Fig. 8: Impact of RT-Gang++ on OV2SLAM performance on the Pi 4.

compared to if it was run on a GPU. Second, RT-Gang++ is
able to effectively mitigate the contention generated by the
DNN task and DoS attacks and protect the performance of
the SLAM task. Concretely, RT-Gang++ reduces the median
ATE down to only ∼0.05 meter, which is very close to the
∼0.04 median ATE seen in the Solo case.

8 RELATED WORK

Simultaneous Localization and Mapping (SLAM) algo-
rithms are at the heart of many robotics applications, in-
cluding ADAS and self-driving systems, as they are used

to localize the position and pose of the ego-vehicle in
connection with the surrounding environment. Notable
SLAM algorithms include the LSD-SLAM algorithm [12],
the many iterations of the ORB-SLAM algorithm [28], [29],
[11], and the OV2SLAM algorithm [15], which was used in
this paper. These algorithms detect features of the camera
images and track the features to locate their positions in
the world. Recently, Li et. al, observed that performance
of SLAM algorithms can be sensitive to execution timing
delays and proposed an adaptive strategy within the SLAM
to minimize performance degradation [23]. In contrast, our



12

work proposes a system-level solution that does not require
changes in the SLAM algorithm and provides in-depth
microarchitectural analysis on resource contention.

Microarchitectural DoS attacks are software attacks
specifically designed to induce a high-degree of resource
contention. DoS attacks on several shared resources have
been studied and evaluated. Moscibroda et al. proposed a
DoS attack that targets a FR-FCFS scheduling algorithm [31]
in shared DRAM controllers [27]. Keramidas et al. demon-
strated DoS attacks targeting shared LLC space and, to
address them, proposed a cache replacement policy that
gave the attackers access to less of the LLC space [20].
Woo et al. investigated DoS attacks on bus bandwidth
and shared cache space in a simulated environment [39].
Valsan et al. and Bechtel et al. showed that DoS attacks
could target internal LLC hardware structures [9], [8], [38].
Based on [9], Iorga et al. presented a statistical approach
for testing DoS attacks [19]. Li et al. applied machine learn-
ing to better optimize DoS attackers, resulting in WCET
slowdowns >400X [24]. GPU-based DoS attacks have also
been studied by researchers. Yandrofski et al, systematically
studied shared resource contention on discrete Nvidia GPUs
by generating various adversarial programs [41]. Bechtel et
al., implemented DoS attacks targeted towards Intel iGPUs,
as they also access the LLC.

Much effort has been devoted to address the problem
of shared resource contention in multicore in the real-
time systems research community. Partitioning of shared
resources, especially shared cache [26], [21], [22], [14], [40],
[32] and DRAM banks [22], [14], has been extensively stud-
ied. Bandwidth throttling [43], [40], [37], [34], [35], [45],
[13] has been another popular approach. MemGuard [43]
uses per-core hardware performance counters to throttle
each core’s bandwidth usage, which has been a standard
throttling technique in many subsequent studies. These
mechanisms are used to enable tighter worst-case timing
analysis on multicore. An exhaustive review on multicore
timing analysis can be found in [25]. Recently, both Intel and
ARM also introduced hardware support for shared resource
partitioning and throttling [18], [5], though their effective-
ness in providing isolation for real-time systems is still
insufficient [44], [36], [7]. For example, it was reported that
even at the maximum throttling level, Intel RDT was not
able to protect critical real-time task because the throttled
cores were still able to generate significant traffic, enough
to cause a 80% performance degradation of the real-time
task in the worst-case [36]. Nevertheless, these hardware
capabilities orthogonal and can easily be integrated into our
framework.

In most of these works, cores are partitioned between
RT and best-effort cores. For example, Saeed et al. proposed
a memory utilization based dynamic throttling system that
protects a single RT core by throttling memory bandwidth
usage of the other best-effort cores [34], [35]. Seals et al.,
also proposed a dynamic throttling system, which also
can throttle iGPU’s memory bandwidth, to protect a single
RT core [13]. However, such an approach can significantly
under-utilize computing resources. For example, in the AR-
HUD industrial challenge problem, one RT core is not
sufficient as the application consists of a multi-threaded
CPU task and a GPU task, both of which need real-time

guarantees. RT-Gang [2], [1] offers more flexible scheduling
potential as all cores can be utilized for both real-time
and best-effort tasks. This is because the OS automatically
throttles the best-effort tasks only when a RT task is running
on any core(s) in the multicore system. However, it does
not offer any protection between the real-time tasks on
different cores and the iGPU. In this work, we leverage
RT-Gang but address its limitations by adding iGPU throt-
tling, CPU cache bandwidth throttling, and partitioned gang
scheduling, which allowed us to successfully consolidate
the ARM industrial challenge application while ensuring its
performance in the presence of fully loaded aggressors on a
real heterogeneous multicore platform.

9 CONCLUSION

In this paper, we presented a solution to the Industrial
Challenge problem put forth by ARM in 2022 [3]. We sys-
tematically analyzed the effect of shared resource contention
to an augmented reality head-up display (AR-HUD) case-
study application of the industrial challenge on a heteroge-
neous multicore platform. Using micro-architectural denial-
of-service (DoS) attacks as aggressor tasks of the challenge,
we showed that such aggressors can dramatically impact
the latency and accuracy of the AR-HUD application, which
could result in significant deviations of the estimated tra-
jectories from the ground truth, despite the best effort to
mitigate their influence by using cache partitioning and real-
time scheduling of the AR-HUD application. To address this
we propose RT-Gang++, which combines LLC and iGPU
bandwidth throttling to mitigate shared resource contention
from their respective resources. By deploying RT-Gang++,
we were able to effectively protect the performance of the
critical SLAM task, such that it could achieve near solo case
performance, without having to over-provision the system.

For future work, we plan to perform similar case studies
on more capable platforms than the Jetson Nano, such as the
Jetson Xavier or Jetson Orin lines of embedded platforms, to
evaluate their susceptibility to shared resource contention
and the generality of the proposed RT-Gang++ framework.

ACKNOWLEDGEMENTS

This research is supported in part by NSF CNS-1815959,
CPS-2038923 and NSA Science of Security initiative contract
no. H98230-18-D-0009.

REFERENCES

[1] W. Ali, R. Pellizzoni, and H. Yun. Virtual gang scheduling of
parallel real-time tasks. In DATE, pages 270–275. IEEE, 2021.

[2] W. Ali and H. Yun. RT-Gang: Real-Time Gang Scheduling Frame-
work for Safety-Critical Systems. In RTAS, 2019.

[3] M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini. Industrial
Challenge 2022: A High-Performance Real-Time Case Study on
Arm. In ECRTS, 2022.

[4] SOAFEE. https://www.soafee.io/.
[5] ARM. Arm Architecture Reference Manual Supplement: Memory

System Resource Partitioning and Monitoring (MPAM), DDI:0598B.b,
2020.

[6] M. Bechtel and H. Yun. Memory-Aware Denial-of-Service Attacks
on Shared Cache in Multicore Real-Time Systems. Transactions on
Computers, 2021.

[7] M. Bechtel and H. Yun. Cache Bank-Aware Denial-of-Service
Attacks on Multicore ARM Processors. In RTAS, 2023.

https://www.soafee.io/


13

[8] M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun. DeepPicar:
A Low-cost Deep Neural Network-based Autonomous Car. In
RTCSA, 2018.

[9] M. G. Bechtel and H. Yun. Denial-of-Service Attacks on Shared
Cache in Multicore: Analysis and Prevention. In RTAS, 2019.

[10] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart. The EuRoC Micro Aerial Vehicle
Datasets. The International Journal of Robotics Research, 2016.

[11] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós. Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transactions on Robotics,
2021.

[12] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-Scale
Direct Monocular SLAM. In ECCV, 2014.

[13] H. Y. Eric Seals, Michael Bechtel. Bandwatch: A system-wide
memory bandwidth regulation system for heterogeneous multi-
core. In RTCSA, 2023.

[14] F. Farshchi, P. K. Valsan, R. Mancuso, and H. Yun. Deterministic
Memory Abstraction and Supporting Multicore System Architec-
ture. In ECRTS, 2018.

[15] M. Ferrera, A. Eudes, J. Moras, M. Sanfourche, and G. Le Besnerais.
OV2SLAM: A Fully Online and Versatile Visual SLAM for Real-
Time Applications. IEEE robotics and automation letters, 2021.

[16] HopeNet-Lite. https://github.com/OverEuro/
deep-head-pose-lite.

[17] rosbag2. https://github.com/ros2/rosbag2.
[18] Intel. Intel® Resource Director Technology (Intel® RDT)

Framework. https://www.intel.com/content/www/us/en/
architecture-and-technology/resource-director-technology.html.

[19] D. Iorga, T. Sorensen, J. Wickerson, and A. F. Donaldson. Slow and
Steady: Measuring and Tuning Multicore Interference. In RTAS,
2020.

[20] G. Keramidas, P. Petoumenos, S. Kaxiras, A. Antonopoulos, and
D. Serpanos. Preventing denial-of-service attacks in shared cmp
caches. In SAMOS, 2006.

[21] H. Kim, A. Kandhalu, and R. Rajkumar. A Coordinated Approach
for Practical OS-Level Cache Management in Multi-core Real-Time
Systems. In ECRTS, 2013.

[22] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D. Smith.
Attacking the One-Out-of-M Multicore Problem by Combining
Hardware Management with Mixed-Criticality Provisioning. Real-
Time Systems, 2017.

[23] A. Li, H. Liu, J. Wang, and N. Zhang. From Timing Variations
to Performance Degradation: Understanding and Mitigating the
Impact of Software Execution Timing in SLAM. In IROS, 2022.

[24] A. Li, M. Sudvarg, H. Liu, Z. Yu, C. Gill, and N. Zhang.
PolyRhythm: Adaptive Tuning of a Multi-Channel Attack Tem-
plate for Timing Interference. In RTSS, 2022.

[25] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I.
Davis. A survey of timing verification techniques for multi-core
real-time systems. ACM Computing Surveys (CSUR), 52(3):1–38,
2019.

[26] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-Time Cache Management Framework for Multi-core
Architectures. In RTAS, 2013.

[27] T. Moscibroda and O. Mutlu. Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems. In USENIX
Security Symposium, 2007.

[28] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. ORB-SLAM: A
Versatile and Accurate Monocular SLAM System. IEEE transac-
tions on robotics, 2015.

[29] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE
transactions on robotics, 2017.

[30] NVIDIA. Tegra X1 Mobile Processor technical reference manual (revi-
sion 1.3p), 2019.

[31] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. Owens. Mem-
ory Access Scheduling. In ACM SIGARCH Computer Architecture
News, 2000.

[32] S. Roozkhosh and R. Mancuso. The Potential of Programmable
Logic in the Middle: Cache Bleaching. In RTAS, 2020.

[33] N. Ruiz, E. Chong, and J. M. Rehg. Fine-Grained Head Pose
Estimation Without Keypoints. In CVPR, 2018.

[34] A. Saeed, D. Dasari, D. Ziegenbein, V. Rajasekaran, F. Rehm,
M. Pressler, A. Hamann, D. Mueller-Gritschneder, A. Gerstlauer,
and U. Schlichtmann. Memory Utilization-Based Dynamic Band-

width Regulation for Temporal Isolation in Multi-Cores. In RTAS,
2022.

[35] A. Saeed, D. Hoornaert, D. Dasari, D. Ziegenbein, D. Mueller-
Gritschneder, U. Schlichtmann, A. Gerstlauer, and R. Mancuso.
Memory latency distribution-driven regulation for temporal iso-
lation in mpsocs. In Euromicro Conference on Real-Time Systems
(ECRTS). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[36] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger. A Closer
Look at Intel Resource Director Technology (RDT). In RTNS, pages
127–139, 2022.

[37] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-WarP: a
System-wide Framework for Memory Bandwidth Profiling and
Management. In RTSS, 2020.

[38] P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-blocking Caches
to Improve Isolation in Multicore Real-Time Systems. In RTAS,
2016.

[39] D. H. Woo and H. Lee. Analyzing performance vulnerability due
to resource denial of service attack on chip multiprocessors. In
CMP-MSI, 2007.

[40] M. Xu, L. T. X. Phan, H.-Y. Choi, Y. Lin, H. Li, C. Lu, and I. Lee.
Holistic Resource Allocation for Multicore Real-Time Systems. In
RTAS, 2019.

[41] T. Yandrofski, J. Chen, N. Otterness, J. H. Anderson, and F. Smith.
Making Powerful Enemies on NVIDIA GPUs. In RTSS, 2022.

[42] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. PALLOC:
DRAM Bank-Aware Memory Allocator for Performance Isolation
on Multicore Platforms. In RTAS, 2014.

[43] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory Bandwidth Reservation System for Efficient Performance
Isolation in Multi-core Platforms. In RTAS, 2013.

[44] M. Zini, D. Casini, and A. Biondi. Analyzing arm’s mpam from the
perspective of time predictability. IEEE Transactions on Computers,
72(1):168–182, 2022.

[45] A. Zuepke, A. Bastoni, W. Chen, M. Caccamo, and R. Mancuso.
MemPol: Policing Core Memory Bandwidth from Outside of the
Cores. In RTAS, 2023.

Michael Bechtel received a B.S. degree in Com-
puter Science from the University of Kansas
in 2017 and a Ph.D. degree in Computer Sci-
ence from the University of Kansas in 2023.
His research interests include real-time embed-
ded systems, computer architecture, and cyber-
physical systems. His work has appeared in top
embedded real-time systems venues such as
RTAS, and he received an Outstanding Paper
Award from RTAS’19. He is currently a software
engineer at Garmin.

Heechul Yun is an associate professor in the
department of Electrical Engineering and Com-
puter Science at the University of Kansas. His re-
search interests include OS, computer architec-
ture, and real-time embedded systems with spe-
cial emphasis on addressing real-time, security,
and safety related issues on safety-critical cyber-
physical systems (e.g., autonomous cars and
UAVs). His work has appeared in top embed-
ded real-time systems venues such as RTAS,
ECRTS and Transactions on Computers; and

received multiple prestigious paper awards (Best Paper Award from
RTSS’20, Outstanding Paper Award from RTAS’19, Best Paper Award
from RTAS’16, Editor’s Pick of the Year Award from IEEE Transactions
on Computers in 2016). He received a Ph.D. degree in Computer Sci-
ence from the University of Illinois at Urbana-Champaign in 2013. Prior
to his Ph.D., he worked at Samsung Electronics as a senior software
engineer.

https://github.com/OverEuro/deep-head-pose-lite
https://github.com/OverEuro/deep-head-pose-lite
https://github.com/ros2/rosbag2
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

	Introduction
	ARM Industrial Challenge 2022: Augmented Reality Head-Up Display (AR-HUD) Application
	Microarchitectural Denial-of-Service (DoS) Attacks
	Experiment Setup
	Analyzing the Effects of Shared Resource Contention
	Impact of Co-scheduling DoS Attacks
	Impact of Co-scheduling HopeNet-Lite on Integrated GPU
	Runtime Analysis of OVSSLAM and HopeNet-Lite

	Mitigating Shared Resource Contention
	RT-Gang++
	Partitioned Gang Scheduling
	iGPU Memory Bandwidth Throttling
	LLC Bandwidth Throttling

	Evaluation Results
	Jetson Nano
	Results

	Raspberry Pi 4
	Hardware and Software Setup
	Results


	Related Work
	Conclusion
	References
	Biographies
	Michael Bechtel
	Heechul Yun


