
BandWatch: A System-Wide Memory Bandwidth
Regulation System for Heterogeneous Multicore

Eric Seals
Garmin

erjseals@gmail.com

Heechul Yun
University of Kansas

heechul.yun@ku.edu

Michael Bechtel
University of Kansas

mbechtel@ku.edu



Heterogeneous multicore

● Platforms deliver high throughput
● Shared resource contention can 

cause major slowdowns
○ CPU's cache
○ DRAM

2
https://developer.nvidia.com/embedded/jetson-nano



Shared Resource Contention

● Memory systems shared by both GPU and CPU
● MC must handle requests from GPU and CPU

3



● MC must handle requests from GPU and CPU

Memory Bandwidth Regulation

4

Solo w/ GPU Co-runner



BandWatch Contributions

● Holistic bandwidth regulation for heterogeneous multicore systems
● Integrates hardware-software GPU-CPU throttling
● Employs an adaptive strategy
● Extensively tested, ensuring optimal isolation
● Demonstrates improved throughput

5



Outline

● Motivation
● Background
● BandWatch
● Evaluation
● Discussion
● Conclusion

6



Tegra X1 SoC

● Maxwell GPU
● Quad-core ARM Cortex-A57 CPU
● Shared Memory Controller

○ 4 GB LPDDR4, 1600MHz at 25.6 GB/s

7



● Priority Tier Snap Arbiters
● CPU is high-priority
● GPU is low-priority

8

HW Support for 
Memory Throttling 



GPU Throttling Evaluation

● 32 degrees of throttling
● Throttles bandwidth from 

11GB/s to 0.1GB/s

9



Memory Controller Utilization Monitoring

10

● Tegra X1 Activity Monitors
○ MC-ALL (total memory events) 
○ MC-CPU (CPU memory events)

● Utilization 
○ Uall : total memory utilization using MC-ALL
○ Ucpu: CPU's memory utilization using MC-CPU data
○ Ugpu : GPU's memory utilization from Uall - Ucpu



CPU Bandwidth Throttling: MemGuard[3]

● MemGuard manages individual CPU cores
● Assigns each core a fraction of total allowed bandwidth
● Stalls CPU core if it exceeds the bandwidth budget

11[3] Yun, Heechul, et al. “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Platforms”



Outline

● Motivation
● Background
● BandWatch
● Evaluation
● Discussion
● Conclusion

12



System Model

● Multicore processor with shared DRAM
● Partition between RT and NRT tasks
● One CPU core typically reserved for RT
● Flexible partitioning schemes supported
● BandWatch: isolate RT, maintain NRT performance

13



BandWatch

14

● Activity Monitor provides 
MC utilization

● Hardware-assisted GPU 
bandwidth throttling

● MemGuard regulates 
CPU bandwidth



BandWatch Runtime Regulation Algorithm

15

High-Level:

● Check RT core memory traffic
● Skip if RT core has low memory usage
● For high RT activity, NRT CPU and GPU are 

throttled
● Dynamic throttling

○ NRT CPU limited to 75 MB/s
○ GPU proportional to CPU memory usage



Outline

● Motivation
● Background
● BandWatch
● Evaluation
● Discussion
● Conclusion

16



Evaluation

● NVIDIA’s Jetson Nano
● Quad-core ARM Cortex-A57s
● 128-core Maxwell based GPU
● 32KB L1 cache per core
● 2MB L2 cache shared
● Memory controller max clock 1.6GHz

17
[4] “JetsonNano-DevKit” https://developer.nvidia.com/embedded/jetson-nano-developer-kit Accessed 7 June, 2022

https://developer.nvidia.com/embedded/jetson-nano-developer-kit


Evaluation Setup

● RT CPU Core
○ SD-VBS[5]

● NRT CPU Cores
○ IsolBench[7]

● NRT GPU
○ HeSoC[6]

18

[5] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor. SD-VBS: The San Diego Vision Benchmark Suite

[6] N. Capodieci, R. Cavicchioli, I. S. Olmedo, M. Solieri, and M. Bertogna. Contending Memory in Heterogeneous SoCs: Evolution in NVIDIA Tegra Embedded Platforms.

[7] P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.



SD-VBS Benchmark Solo Performance

19



Interference Benchmarks Solo Performance

20



Comparison

● Unregulated
○ Both RT and NRT tasks run w/o any regulation

● Static regulation
○ NRT cores are throttled at a fixed level to achieve less than 10% RT core 

slowdown via exhaustive offline searching of all possible throttling 
configurations

● Dynamic regulation (BandWatch)
○ NRT cores are throttled dynamically in response to CPU and GPU 

memory utilization according to BandWatch runtime regulation algorithm

21



Impact of GPU Interference

22

RT (SD-VBS) Isolation impact NRT (CudaMemSet) performance impact

● BandWatch achieves RT isolation at a lower NRT slowdown vs. static

3.3x to 2.2x1.5x

1.9x



Impact of CPU Interference

23

RT (SD-VBS) Isolation impact NRT (bandwidth write) bandwidth impact

● BandWatch is highly effective for NRT CPU tasks

14.7x to 3.4x

3.4x



Impact of CPU and GPU Interference

24

RT (SD-VBS) Isolation impact

● BandWatch and Static still provide RT isolation 

5.5x



Impact of CPU and GPU Interference

25

● BandWatch improves performance of both NRT CPU and GPU tasks.

NRT GPU bandwidth impact NRT CPU bandwidth impact

3.31x to 2.89x
14.72x to 3.59x



Discussion

● Applicability
○ We exploit Tegra X1 SoC's throttling and monitoring capabilities, 

which can limit applicabilities on other SoCs
○ But many current/future SoCs already or will have QoS features 

(e.g,. ARM MPAM) needed support BandWatch
● Execution model

○ BandWatch's model currently focuses on one RT CPU core
○ Extendable to multi-core or iGPU RT tasks are possible and left 

as future work

26



Conclusion

● BandWatch is a holistic, adaptive bandwidth management 
framework for heterogeneous CPU+GPU platforms
○ Provide strong isolation for RT core
○ Minimize performance degradation of NRT co-runners
○ Practical and effective adaptive throttling approach based on 

CPU and GPU memory utilization
○ Implemented on NVIDIA Tegra X1 SoC

27

https://github.com/erjseals/bandwatch



Thank you

Disclaimer:

This research was supported in part by NSF grant CNS1815959, CPS-2038923, 
and NSA Science of Security initiative contract no. H98230-18-D-0009

28


