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Cyber Physical Systems (CPS)

e Deployed in many different areas
o Automotive, avionics, healthcare, etc.

e Modern CPS require high performance platforms
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Multicore Platforms

e Increasingly demanded for modern CPS

o Better performance than unicore
o Better satisfy size, weight and power (SWaP) constraints

e Problem: They are less predictable
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Shared Resource Contention

e Many resources are shared by all cores

e \Worst case performance is unpredictable

Shared Cache —— Shared caches are important
resources.
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Cache Partitioning

e Common technique used for isolation in shared caches

e Give each core its own dedicated slice of the cache

e Prevents unwanted cross-core LLC evictions

e Does not prevent other forms of contention in the cache
KU
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Contention on Shared Internal Buffers in LLC

Modern caches use internal buffers to manage memory accesses
LLC partitioning can not mitigate contention on these buffers
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Memory Bandwidth Throttling
e Another common approach for mitigating contention
e Limit access of non-critical tasks to memory resources

e Can effectively mitigate internal LLC buffer contention’

e In this work, we show that memory bandwidth throttling is not sufficient
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Cache Bank Organization
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Modern caches employ bank architectures to improves MLP

Each bank can only service one request at a time

All banks can be accessed simultaneously
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Cache Bank Contention

e Cache banks also suffer from contention
e Occurs when multiple accesses are made to the same bank
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Outline
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Threat Model

Trusted Untrusted
Partition Partition _ o
g > 4 e Attackers can not directly affect the victim
@ e Attackers can not run privileged code
Victim Attacker

e System has a shared cache

OS/hypervisor
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Baseline DoS Attacks

for (int64_t 1 = 0; i<mem_size; 1 += LINE_SIZE)
{

}

ptr[i] = Oxff;

B L —

Sequential Attacker
(BwWrite)

O 0NN B W —

static intx listfMAX_MLP];
static int nextfMAX_MLP];

for (int64_t i = 0; i < iter; i++) {
switch (mlp) {
case MAX_MLP:

case 2:
list[1][next[1]+1] = Oxff;
next[1] = list[1][next[1]];
/% fall—through =/
case 1:
list[O][next[0]+1] = Oxff;
next[0] = list[0][next[0]];
5

Random Attacker
(PLLWrite)

e Both perform continuous write accesses
e Can be configured to access LLC or DRAM

o E.g. BwWrite(LLC), BwWrite(DRAM), etc.
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Cache Bank-Aware DoS Attack

e Target and generate contention in a single cache bank
o Slows down accesses made by victim tasks to that bank

e All accesses are LLC hits = Can still impact cross-core victim

Victim Attacker Attacker Attacker

Shared Cache
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Cache Bank-Aware DoS Attack

e Allocate a large memory chunk

Iterate over the memory addresses at a cache line granularity
o Only keep addresses that map to a target LLC data bank

#define bit(addr,x) ((addr >> (x)) & 0x1)
int paddr_to_sram_bank(unsigned long addr)
{
return ( (bit(addr, 6) << 2) |
(bit(addr, 5) << 1) |
bit(addr, 4) );

NN AW -

}

Split and access addresses across multiple parallel linked lists

e \We refer to this attack as BKPLLWrite(LLC)
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Tested Platforms

Platform | Raspberry Pi 4 (B)i Nvidia Jetson Nano
SoC ) BCTMZT7T1 ] Tegra X1
4x Cortex-A72 4x Cortex-AS57
CPU out-of-order out-of-order
1.5GHz 1.43GHz
Private L1 Cache 48KB(1)/32KB(D) 48KB(1)/32KB(D)
Shared L2 Cache IMB (16-way) 2MB (16-way)
L2 (LLC) Bank Bits 4,.5,6 4 5,6
Memory 4GB LPDDR4 4GB LPDDR4

e Both platforms have the same LLC bank architectures
o 2tag banks X 4 data banks = 8 total banks
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Methodology
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Victim Attackers

Shared LLC

DRAM

Run victim alone and with DoS attackers

O

Measure victim slowdown and LLC miss rates

LLC set partitioning (PALLOC)

O

Split LLC into 4 partitions, 2/2 between victim and attackers
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Cache Bank Partitioning Experiment

e Simulate LLC bank partitioning
e Victim - BkPLLRead(LLC) = Data bank 0
e Vary data bank accessed by attackers

Zhared Cache
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Cache Bank Partitioning Experiment

e Simulate LLC bank partitioning
e Victim - BkPLLRead(LLC) = Data bank 0
e Vary data bank accessed by co-runners
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Cache Bank Partitioning Experiment
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LLC Bank Partitioning Results

ﬁ
10

I 9.7X EI Raspberry Pi 4 C——
: Jetson Nano KX

Slowdown

Attacker Data Bank

e Up to 9.7X slowdown when same tag bank is accessed
e No impact when victim and attackers access different tag banks
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Synthetic Workload Experiment

e Victimtask = BwRead

o Read intensive benchmark that is cache bank-oblivious
o Vary the working set size (WSS) to be LLC and DRAM-fitting

e Attacker tasks

o DoS attacks on DRAM = BwWrite(DRAM), PLLWrite(DRAM)
o Bank-oblivious cache attacks = BwWrite(LLC), PLLWrite(LLC)
o Cache Bank-Aware attack = BkPLLWrite(LLC)

Victim

Attackers

Core 1 Core 2 Core3

Shared LLC

DRAM
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Impact to Synthetic Workloads
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Bank-aware attacks are superior to bank-oblivious attacks

When victim's working set size is LLC-fitting
No slowdown is due to LLC evictions
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Memory Bandwidth Throttling Experiment

e Run the synthetic victim tests with memory bandwidth throttling enabled

e We use MemGuard, a per-core bandwidth regulator

o Sets a bandwidth budget for each core over a period (e.g. 1 ms)
o Throttles cores that exceed their budget until the next period

e Victim gets full bandwidth access (i.e. no throttling)
e Attackers are assigned a budget of 100 MB/s

e Does MemGuard protect against cache DoS attacks?
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Impact of Memory Bandwidth Throttling
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e Throttling does protect against DRAM-fitting attacks

e None of the cache DoS attacks are affected
o Especially the Cache Bank-Aware attacks
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Real-World Workload Experiment

e We run the same DoS attacks against real-world benchmarks:

o Five benchmarks from the SD-VBS suite (input size = fullhd)
o Eight benchmarks from the SPEC2017 suite (input size = ref)
o Three representative DNN models: PilotNet, MobileNetV3 and InceptionV3

e Both cache partitioning and memory bandwidth throttling are enabled

e \We only run cache DoS attacks in these tests
o DRAM bandwidth contention can be mitigated with MemGuard (bandwidth throttling)
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Impact to Real-World Benchmarks
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Cache DoS attacks are still effective

Cache Bank-Aware attacks again have the most impact
o More than 2X on average over bank-oblivious attacks
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LLC Bandwidth Throttling

e Idea: Throttle LLC bandwidth instead of memory bandwidth

o To mitigate cache bank contention

e By default, MemGuard tracks per-core LLC misses
o Calculates memory bandwidth consumed by each core

e We modify MemGuard to instead track per-core L1 misses
o Regulates LLC traffic instead of DRAM traffic

e Victim still has full LLC bandwidth access
e Attackers' LLC budget is varied from 50MB/s to 1GB/s
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Impact of LLC Bandwidth Throttling
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When attack budgets are set low enough (e.g. 50MB/s)

LLC bandwidth throttling does protect against cache DoS attacks
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LLC Bandwidth Throttling Tradeoff

Pcak BW (MB/s)

Throttled BW (MB/s)

Max Slowdown

DRAM Attackers 4,000

100

40X

LLC Attackers 15,000

50

300X

e This tradeoff is not desirable for general system performance
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LLC bandwidth throttling can provide isolation

But at a notable cost to system performance
o To achieve <10% slowdown, best-effort LLC bandwidth is throttled by ~300X
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Hardware-Based Solutions

e LLC bank partitioning
o Could achieve isolation in a simulated test case
o  Would require hardware modifications
o May require smaller cache space and bandwidth

e Complex bank address mappings

o Difficult to reverse engineer
o Rendered ineffective if mapping is discovered

e LLC bandwidth throttling

o Software-based approach works, but at a cost
o Hardware-based approaches may not have to pay such costs
o  Our future work
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Conclusion

e \We identify that cache bank contention as an important unaddressed problem
o Can be exploited to delay cross-core victim tasks

e We develop a Cache Bank-Aware DoS attack
o Highly effective at delaying cross-core victim tasks

e \We show that our attack can bypass existing defense techniques
o Both cache partitioning and memory bandwidth throttling

e \We explore new mitigation mechanisms to address our attack

o LLC bandwidth throttling is possible, but at a cost
o  Other mitigations require hardware support
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Comparison to Existing DoS Attacks - Nano
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Like the Pi 4, Bank-Aware attacks have the most impact.

e DRAM-fitting attacks are less effective.
o Likely due to differences in the memory controller.
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Impact to Real-World Benchmarks

Nano
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LLC-fitting DoS attacks are still effective

Cache Bank-Aware attacks again have the most impact

More than 2X on average over bank-oblivious attacks
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Impact of DRAM Bandwidth Throttling
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e Throttling does protect against DRAM-fitting attacks

e None of the LLC-fitting DoS attacks are affected
o Especially the Bank-Aware DoS attacks
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Impact of Varying # of Attackers
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e As expected, more attackers have greater impact
e Notable slowdown still happens with few attackers
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