
Per-Bank Bandwidth Regulation of Shared
Last-Level Cache for Real-Time Systems

Connor Sullivan§, Alex Manley§, Mohammad Alian¶, Heechul Yun§

§University of Kansas, ¶Cornell University



Memory Level Parallelism
● Essential in modern multi-core processors

● Each core can have multiple memory requests in flight

● A shared last-level cache (LLC) may be composed of multiple 
independent resources---banks

2



Multi-banked LLC

3

● Each bank is like a mini 
cache

● Independent of one another

● Separate cache sets



ARM Cortex A72 LLC

4https://developer.arm.com/documentation/100095/0003/ – Cortex-A72 TRM

https://developer.arm.com/documentation/100095/0003/


ARM Cortex A72 LLC

5https://developer.arm.com/documentation/100095/0003/ – Cortex-A72 TRM

https://developer.arm.com/documentation/100095/0003/


Cache Bank Attack
● Attackers use bank 

mapping knowledge to 
hammer a bank with 
requests1

● Create bank contention

61M. Bechtel et al. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors” RTAS’23



Threat Model1

● Attacker best-effort tasks (red) 
restricted to user space

● Victim -> real-time tasks (green)

● System has a shared multi-bank LLC

● LLC is space partitioned
71M. Bechtel et al. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors” RTAS’23



Cache Space Partitioning
● Give attackers and victim 

separate partitions in LLC

● Ensures attackers don’t evict 
victim cache lines

● Page coloring (PALLOC1)

81H. Yun et al. PALLOC: DRAM bank-aware memory allocator for performance isolation on multicore platforms” RTAS'14



Cache Space Partitioning
● Banks may still be shared

● Partition the sets via physical 
address bits

9



Impact of Cache Bank Attack
● Up to 8.7x cross-core 

slowdown

● Demonstrated on ARM1 and 
RISC-V based embedded 
multicore SoCs

10
1M. Bechtel et al. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors” RTAS’23



Where is the Contention?

11



Pictorial Example

12



● Software-based solutions (Memguard1)
○ High overhead
○ Up to 300x best-effort (non-real time) task slowdown2

● Hardware based solutions
○ Industry: Intel RDT3, ARM MPAM4

○ Research: BRU5

○ Low overhead

● All above regulate bandwidth as one resource (bank unaware)….

Bandwidth Regulation

13

1H. Yun et al. “Memguard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms” RTAS'13
2M. Bechtel et al. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors” RTAS’23
3Intel® Resource Director Technology (Intel® RDT) Framework
4Arm Memory System Resource Partitioning and Monitoring (MPAM) System Component Specification
5F. Farshchi et al. “BRU: Bandwidth Regulation Unit for Real-Time Multicore Processors” RTAS’20



All-bank vs Per-bank Regulation
● All-bank (Bank unaware) regulation

○ Ignores underlying structures

● Per-bank (Bank aware) regulation
○ Takes underlying structures into account

14



Intuitive Example

15



All-bank Regulation Limitations
● We know that contention is at the bank level

● All-bank assumes all accesses are to the same bank

● Bad assumption for best-effort throughput

16



All-bank Regulation Limitations
● Must regulate to protect 

victim in worst case 
scenario

● Consider the throughput 
impact of regulating a 
best-effort task

17



Goals
1. Demonstrate hardware implemented bandwidth regulation 

as a solution to the cache-bank attack

2. Improve on previous regulation implementations through 
more fine grained (per-bank) regulation

18



Design Overview
● Use drop-in BRU1 as baseline

● Sits between cores and shared 
memory

● No modifications to the shared 
cache

19
1F. Farshchi et al. “BRU: Bandwidth Regulation Unit for Real-Time Multicore Processors” RTAS’20



Design Overview
● Enables grouping of cores into 

arbitrary domains1

● Bandwidth regulation done 
over a fixed period with a fixed 
number of accesses per period

● BW “budget” is given to each 
bank

20

Domain 
0

Domain 
1

Core 0 Core 1 Core 2 Core 3

1F. Farshchi et al. “BRU: Bandwidth Regulation Unit for Real-Time Multicore Processors” RTAS’20



Implementation 
● Integrate with Rocket Chip SoC1

● Leverage TileLink interconnect 
channels to regulate bandwidth

● Regulator is a Chisel2 generator 
enabling support for any 
number of banks

21
1K. Asanovic et al. “The Rocket Chip Generator” UC Berkeley Tech. Rep. 2016
2J. Bachrach et. al “Chisel: Constructing hardware in a Scala embedded language” DAC’12



Evaluation Platform

● Use FireSim1 for simulation
○ Synthesizable RTL
○ Simulates at ~100MHz, cycle 

accurate
○ Run locally on Xilinx 

UltraScale+ VCU118 FPGA

22
https://www.xilinx.com/products/boards-and-kits/vcu118.html

1S. Karandikar et. al “FireSim: FPGA-accelerated Cycle-exact Scale-out System Simulation in the Public Cloud” ISCA’18



Simulated SoC
● Bank attack requires out-of-order cores -> BOOM1

● Can’t fit four Large BOOM cores on our FPGA platform without optimizations
○ Also BOOM has a bug…(https://github.com/riscv-boom/riscv-boom/issues/690)

● Use in-order Rocket2 cores “enhanced” with Mempress3 (on chip accelerator)
○ Traffic generator allowing parallel access to shared memory

23

Cores
1xLargeBoom, 1GHz, out-of-order, 3-wide, ROB: 96, LSQ: 24/24
2xRocket, 1GHz, in-order, enhanced with Mempress

BOOM Private L1 Cache 32KB(I) - 32KB(D), 8-way

Shared L2 Cache (LLC) 1MB (16-way)

Memory 4GB DDR3, FR-FCFS

1C. Celio et al. “The Berkeley Out-of-Order Machine (BOOM)” UC Berkeley Tech. Rep. 2015
2K. Asanovic et al. “The Rocket Chip Generator” UC Berkeley Tech. Rep. 2016
3https://github.com/ucb-bar/mempress/tree/main

https://github.com/riscv-boom/riscv-boom/issues/690


Attack Setup

24

● Attackers are the two 
Mempress units

● BOOM core runs victim 
(real-time) task



Exp. 1: Isolation Impact on RT Tasks
● Synthetic victim is BankPLL1 workload run on BOOM core

○ Target specific bank

● Real-world victim is Disparity from SD-VBS2

○ We measured Disparity to have highest LLC bandwidth of all 
SD-VBS workloads

● Vary attacker bandwidth budget
○ Examine change in victim slowdown

25
1M. Bechtel et al. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors” RTAS’23
2S. K. Venkata et al. "SD-VBS: The san diego vision benchmark suite" IISWC'09



26

Isolation Impact of Regulation

● Results hold for all-bank (BRU) and per-bank (ours) regulation
● At 1.28GB/s budget, victim slowdown is ~1.03x



Exp. 2: Throughput Impact on BE Tasks
● Examine the throughput impact 

of regulation on the benign 
best-effort tasks

● Use bandwidth from IsolBench1

● Regulate under both per-bank 
and all-bank at 1.28GB/s

27
1https://github.com/CSL-KU/IsolBench



Throughput Impact of Regulation

● Two-bank case sees a 1.86x improvement when using per-bank
● Four-bank case sees 3.66x 28



Exp. 3: Impact on Real-world Apps.
● Demonstrate throughput improvement for real-world 

workloads

● Select SD-VBS and SPEC2017 workloads as best-effort tasks

● Pin workload to BOOM core and regulate at 1.28GB/s

● Run with all-bank and per-bank, with two and four-bank LLCs
29



Two-bank LLC

30

1.31x average 
improvement



Four-bank LLC

31

1.61x average 
improvement



Area and Power Overhead
● Synthesis and place and route 

for ASAP7 7nm1

● Minimal area-overhead, < 0.3%

● Minimal power-overhead, 2.1%

32
1L. T. Clark et. al “ASAP7: A 7-nm finFET predictive process design kit” Microelectronics Journal’16



Conclusion
● Multi-banked LLC in modern multicores may be vulnerable to 

cache bank contention attacks

● All-bank (bank unaware) regulation is highly inefficient to defend 
against cache bank contention 

● Per-bank regulation provides higher (up to 3.66x on 4-bank LLC) 
throughput over all-bank regulation while providing the same 
isolation guarantees

33



34



Regulation with TileLink

35

Private
Cache Reg 

Unit

System 
Bus

A

● Access (read) to LLC occurs on Channel A
● Count these reads
● Extract destination address to examine target bank


