
Denial-of-Service Attacks on Shared Cache in
Multicore: Analysis and Prevention

Michael G. Bechtel, Heechul Yun
University of Kansas, USA.

{mbechtel, heechul.yun}@ku.edu

Abstract—In this paper we investigate the feasibility of denial-
of-service (DoS) attacks on shared caches in multicore platforms.
With carefully engineered attacker tasks, we are able to cause
more than 300X execution time increases on a victim task running
on a dedicated core on a popular embedded multicore platform,
regardless of whether we partition its shared cache or not. Based
on careful experimentation on real and simulated multicore
platforms, we identify an internal hardware structure of a non-
blocking cache, namely the cache writeback buffer, as a potential
target of shared cache DoS attacks. We propose an OS-level
solution to prevent such DoS attacks by extending a state-of-the-
art memory bandwidth regulation mechanism. We implement the
proposed mechanism in Linux on a real multicore platform and
show its effectiveness in protecting against cache DoS attacks.

Keywords-Denial-of-Service Attack, Shared Cache, Multicore,
Real-time sytems

I. INTRODUCTION

Efficient multi-core computing platforms are increasingly
demanded in embedded real-time systems, such as cars, to
improve their intelligence while meeting cost, size, weight and
power constraints. However, because many tasks in such a
system may have strict real-time requirements, unpredictable
timing of multicore platforms due to contention in the shared
memory hierarchy is a major challenge [13]. Moreover, timing
variability in multicore platforms can potentially be exploited
by attackers.

For example, as cars are becoming more connected, there
are increasing possibilities for an attacker to execute malicious
programs inside of a car’s computer [10], such as via down-
loaded 3rd party apps. Even if the computer’s runtime (OS and
hypervisor) strictly partitions cores (and memory) to isolate
these potentially dangerous programs from critical tasks, as
long as they share the same multicore computing platform, an
attacker may still be able to cause significant timing influence
to the critical tasks—simply by accessing shared hardware
resources, such as a shared cache, at a high-speed, effectively
mounting denial-of-service (DoS) attacks.

On modern multicore processors, non-blocking caches [24]
are commonly used, especially as shared last-level caches,
to support concurrent memory accesses from multiple cores.
However, access to a non-blocking cache can be blocked when
any of the cache’s internal hardware buffers become full,
after which the cache will deny any further requests from the
CPU—even if the request is actually a cache-hit—until the
internal buffers become available again [2], [35]. On a shared
cache, such blocking globally affects all cores because none

of the cores can access the cache until it is unblocked, which
can take a long time (e.g., hundreds of CPU cycles) as it may
need to access slow main memory. Therefore, if an attacker
can intentionally induce shared cache blocking, it can cause
significant timing impacts to other tasks on different cores.
This is because every shared cache hit access, which would
normally take a few cycles, would instead take a few hundreds
cycles until the cache is unblocked.

While most prior works on cache isolation focused on
cache space partitioning, either in software or in hardware [9],
[16]–[19], [25], [27], [37], [43], [44], these cache partitioning
techniques are ineffective in preventing such shared cache
blocking because, even if the cache space is partitioned,
the cache’s internal buffers may still be shared. A recent
study [39] experimentally showed the ineffectiveness of cache
partitioning in preventing shared cache blocking on a num-
ber of out-of-order multicore platforms. Specifically, when
the miss-status-holding-registers (MSHRs) [24]—which track
outstanding cache-misses—of a shared cache are exhausted,
consequent cache blocking can cause substantial—reportedly
up to 21X—task execution time increases, even when the task
runs alone on a dedicated core with a dedicated cache partition
and its working-set fits entirely in its cache partition [39].

In this paper, we first experimentally investigate the fea-
sibility and severity of cache DoS attacks on shared caches
on contemporary embedded multicore platforms: five quad-
core CPU implementations, out of which four are in-order
and one is out-of-order architecture. Our first main finding is
that extreme shared cache blocking can occur not only in out-
of-order processors, as suggested in [39], but also in in-order
processors. In fact, we observe the most severe execution time
increase—up to 346X (times, not percent)—on a popular in-
order architecture based quad-core platform (Raspberry Pi 3).
This is surprising because it was believed that simpler in-order
architectures are less susceptible to memory contention than
out-of-order architectures [38], [39].

We use a cycle-accurate full system simulator (Gem5 [8]
and Ramulator [22] for CPU and memory, respectively) to
identify possible causes of such severe timing impacts of cache
DoS attacks under various microarchitectural configurations.
Our findings include: (1) eliminating MSHR contention alone
is not sufficient to mitigate potential cache DoS attacks be-
cause another cache internal hardware structure, namely the
writeback buffer [35]—which is used to temporarily store
evicted cache-lines—in a shared cache can be an important

additional source of cache blocking; (2) the combination of
a small cache writeback buffer and the presence of aggres-
sive hardware prefetchers can cause severe writeback buffer
contention, and subsequent cache blocking.

We propose an OS-level solution to mitigate shared cache
DoS attacks that target cache writeback buffers. Our solution is
based on MemGuard [48], which is a Linux kernel module that
regulates (throttles) each core’s maximum memory bandwidth
usage to a certain threshold value at a regular interval (e.g.,
1ms) using a hardware performance counter. Our extension
is to apply two separate regulations—one for read (cache-
line refills) and one for write (cache write-backs) memory
traffic—for each core. This allows us to set a high threshold
value for read bandwidth while setting a low threshold value
for write bandwidth. This mitigates writeback buffer DoS
attacks with minimal performance impacts for normal, non-
attacker applications, which are typically more sensitive to
read performance [14], [35].

Our solution is implemented on a real multicore platform
and evaluated against cache DoS attack programs that generate
very high write traffic (to overflow shared cache writeback
buffers.) The results show that it is effective in preventing
such cache DoS attacks while minimizing the throughput loss
of the prior memory bandwidth throttling approach.

This paper makes the following contributions:
• We experimentally demonstrate the feasibility of shared

cache DoS attacks on a number of contemporary embed-
ded multicore platforms. In particular, we show that even
relatively simple in-order multicore architectures can also
be highly affected by such microarchitectural attacks.

• We provide detailed microarchitectural analysis as to why
these cache DoS attacks are effective in modern multicore
architectures featuring non-blocking caches and hardware
prefetchers. In particular, we identify the writeback buffer
of a shared cache as a potential attack vector that enables
shared cache DoS attacks.

• We propose an OS-level solution to mitigate DoS attacks
targeting a shared cache’s writeback buffer. The proposed
OS solution is shown to be effective in mitigating such
attacks. We also provide it as open-source1.

The remainder of this paper is organized as follows: Sec-
tion II provides necessary background information on non-
blocking caches and hardware prefetchers. Section III defines
the threat model. Section IV shows the feasibility of shared
cache DoS attacks on contemporary embedded multicore plat-
forms. Section V validates the problem of writeback buffer
induced shared cache blocking using a simulated multicore
platform. Section VI presents our software solution to counter
shared cache DoS attacks. We discuss related work in Sec-
tion VII and conclude in Section VIII.

II. BACKGROUND

In this section, we provide background on non-blocking
caches and hardware prefetchers.

1https://github.com/mbechtel2/memguard.

A. Non-blocking Cache

Core

I D

MSHR WB Buffer

Tag array Data array

address/respond bus data bus

L2 cache

Core

I D

Core

I D

Core

I D

Fig. 1: Internal organization of a shared L2 cache. Adopted
from Figure 11.10 in [35].

Modern processors employ non-blocking caches to improve
cache-level parallelism and performance. On a non-blocking
cache, access to the cache is allowed even while it is still
processing prior cache miss(es). This non-blocking access
capability is essential in a multicore processor, especially
for the shared last-level cache, to achieve high performance.
Figure 1 shows the internal structure of a non-blocking shared
L2 cache of a multicore processor, which depicts its two ma-
jor hardware structures: Miss-Status-Holding-Register (MSHR)
and WriteBack (WB) buffer.

When a cache-miss occurs on a non-blocking cache, the
miss related information is recorded on a MSHR entry. The
MSHR entry is cleared once the corresponding cache-line is
fetched from the lower-level memory hierarchy (e.g., DRAM
controller). In the mean time, the cache can continue to serve
concurrent memory requests from the CPU cores or other
higher-level caches (e.g., L1 caches). A non-blocking cache
can support multiple outstanding cache-misses, although the
degree to which this can occur depends on the size of the
MSHR structure.

On the other hand, the writeback buffer is used to tem-
porarily store evicted (dirty) cache-lines from the cache while
the corresponding demand misses are serviced (cache-line
refills). Because cache-line refills (reads from DRAM) are
generally more important to application performance, delaying
the writebacks reduces bus contention and, therefore, improves
performance. In this way, a non-blocking cache can support
concurrent access to the cache efficiently most of the time.

Note, however, that when either the MSHRs or writeback
buffer of a non-blocking cache becomes full, the entire cache is
blocked—i.e., it no longer accepts any further requests—until
after free entries in both the MSHRs and writeback buffer are
available, at which point the cache is said to be unblocked.

Unfortunately, this can take a long time because access to
DRAM may take hundreds of CPU cycles, which could take
even longer if the DRAM controller is congested. When a
shared cache is blocked due to either MSHR or writeback
buffer exhaustion, it affects all cores. If a task frequently
accesses the shared cache, even if the accesses are all cache-
hits, the task may still suffer massive execution time increase
if the cache is blocked most of the time.

B. Hardware Prefetcher

Cache prefetching is a technique used to reduce cache miss
penalties by preemptively loading memory blocks that are
likely to be accessed in the near future into the cache. Due
to the high cost of a cache miss, successful prefetching can
significantly improve performance. Therefore, modern proces-
sors often employ multiple hardware prefetchers alongside the
caches. A hardware prefetcher monitors access to a cache and
predicts future memory addresses based on detected memory
access patterns. It then generates a set number of requests
that are stored in its internal queue before being sent to the
cache. This number is called the prefetcher’s degree or depth.
Next-line and stride based prefetchers are the most common.
However, while generally effective, prefetching can also incur
unnecessary cache-line refills due to mis-predictions, evict
useful cache-lines, pollute the cache, and generally add more
pressure to the memory hierarchy, which in turn can lead to
increased cache blocking as we will show in Section IV.

III. THREAT MODEL

We assume the victim and the attacker are co-located on a
multicore processor as shown in Figure 2. We assume the mul-
ticore processor has a shared last-level cache as well as per-
core private caches. We assume that the runtime (OS and/or
hypervisor) provides core and memory isolation between the
attacker and the victim. In other words, the attacker cannot
run on the same core as the victim and cannot directly access
the victim’s memory. We henceforth refer to the core that the
victim runs on as the victim core, whereas the core that the
attacker runs on is the attacker core. In addition, we assume
that the runtime can partition cache space between the attacker
core and the victim core by means of page coloring [16], [46].

Core

I D

Shared Cache

Core

I D

AttackerVictim

Trusted
Partition

Untrusted
Partition

OS/hypervisor

Fig. 2: Threat model.2

The only capability the attacker has is to run non-privileged
program(s) on the attacker core. In this paper, the attacker’s
main goal is to generate timing interference to the tasks
running on the victim core. On a car, for example, the
attacker’s goal may be to delay execution of real-time control
tasks running on a victim core so that they miss their deadlines,
potentially resulting in a crash. The attacker intends to achieve
this goal by mounting denial-of-service (DoS) attacks on
shared hardware resources, primarily the shared cache.

IV. SHARED CACHE DOS ATTACKS ON EMBEDDED
MULTICORE PLATFORMS

In this section, we experimentally evaluate the feasibility
and significance of cache denial-of-service (DoS) attacks on
contemporary embedded multicore platforms.

A. Cache DoS Attack Code

The main objective of the cache DoS attack code is to
generate as many concurrent cache-misses on the target cache
as quickly as possible. As discussed in Section II, concurrent
cache-misses can exhaust available MSHR and writeback
buffer resources, and thereby induce cache blocking.

f o r (i = 0 ; i < mem size ; i += LINE SIZE)
{

sum += p t r [i] ;
}

(a) Read attack (BwRead)

f o r (i = 0 ; i < mem size ; i += LINE SIZE)
{

p t r [i] = 0 x f f ;
}

(b) Write attack (BwWrite)

Fig. 3: Memory attacks. LINE_SIZE = a cache-line size.

Figure 3 shows read and write attack code snippets. The
read attack code simply iterates over a single one-dimensional
array, at every cache-line (LINE SIZE) distance, and sums
them up. Because sum is allocated on a register by the
compiler, the code essentially keeps generating memory load
operations, which may always miss the target cache if the
array size is bigger than the cache size. These missed loads
will stress the cache’s MSHR.

On the other hand, the write attack code performs the
same iteration over an array but, instead of reading each
array entry, it updates them, thereby generating memory store
operations. On a writeback cache, each missed store will
trigger two memory transactions: one memory read (cache-
line fill) and one memory write (writeback of the evicted
cache-line). Therefore, these missed stores will stress both the
MSHRs and writeback buffer of a cache.

2The icons are by icons8: https://icons8.com/

https://icons8.com/

Platform Raspberry Pi 3 Odroid C2 Raspberry Pi 2 Odroid XU4
SoC BCM2837 AmlogicS905 BCM2836 Exynos5422
CPU 4x Cortex-A53 4x Cortex-A53 4x Cortex-A7 4x Cortex-A7 4x Cortex-A15

in-order in-order in-order in-order out-of-order
1.2GHz 1.5GHz 900MHz 1.4GHz 2.0GHz

Private Cache 32/32KB 32/32KB 32/32KB 32/32KB 32/32KB
Shared Cache 512KB (16-way) 512KB (16-way) 256KB (8-way) 512KB (16-way) 2MB (16-way)

Memory 1GB LPDDR2 2GB DDR3 1GB LPDDR 2GB LPDDR3
(Peak BW) (8.5GB/s) (12.8GB/s) (8.5GB/s) (14.9GB/s)

TABLE I: Compared embedded multicore platforms.

We henceforth refer to the read attack as BwRead and the
write attack as BwWrite. In addition, their array sizes are
denoted in parentheses. For example, (LLC) denotes that the
attacker’s working-set is configured so that it always hits the
shared last-level cache but misses the private L1 cache (i.e.,
less than 1/4 of the LLC cache size but bigger than the L1
cache size). On the other hand, (DRAM) denotes that the
working-set size is bigger than the shared LLC size.

B. Embedded Multicore Platforms

We evaluate the effectiveness of the attacks described above
on four embedded multicore platforms: Raspberry Pi 3, Odroid
C2, Raspberry Pi 2, and Odroid-XU4. Both the Raspberry
Pi 3 and the Odroid C2 employ four Cortex A53 cores,
while the Raspberry Pi 2 equips four Cortex A7 cores. The
Odroid XU4 has four Cortex-A7 and four Cortex-A15 cores
in a “big-little” [12] configuration. Note that Cortex-A15 is
a sophisticated out-of-order design [4], while Cortex-A7 and
Cortex-A53 are “simpler” in-order designs [5], [6]. In total,
we compare five system configurations: four in-order and one
out-of-order designs. All platform specifications can be seen
in Table I.

C. Synthetic Workloads

In this experiment, we use a BwRead (LLC) (Figure 3a) as
a synthetic victim task and evaluate the feasibility and severity
of shared cache DoS attacks.

The basic experiment setup is as follows: we first run the
victim task on Core0 and measure its solo execution time. We
then co-schedule an increasing number of attacker tasks on
the other cores (Core1-3) and measure the response times of
the victim task. For attackers, we use both BwRead (DRAM)
and BwWrite (DRAM) to stress the L2 MSHR and writeback
buffer, respectively.

Figure 4a shows the victim task’s performance impact
in the presence of BwRead (DRAM) attackers. Note first
that Odroid-XU4’s Cortex-A15, which is an out-of-order ar-
chitecture based CPU, suffers considerable execution time
increases from the read attackers, while the rest of the tested
platforms, the four in-order architecture based ones, show little
performance impacts. This result is consistent with the findings
in [39], which suggested that an out-of-order core can generate
many concurrent cache accesses and when they all miss the
shared cache, due to the attacker’s working set size being

 0

 5

 10

 15

 20

 25

Pi 3(A53) C2(A53) XU4(A15) Pi 2(A7) XU4(A7)

Sl
ow

do
w

n

solo
+1 attacker

+2 attackers
+3 attackers

(a) Effects of read attackers: BwRead(DRAM)

 0

 5

 10

 15

 20

 25

Pi 3(A53) C2(A53) XU4(A15) Pi 2(A7) XU4(A7)

230.6

345.64 64.48

Sl
ow

do
w

n

solo
+1 attacker

+2 attackers
+3 attackers

(b) Effects of write attackers: BwWrite(DRAM)

Fig. 4: Effects of memory attackers on a BwRead(LLC) victim.
The attackers and victim run on their own dedicated cores.

bigger than the cache, they can cause cache blocking when all
MSHR entries are exhausted—i.e., MSHR contention. In [39],
it is also suggested that in-order cores are less likely to
suffer MSHR related cache blocking because an in-order core’s
ability to generate concurrent memory accesses is limited—
that is, one memory access at a time.

Figure 4b, which uses BwWrite (DRAM) attackers in-
stead, is therefore surprising because we observe extreme
performance impacts on two recent in-order architecture based
platforms, the Raspberry Pi 3 and Odroid-C2, both of which
feature four ARM Cortex-A53 cores. In particular, we observe
up to 346X slowdown on the Raspberry Pi 3 platform, which
is, to the best of our knowledge, the highest shared resource
contention induced execution time increase ever reported in

 0

 5

 10

 15

 20

 25

no part. PALLOC

230.6

345.64

174.20

370.76
Sl

ow
do

w
n

solo
+1 at
+2 at
+3 at

(a) Slowdown

 0

 5

 10

 15

 20

no part. PALLOC

0.32

20.25

L2
 C

ac
he

 M
is

s
%

solo
+1 attacker

+2 attackers
+3 attackers

(b) L2 cache miss rate

Fig. 5: Effect of cache partitioning on Raspberry Pi 3. BwRead
(LLC) victim vs. BwWrite (DRAM) attackers, w/o and with
L2 cache partitioning.

literature and it is much worse than the slowdown observed
on the out-of-order Cortex-A15 in Odroid-XU4. If MSHR con-
tention was the cause of these extreme performance impacts
we observed in the two in-order Cortex-A53 platforms, then
we would also expect to see considerable performance impacts
when the read attackers stressed the MSHRs in the previous
experiment, which, however, was not the case.

D. Impact of Cache Partitioning

As reported in [39], we also find that cache partitioning
does not help protect the victim’s performance even when the
victim’s working-set size fits entirely in its given dedicated
cache partition. Figure 5 shows the impact of cache parti-
tioning. For cache partitioning, we use PALLOC [46], which
implements a page coloring based kernel-level memory allo-
cator, to equally partition the L2 cache among the cores in the
partitioning setup. Note that the victim task, BwRead (LLC),
suffers similar degrees of performance impacts regardless of
whether partitioning is applied or not, even while the victim’s
L2 cache miss rate is significantly reduced with the cache
partitioning—from 20.25% to 0.32%—in the presence of three
write attackers. In other words, cache partitioning eliminates
unwanted cache-line evictions from the attackers but it does
not help provide cache performance isolation to the victim,
which accesses a dedicated cache space partition.

 0

 10

 20

 30

 40

 50

Pi 3(A53) C2(A53) Pi 2(A7)

%
 o

f
PF

 L
in

ef
ill

s
/

LL
C

Lo
ad

s

solo
+1 attacker

+2 attackers
+3 attackers

(a) BwRead Co-runners

 0

 10

 20

 30

 40

 50

Pi 3(A53) C2(A53) Pi 2(A7)
%

 o
f

PF
 L

in
ef

ill
s

/
LL

C
Lo

ad
s

solo
+1 attacker

+2 attackers
+3 attackers

(b) BwWrite Co-runners

Fig. 6: Percentage of prefetcher linefills over LLC loads.

E. Impact of Hardware Prefetcher

Another interesting observation in Figure 4b is that although
both Cortex-A53 and Cortex-A7 are in-order core designs,
they show dramatically different behaviors in the presence
of the write attackers—Cortex-A53 shows extreme execution
time increases while Cortex-A7 shows no significant execution
time increase.

To better understand the root cause(s) of this difference, we
compared cache related performance counter statistics of the
Raspberry Pi 3 and the Odroid C2, both Cortex-A53 based, to
the Raspberry Pi 2, which is based on older Cortex-A7.

The basic experiment setup is the same as above: The
BwRead(LLC) victim task runs on Core 0 in the presence of an
increasing number of BwRead(DRAM) or BwWrite(DRAM)
attackers on the rest of the cores.

Our main finding is that all three processors we tested
utilize hardware prefetchers on their L1 data caches, but the
aggressiveness of the hardware prefetchers varies considerably
between the platforms, specifically between the more recent
Cortex-A53 and the older Cortex-A7.

Concretely, Figure 6 shows the fraction of the prefetch
requests over all LLC memory accesses of the victim task.
Note that the L1 prefetchers on the Pi 3 and C2 generate
considerably more cache-line refills over total L1-D cache-
line refills. On both platforms, the prefetchers account for
∼40% of the total cache refills, while the Pi 2’s prefetcher only

 0

 5

 10

 15

 20

 25

aifftr01

aiifft01

cacheb01

rgbhpg01

rgbyiq01

disparity

mser
svm

29.96

81.17

Sl
ow

do
w

n

solo
+1 attacker

+2 attackers
+3 attackers

(a) Raspberry Pi 3

 0

 5

 10

 15

 20

 25

aifftr01

aiifft01

cacheb01

rgbhpg01

rgbyiq01

disparity

mser
svm

79.22 32.81

Sl
ow

do
w

n

solo
+1 attacker

+2 attackers
+3 attackers

(b) Raspberry Pi 3 (Partitioned shared L2 cache)

 0

 5

 10

 15

 20

 25

aifftr01

aiifft01

cacheb01

rgbhpg01

rgbyiq01

disparity

mser
svm

32.45

Sl
ow

do
w

n

solo
+1 attacker

+2 attackers
+3 attackers

(c) Odroid C2

 0

 5

 10

 15

 20

 25

aifftr01

aiifft01

cacheb01

rgbhpg01

rgbyiq01

disparity

mser
svm

Sl
ow

do
w

n

solo
+1 attacker

+2 attackers
+3 attackers

(d) Raspberry Pi 2

 0

 5

 10

 15

 20

 25

aifftr01

aiifft01

cacheb01

rgbhpg01

rgbyiq01

disparity

mser
svm

Sl
ow

do
w

n

solo
+1 attacker

+2 attackers
+3 attackers

(e) Odroid XU4(A7)

 0

 5

 10

 15

 20

 25

aifftr01

aiifft01

cacheb01

rgbhpg01

rgbyiq01

disparity

mser
svm

Sl
ow

do
w

n

solo
+1 attacker

+2 attackers
+3 attackers

(f) Odroid XU4(A15)

Fig. 7: EEMBC and SD-VBS benchmarks vs. BwWrite(DRAM) attackers. From left to right, aifftr01, aiifft01, cacheb01,
rgbhpg01, rgbyiq01 are EEMBC benchmarks and disparity, mser, svm are SD-VBS benchmarks. For SD-VBS benchmarks, we
use sqcif inputs so that their working-sets can mostly fit in the shared L2 cache.

accounts for ∼13%. In other words, the hardware prefetcher
of the Cortex-A53 in the Raspberry Pi 3 and Odroid C2 is
more aggressive than that of the Cortex-A7 in Raspberry Pi 2.

Note that a L1 prefetcher’s data prefetches may be issued
concurrently with the core’s demand request if the L1 data
cache itself is a non-blocking cache. According to the Cortex-
A53 documentation [6], its L1 data cache supports up to three
outstanding cache-misses, suggesting that may indeed be the
case. On the other hand, Cortex-A7’s L1 data cache does
not appear to support multiple outstanding cache-misses [5].
Thus, we believe that Cortex-A7’s prefetcher may only be
able to prefetch when the L1 data cache is not being used

by the core. This difference in the L1 data cache’s supported
concurrent outstanding misses is important because cache DoS
attacks require concurrent accesses to the shared L2 cache that
overflows the cache’s internal hardware buffers, namely the
MSHRs and writeback buffer.

F. Impact on Real-World Applications

We also use a set of real-world benchmarks from the
EEMBC [1] and SD-VBS [42] benchmark suites to investigate
impacts of cache DoS attacks on real-world applications. The
basic experiment setup is the same as before where we subject
each of the tested benchmarks (the victim) to an increasing

number of BwWrite(DRAM) co-runners (the attackers) on
different cores of the tested multicore platform.

Figure 7 shows the results. Note, first, that EEMBC bench-
marks generally experience much less performance impact
than SD-VBS benchmarks. This is because most EEMBC
benchmarks do not frequently access the shared L2 cache
due to their relatively smaller working-set sizes (which mostly
fit in the L1 data cache), while the SD-VBS benchmarks
access the shared L2 cache much more frequently due to
their larger working-set sizes. Still, on the two Cortex-A53
based platforms, the Raspberry Pi 3 and Odroid C2, even the
EEMBC benchmarks suffer up to 5.4X and 3.9X slowdown,
respectively. More surprisingly, SD-VBS benchmarks suffer
up to 81X slowdown on the Raspberry Pi 3 and up to 32X
slowdown on the Odroid C2. In contrast, the Odroid-XU4’s
Cortex-A15 suffers relatively little as it experiences up to 8X
slowdown, which is still significant.

Again, cache partitioning is ineffective in defending against
these cache DoS attacks, as shown in Figure 7b. Instead,
cache partitioning was actually detrimental when attacker
BwWrite tasks were present as 7 of the 8 benchmarks suffered
worse slowdowns with partitioning enabled (only the disparity
benchmark had slightly improved performance).

Lastly, we also evaluate the impacts of BwRead (DRAM)
attackers (the read attackers) on these real-world benchmarks.
Although we do not include here, due to space considerations,
as we observed in experiments using synthetic workloads
(Section IV-C), the read attackers have much less performance
impact (less than 8% in EEMBC and 2.3X in SD-VBS).

In short, we find that cache DoS attacks, especially the
write attackers targeting cache writeback buffers, are highly
effective in some in-order architecture based embedded multi-
core platforms, notably Cortex-A53 based ones. On the other
hand, read attackers, which mainly target cache MSHRs, are
not effective on the tested in-order multicores while they still
have considerable timing impacts in out-of-order architecture
based multicore platforms, as suggested in [39].

V. UNDERSTANDING SHARED CACHE BLOCKING DUE TO
CACHE WRITEBACK BUFFER

In this section, we study writeback buffer induced shared
cache blocking using a cycle accurate full system simulator.
Specifically, we use Gem5 [8] and Ramulator [22] to model
the CPU and the memory subsystem, respectively. Table II
shows the baseline configuration we used here.

The simulated CPU we use is comprised of four cores. Each
core has its own private (L1) instruction and data caches.
The data cache (L1-D) is modeled as a non-blocking cache
supporting up to three outstanding cache misses, as found
in the Cortex-A53 [6]. The instruction cache (L1-I), on the
other hand, supports up to one outstanding cache-miss. The
instruction cache is then paired with a tagged prefetcher and
the data cache is paired with a stride prefetcher, each of which
has its own internal prefetch queue to hold prefetch addresses
before they are sent to the respective cache. All cores have

access to a single shared L2 cache which has the same queue
structures as the L1 caches and, like the L1-D caches, is paired
with a stride prefetcher. The shared L2 cache is then connected
to a main memory controller (simulated by Ramulator [22]).

Note that we carefully configure the prefetchers and L1 data
caches such that cache blocking cannot occur due to MSHR
contention. That is, our L2 cache has a sufficient number of
MSHRs to support up to 24 concurrent cache misses, which is
enough to support 12 concurrent requests from the cores (their
L1 data caches and prefetchers) and 8 prefetch requests from
the L2 prefetcher. In other words, we removed the possibility
of MSHR contention, as suggested in [39]. Thus, observed L2
cache blocking, if any, is not caused by MSHR exhaustion,
but instead by writeback buffer exhaustion of the L2 cache.

A. Effect of Hardware Prefetchers

In this experiment, we investigate the impacts of L1 and L2
prefetchers on the effectiveness of cache DoS attacks, targeting
the cache writeback buffer. The experiment setup is the same
as before—specifically, we run the BwRead (LLC) victim and
three BwWrite (DRAM) attackers. We repeat the experiment
in different L1-D and L2 prefetcher configurations.

Figure 8 shows the results. When the L1-D or L2 prefetchers
are enabled (labeled ‘L1D’ and ‘L2’), the performance of the
victim task becomes noticeably worse as we observe more than
2X execution time increases. When we enable both L1-D and
L2 prefetchers (labeled ‘L1D/L2’), the result is more than 4X
execution time increase, compared to the configuration where
all prefetchers are disabled (labeled ‘None’).

In other words, enabling hardware prefetchers increases the
victim’s execution time due to increased L2 cache blocking,
driven by increased cache writebacks initiated by the addi-
tional prefetch refill requests at the L2 cache.

 0

 1

 2

 3

 4

 5

None L1D L2 L1D/L2

Sl
ow

do
w

n

Prefetchers Enabled

Fig. 8: Effects of hardware prefetchers.

B. Effect of Writeback Buffer Size

In this experiment, we explore the impacts of writeback
buffer size of the shared L2 cache to the effectiveness of cache
DoS attacks, targeting the writeback buffer. Specifically, we
want to know if increasing the size of the L2 writeback buffer
reduces L2 cache blocking, which in turn would improve the
victim task’s performance.

Core Quad-core, 1.5 GHz, IQ: 96, ROB: 128, LSQ: 48/48
L1-I/D caches Private 32 kB (2-way), Private 32 kB (4-way), MSHRs: 1 (I), 3 (D), Writeback Buffer: 1 (I), 3(D)

L1-D PF Stride, Degree: 5, Queue size: 5
L2 cache Shared 512 kB (16-way), MSHRs: 24, Writeback Buffer: 8, hit latency: 12, LRU

L2 PF Stride, Degree: 8, Queue size: 8
DRAM controller Read/write buffers: 64, open-adaptive page policy
DRAM module DDR3@800MHz, 1 rank, 8 banks

TABLE II: Baseline simulation parameters for Gem5 and Ramulator.

 0

 1

 2

 3

 4

 5

8 16 24

no
pf

Sl
ow

do
w

n

L2 WB size

Fig. 9: Effect of the L2 cache writeback buffer size.

 0

 2

 4

 6

 8

 10

 12

8 16 24

#
 o

f
Bl

oc
ke

d
Cy

cl
es

 (
10

e+
05

)

L2 writeback buffer size

Fig. 10: Blocked cycles vs. the L2 writeback buffer size.

Figure 9 shows the results. As suspected, when we increase
the size of the L2 writeback buffer, the performance of the
victim task is improved accordingly. This is because the L2
cache’s blocked time is decreased. Figure 10 shows the total
number of cycles during which the L2 cache is blocked in the
same experiment.

In summary, we find that the presence of hardware prefetch-
ers and the size of the L2 cache writeback buffer are major
factors affecting the platform’s susceptibility to cache DoS
attacks.

VI. OS-LEVEL DEFENSE MECHANISM AGAINST CACHE
DOS ATTACKS

In this section, we present an OS-level solution to prevent
denial-of-service attacks on the shared cache in a multicore
platform, especially those targeting the cache writeback buffer.

Our solution is software-based and is built on top of an
existing memory bandwidth throttling mechanism called Mem-

Guard [48]. MemGuard uses per-core hardware performance
counters to regulate (throttle) each core’s maximum memory
bandwidth usage. Specifically, it uses the LLC miss counter
to calculate the amount of memory bandwidth consumed by
each core. Prior studies show the effectiveness of memory
bandwidth throttling in protecting real-time tasks [3], [7],
[31], [32].

However, we find a significant limitation of using the LLC
miss count as a sole means to measure and regulate memory
bandwidth because it effectively treats both read and write
misses as equal despite the fact that write misses may incur
additional writeback traffic on a write-back cache. While the
cache writebacks are typically not in the critical path and
are processed opportunistically in both cache and DRAM
controllers, as discussed in Section V, write-backs can block
the cache when the writeback buffer is full. It can also delay
cache-line refill operations if the memory controller cannot
process backlogged DRAM writes in the background [47].
Thus, as shown in Section IV, we find that write intensive
attackers are far more impactful than read intensive ones.

To address this limitation, we propose to extend MemGuard
by utilizing an additional performance counter that measures
the number of LLC writebacks in addition to the existing
counter that monitors the LLC misses. By using the two
counters, we can regulate both the number of LLC misses
and writebacks separately. For example, we can throttle write
intensive tasks more without affecting read intensive tasks by
setting a low threshold for the writeback counter while setting
a high threshold for the cache miss counter.

To demonstrate the effectiveness of this solution, we con-
sider two different application scenarios.

In the first scenario, we investigate the impact of mem-
ory bandwidth throttling to application performance on the
throttled core. First, we compare the baseline MemGuard and
our modified version by applying them to throttle BwRead
(DRAM) and BwWrite (DRAM) subject tasks in isolation
(i.e., one task at a time). For the baseline MemGuard, we
set the LLC miss threshold (read memory bandwidth) to 100
MB/s, and for our modified MemGuard, we set the LLC miss
threshold (read) to 500 MB/s, while additionally setting the
LLC writeback threshold (write) to 100 MB/s.

Figure 11 shows the results. In the baseline MemGuard,
both BwRead and BwWrite tasks are limited to 100 MB/s
as both read and write misses are treated equally. With our
modification, however, the BwWrite task is limited to 100
MB/s, while the BwRead task’s performance is increased to
500 MB/s, as we expected. This means that we can provide

 0

 100

 200

 300

 400

 500

BwRead BwWrite BwRead BwWrite

Read regulation Read/Write regulation

Ba
nd

w
id

th
 (

M
B/

s)

Fig. 11: Effect of read-only (MemGuard [48]) vs. separate
read/write bandwidth regulation (Our approach).

 0

 0.5

 1

 1.5

 2

aifftr01

aiifft01

cacheb01

rgbhpg01

rgbyiq01

disparity

m
ser

svm

S
lo

w
d
o
w

n

No regulation
1000R/100W
500R/100W
500R/50W

Fig. 12: Effect of read/write bandwidth regulation on the
regulated non-attacker tasks.

the same degree of interference protection by heavily throttling
write memory bandwidth, while allowing higher read memory
bandwidth to the tasks running on the regulated cores.

In the next experiment, we use EEMBC and SD-VBS
benchmarks and evaluate their performance impacts un-
der the following three read/write throttling configurations:
1000R/100W, 500R/100W, and 500R/50W. In 1000R/100W,
we set 1000 MB/s threshold for LLC misses and 100 MB/s
threshold for LLC writebacks. The other two configurations,
500R/100W and 500R/50W, are similarly defined.

Figure 12 shows the results. Note, first, that for most
benchmarks, read/write throttling does not have any notice-
able performance impact. At 1000R/100W, in particular, the
performance impact of throttling is negligible. This is because
the tested benchmarks are mostly not memory intensive and
thus do not exceed the assigned throttling parameters. As
we assign less read and write bandwidth, to 500R/100W
and 500R/50W, some benchmarks, notably disparity, show
performance impacts due to throttling, but the effects are
relatively minor. Note that the effect of throttling may vary
significantly depending on the application characteristics. In
general, memory intensive applications, especially write in-
tensive ones, will suffer the most, while read intensive ones
will suffer much less under our proposed read/write regulation
scheme. Fortunately, real-world applications are usually more

 0

 5

 10

 15

 20

 25

No Regulation1000R/100W 500R/100W 500R/50W

230.60

345.64

S
lo

w
d
o
w

n

solo
+1 attacker

+2 attackers
+3 attackers

Fig. 13: Effect of read/write bandwidth regulation on protect-
ing BwRead (LLC) victim from write DoS attacks.

 0

 5

 10

 15

 20

 25

aifftr01

aiifft01

cacheb01

rgbhpg01

rgbyiq01

disparity

m
ser

svm

so-
lo

81.17

S
lo

w
d
o
w

n

No regulation
1000R/100W
500R/100W
500R/50W

Fig. 14: Effect of read/write bandwidth regulation on protect-
ing EEMBC and SD-VBS victim tasks from write DoS attacks.

dependent on read bandwidth rather than write bandwidth,
which makes our approach attractive.

In the second scenario, we applied our modified Mem-
Guard to protect against the write attackers on the Raspberry
Pi 3 platform, which suffered the most severe interference
(Section IV). We repeat the experiments in Section IV-C
and Section IV-F with three different read/write throttling
configurations to regulate the write attackers.

Figure 13 shows the results for the BwRead (LLC) victim
task (c.f., Figure 4b in Section IV-C). As can be seen, applying
write regulation on the attacker cores is effective in protecting
the victim task, and decreasing the threshold can further
improve performance. Concretely, the victim task’s execution
time increase is reduced from 345X down to 1.34X with a
write threshold of 100MB/s and 1.2X with a write threshold
of 50MB/s. In this experiment, increasing read regulation from
500MB/s to 1000MB/s has no effect because the attackers are
throttled by the write regulation.

Figure 14 shows the results for the EEMBC and SD-VBS
benchmark victim tasks in the presence of three write attackers
(c.f., Figure 7a). Similar to the BwRead (LLC) experiment
above, when write regulation is applied on attacker cores,
the performance of the victim tasks improve. This is most
noticeable in the SD-VBS benchmarks, such as the disparity
benchmark whose WCET increase is reduced from 81.17X to

1.20X with the 500R/50W setup, showing the effectiveness of
our read/write regulation approach in protecting against cache
DoS attacks.

In summary, we show that our extended OS-level mecha-
nism, which regulates read and write bandwidth separately,
allows us to apply more efficient and targeted bandwidth
regulation policies that can prevent cache DoS attacks, while
minimizing the performance impact for the regulated cores
with minimal performance impact to non-attacker tasks.

VII. RELATED WORK

In a real-time system, the ability to guarantee predictable
timing is highly important. However, it is difficult to achieve
predictable timing in a multicore platform due to shared
hardware resources, such as cache and main memory. There-
fore, much research effort has been focused on analyzing
and controlling the timing impacts of these shared hardware
resources in multicore platforms. For shared caches, most prior
works focused on cache space partitioning by using various
OS or hardware mechanisms [9], [16]–[19], [25], [27], [37],
[43], [44]. Recently, however, Valsan et al. experimentally
showed that cache space partitioning does not necessarily
guarantee cache performance isolation in non-blocking caches
used in modern multicore processors [39]. The authors then
identified miss-status-holding-registers (MSHRs), which are
the cache’s internal buffers to track outstanding cache-misses,
as the source of the observed timing increases in a number of
out-of-order multicore platforms. In essence, they identified
cache MSHRs as a denial-of-service (DoS) attack vector. In
contrast, our work shows that even relatively simple in-order
multicore platforms are not immune to cache DoS attacks and
identifies an additional internal hardware structure of a non-
blocking cache, namely the writeback buffer, as another DoS
attack vector.

Several prior studies investigated various DoS attack vectors
in multicore. Moscibroda et al. examined DoS attacks on mem-
ory (DRAM) controllers [28]. They found that the commonly
used FR-FCFS [33] scheduling algorithm, which may re-order
memory requests to maximize throughput, is vulnerable to
DoS attacks. They suggested “fair” memory scheduling as
a solution. Many subsequent papers proposed various fair
memory scheduling algorithms in DRAM controllers [21],
[29], [30], [36]. Keramidas et al. studied DoS attacks on
cache space and proposed a cache replacement policy that
allocates less space to such attackers (or cache “hungry”
threads) [15]. Woo et al. investigated DoS attacks on cache
bus (between L1 and L2) bandwidth, main memory bus (front-
side bus) bandwidth, and shared cache space, on a simulated
multicore platform [45]. In contrast, our work demonstrates
the feasibility of shared cache DoS attacks on real multicore
platforms and identifies an internal hardware structure of non-
blocking caches as a DoS attack vector. Furthermore, we
present an OS-based solution on a real multicore platform that
prevents identified cache DoS attacks.

Recently, microarchitectural timing attacks [11] have gained
significant attention, both from the public and the research

community, in the wake of the Meltdown, Spectre, and Fore-
shadow attacks [23], [26], [40]. In general, these timing attacks
aim to gain secret information through externally observable
timing differences in accessing microarchitectural resources
such as cache. In contrast, DoS attacks on microarchitectural
resources, which we focus on in this paper, aim to directly
influence performance (timing) of the victim applications
or cores. The Rowhammer attack [20] is another kind of
attack targeting hardware. It exploits a reliability failure mode
in modern DRAM hardware where repeatedly and quickly
accessing certain DRAM locations can result in bit flips
in nearby memory locations. Successful attacks that break
OS memory isolation boundaries have been demonstrated
in servers and mobile devices [34], [41]. As safety-critical
embedded real-time systems are becoming more connected,
such as we are already seeing in cars, we believe that software
attacks targeting computer hardware are increasingly important
areas that need attention from both the real-time and security
research communities.

VIII. CONCLUSION

In this paper, we investigated the feasibility and severity
of DoS attacks on shared caches in multicore platforms.
From careful experiments on a number of contemporary
embedded multicore platforms, we observed surprisingly se-
vere execution time increases—up to 346X slowdown—on
some of the tested platforms. In particular, we found that
two recent in-order architecture, ARM Cortex-A53, based
multicore platforms are especially more susceptible to write-
intensive cache DoS attacks than more complex out-of-order
architecture based multicore platforms.

From detailed micro-architectural analysis using a cycle-
accurate full system simulator, we identified the shared cache’s
writeback buffer as a possible DoS attack vector, in addition
to the previously known cache MSHR, that could have caused
the behaviors we observed on the real platforms.

We propose a software (OS) solution to mitigate cache
DoS attacks targeting the shared cache’s writeback buffer.
Our solution implements a separate read and write memory
bandwidth regulation mechanism to effectively counter write
intensive cache DoS attacks while minimizing performance
impacts to read heavy normal applications. Our solution is
implemented in Linux and shown to be effective to counter
the shared cache DoS attacks.

As future work, we plan to investigate OS and architecture
support mechanisms to withstand different types of micro-
architectural attacks (e.g., cache timing attacks [23], [26],
Rowhammer attacks [20]) in the context of safety-critical real-
time systems.

ACKNOWLEDGEMENTS

This research is supported by NSF CNS 1718880, CNS
1815959, and NSA Science of Security initiative contract
#H98230-18-D-0009.

REFERENCES

[1] Eembc benchmark suite. http://www.eembc.org.
[2] Memory system in gem5. http://www.gem5.org/docs/html/

gem5MemorySystem.html.
[3] A. Agrawal, R. Mancuso, R. Pellizzoni, and G. Fohler. Analysis of

dynamic memory bandwidth regulation in multi-core real-time systems.
In Real-Time Systems Symposium (RTSS), 2018.

[4] ARM. Cortex-A15 Technical Reference Manual, Rev: r4p0, 2011.
[5] ARM. Cortex-A7 Technical Reference Manual, Rev: r0p5, 2012.
[6] ARM. Cortex-A53 Technical Reference Manual, Rev: r0p4, 2014.
[7] M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun. DeepPicar: A

Low-cost Deep Neural Network-based Autonomous Car. In Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2018.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[9] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache
contention on a chip multi-processor architecture. In High-Performance
Computer Architecture (HPCA), pages 340–351. IEEE, 2005.

[10] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al.
Comprehensive experimental analyses of automotive attack surfaces. In
USENIX Security Symposium, pages 77–92. San Francisco, 2011.

[11] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. pages
1–37, 2016.

[12] P. Greenhalgh. big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. ARM White paper, 2011.

[13] A. Hamann. Industrial challenges: Moving from classical to high
performance real-time systems. In Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2018.

[14] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2011.

[15] G. Keramidas, P. Petoumenos, S. Kaxiras, A. Antonopoulos, and D. Ser-
panos. Preventing denial-of-service attacks in shared cmp caches. In
International Workshop on Embedded Computer Systems, pages 359–
372, 2006.

[16] R. E. Kessler and M. D. Hill. Page placement algorithms for large
real-indexed caches. ACM Transactions on Computer Systems (TOCS),
10(4):338–359, 1992.

[17] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for
practical os-level cache management in multi-core real-time systems. In
Real-Time Systems (ECRTS), pages 80–89. IEEE, 2013.

[18] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D. Smith.
Attacking the one-out-of-m multicore problem by combining hardware
management with mixed-criticality provisioning. Real-Time Systems,
53(5):709–759, 2017.

[19] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning
in a chip multiprocessor architecture. In Parallel Architecture and
Compilation Techniques (PACT), pages 111–122. IEEE, 2004.

[20] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors. In International
Symposium on Computer Architecture (ISCA), pages 361–372, 2014.

[21] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. In International Symposium on Microarchitecture (MICRO),
pages 65–76. IEEE, 2010.

[22] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible dram
simulator. IEEE Computer Architecture Letters, 2016.

[23] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks:
Exploiting Speculative Execution. arXiv preprint, 2018.

[24] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In
International Symposium on Computer Architecture (ISCA), pages 81–
87. IEEE Computer Society Press, 1981.

[25] J. Liedtke, H. Hartig, and M. Hohmuth. Os-controlled cache predictabil-
ity for real-time systems. In Real-Time Technology and Applications
Symposium (RTAS), pages 213–224. IEEE, 1997.

[26] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. arXiv
preprint, 2018.

[27] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-Time Cache Management Framework for Multi-core
Architectures. In Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2013.

[28] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of
memory service in multi-core systems. In Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium. USENIX, 2007.

[29] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In International Symposium on Microarchitec-
ture (MICRO), pages 146–160. IEEE, 2007.

[30] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared dram systems. In
International Symposium on Computer Architecture (ISCA), volume 36,
pages 63–74. IEEE Computer Society, 2008.

[31] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement. In Euromicro Conference on
Real-Time Systems (ECRTS), 2014.

[32] R. Pellizzoni and H. Yun. Memory servers for multicore systems.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2016.

[33] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. Owens. Memory
access scheduling. In ACM SIGARCH Computer Architecture News,
volume 28, pages 128–138. ACM, 2000.

[34] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to
gain kernel privileges. Black Hat, 15, 2015.

[35] J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals
of Superscalar Processors. Waveland Press, 2013.

[36] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. Mise:
Providing performance predictability and improving fairness in shared
main memory systems. In High Performance Computer Architecture
(HPCA), pages 639–650. IEEE, 2013.

[37] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In High-
Performance Computer Architecture (HPCA). IEEE, 2002.

[38] T. Ungerer et al. parMERASA–Multi-core Execution of Parallelised
Hard Real-Time Applications Supporting Analysability. In Digital
System Design (DSD), pages 363–370, 2013.

[39] P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-blocking Caches to
Improve Isolation in Multicore Real-Time Systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016.

[40] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, R. Strackx, and K. Leuven.
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. In USENIX Security Symposium,
pages 991–1008, 2018.

[41] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida. Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[42] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Be-
longie, and M. B. Taylor. Sd-vbs: The san diego vision benchmark suite.
In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pages 55–64. IEEE, 2009.

[43] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making Shared Caches
More Predictable on Multicore Platforms. In Euromicro Conference on
Real-Time Systems (ECRTS), 2013.

[44] A. Wolfe. Software-based cache partitioning for real-time applications.
Journal of Computer and Software Engineering, 2(3):315–327, 1994.

[45] D. H. Woo and H. Lee. Analyzing performance vulnerability due to
resource denial of service attack on chip multiprocessors. In Workshop
on Chip Multiprocessor Memory Systems and Interconnects, 2007.

[46] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM
Bank-Aware Memory Allocator for Performance Isolation on Multicore
Platforms. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 155–166, 2014.

[47] H. Yun, R. Pellizzoni, and P. Valsan. Parallelism-Aware Memory
Interference Delay Analysis for COTS Multicore Systems. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 184–195, 2015.

[48] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory Bandwidth Reservation System for Efficient Performance Iso-
lation in Multi-core Platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013.

http://www.eembc.org
http://www.gem5.org/docs/html/gem5MemorySystem.html
http://www.gem5.org/docs/html/gem5MemorySystem.html

