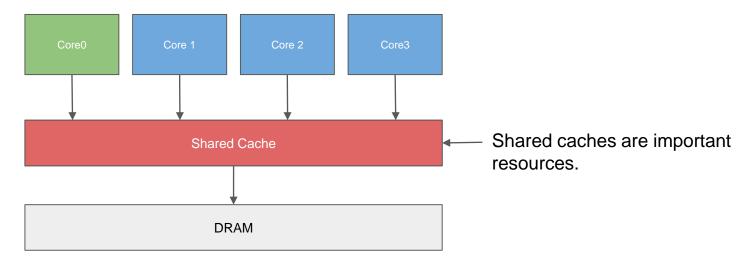

Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention

Michael Bechtel and Heechul Yun University of Kansas

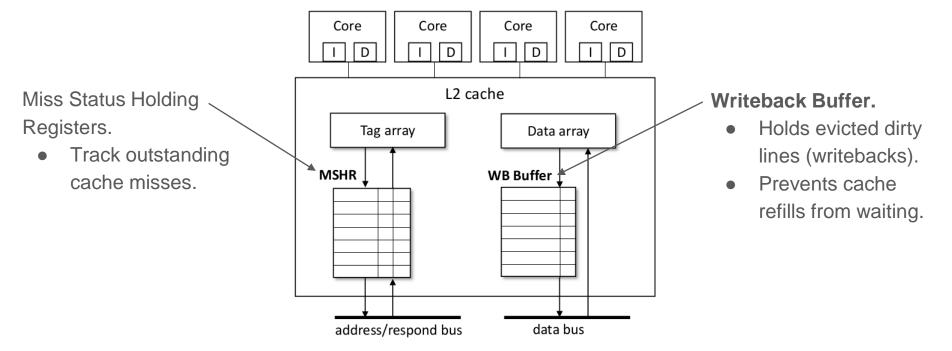
Multicore Platforms

- Increasingly demanded in embedded real-time systems.
 - Provide improved performance.
 - Better satisfy size, weight and power (SWaP) constraints.



Multicore Platforms

- Worst case performance is unpredictable.
- Many resources are shared by all cores.

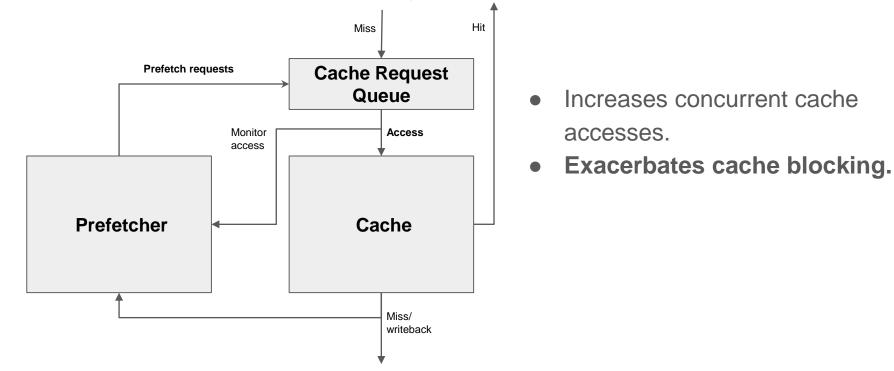


Shared Cache

- Must handle requests from all cores.
- Support for **concurrent accesses** is vital for performance.
- Achieved through *Non-Blocking Caches*.

Non-Blocking Cache

- Allow for multiple concurrent cache accesses.
 - Greatly improves performance.

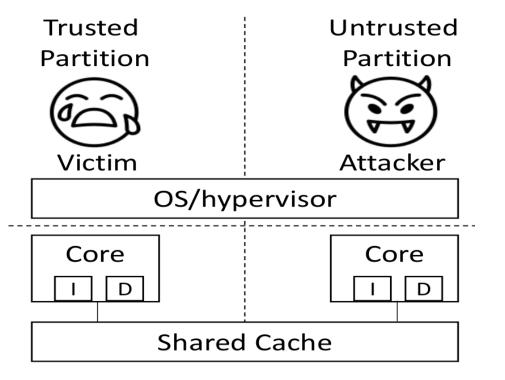

• If either structure is full → cache block

Shared Cache Blocking

- Cache blocking on a shared cache affects all cores.
 - No cores can access the cache.
 - Can significantly affect application timings.
- Unblocks when MSHRs and Writeback buffer have free entries.
 - Unblocking can take a long time (memory access).
- Can be maliciously used by attackers.

Hardware Prefetcher

• Predicts and loads future memory addresses into the cache.



Adopted from Professor Onur Mutlu's (CMU/ETHZ) Comp. Arch. lecture notes.

Outline

- Background
- Threat Model/Code
- Embedded Platform Evaluation
- Simulation
- OS-based Solution
- Conclusions

Threat Model

- Attackers can't directly affect the victim.
 - Core/memory isolation.
- Attackers can't run privileged code.

code.

• System has a shared cache.

Cache DoS Attack

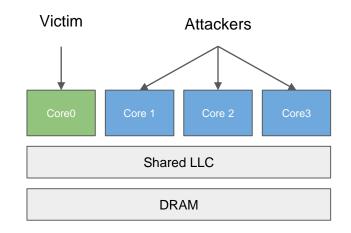
- Attackers can perform Denial-of-Service (DoS) attacks on the shared cache.
- MSHRs are a known attack vector¹.
- Writeback buffer is also an attack vector.

Cache DoS Attack Code

```
for (i = 0; i < mem_size; i += LINE_SIZE) {
sum += ptr[i];
Read Attacker
(BwRead)
[BwWrite]
```

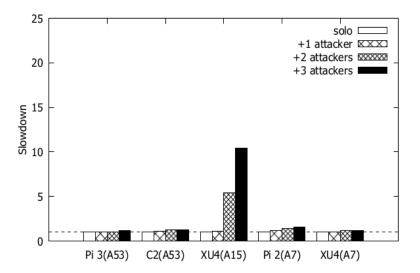
- Synthetic benchmarks that read from or write to a 1D array.
 - Generate continuous loads or stores.
- Working set size denoted in ():
 - BwRead(LLC): fits inside the LLC.
 - BwRead(DRAM): doesn't fit inside the LLC.

Outline


- Background
- Threat Model/Code
- Embedded Platform Evaluation
- Simulation
- OS-based Solution
- Conclusions

Tested Multicore Platforms

Platform	Raspberry Pi 3	Odroid C2	Raspberry Pi 2	Odroid	XU4
SoC	BCM2837	AmlogicS905	BCM2836	Exynos <mark>5422</mark>	
CPU	4x Cortex-A53	4x Cortex-A53	4x Cortex-A7	4x Cortex-A7	4x Cortex-A15
	in-order	in-order	in-order	in-order	out-of-order
	1.2GHz	1.5GHz	900MHz	1.4GHz	2.0GHz
Private Cache	32/32KB	32/32KB	32/32KB	32/32KB	32/32KB
Shared Cache	512KB (16-way)	512KB (16-way)	512KB (16-way)	512KB (16-way)	2MB (16-way)
Memory	1GB LPDDR2	2GB DDR3	1GB LPDDR2	2GB LP <mark>DDR3</mark>	
(Peak BW)	(8.5GB/s)	(12.8GB/s)	(8.5GB/s)	(14.90	B/s)


- Tests run across four platforms:
 - 3 CPU architectures: A53(in-order), A7(in-order), A15(OoO).

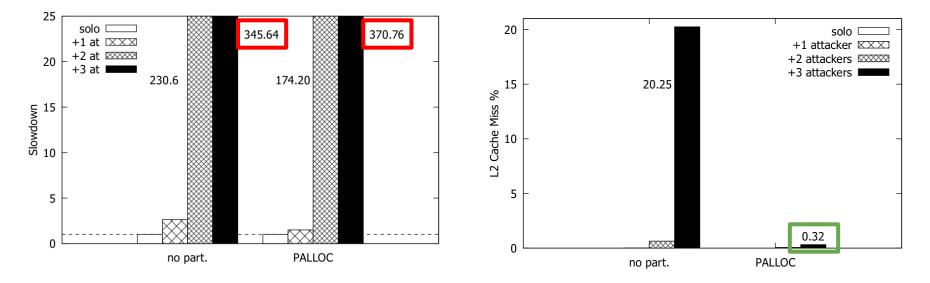
Cache DoS Attacks

- Measure the performance of the 'Victim'.
 - (1) Solo, and (2) with attackers.
- 'Victim' tasks:
 - BwRead(LLC).
 - EEMBC(L1) and SD-VBS(LLC).

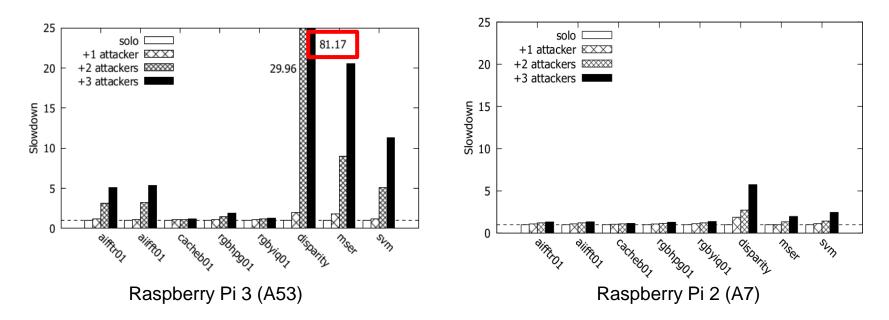

Effects of Cache Read DoS Attacks

- No effect on A53 or A7.
- Only A15 experiences slowdown.
 - MSHR contention¹.

¹ Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems. *IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS)*, IEEE, 2016.

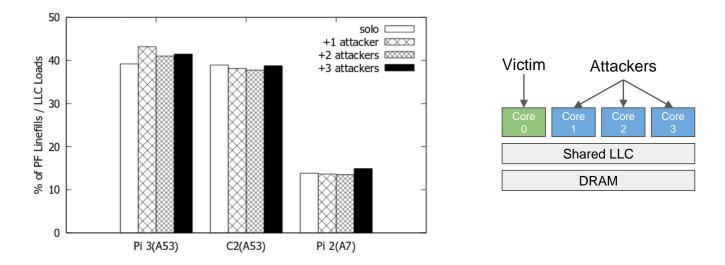

Effects of Cache Write DoS Attacks

• A53 experiences massive slowdown.


Effect of Cache Partitioning (Pi 3)

• Give each core a private fourth of the LLC.

- Partitioning doesn't protect against DoS attacks.
 - Internal cache structures are not partitioned.


EEMBC and SD-VBS

- The Pi 3 (A53) is more susceptible to write DoS attacks.
- DoS attacks are more effective on *LLC sensitive victims* (SD-VBS).

A53 vs A7

- A53 supports 3 outstanding L1D misses.
 - A7 only supports 1.

• A53 prefetchers generate more concurrent cache accesses.

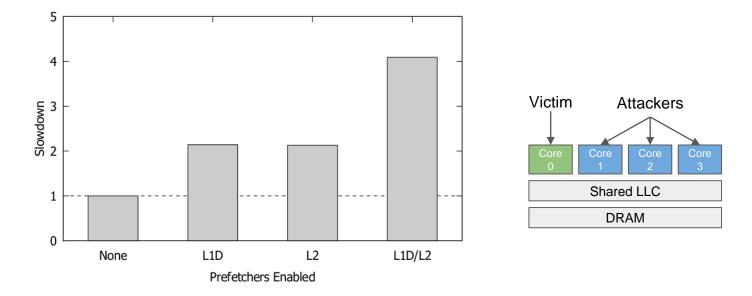
Hypothesis

Finding: write cache attackers are effective on A53, but not A7.

Why?

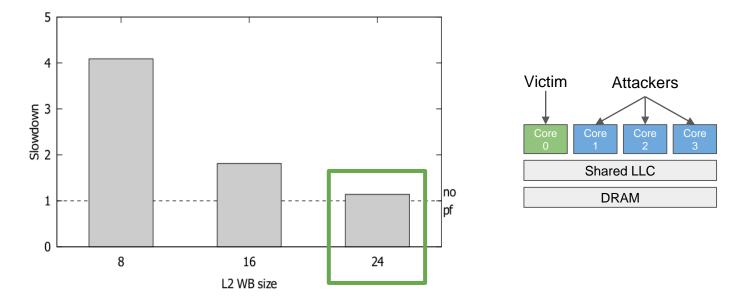
Hypothesis:

- A53 can generate more concurrent cache accesses (hardware prefetcher).
- Concurrent reads (read attacker) \rightarrow stress MSHR.
- Concurrent writes (write attacker) \rightarrow stress MSHR and **WB Buffer**.
- Writeback buffer contention.


Outline

- Background
- Threat Model/Code
- Embedded Platform Evaluation
- Simulation
- OS-based Solution
- Conclusions

Simulation Environment


- Gem5 + Ramulator.
 - Quad-core CPU.
 - Adapt non-blocking private L1 and shared L2 caches.
 - Configured to prevent MSHR contention.
 - L1D misses + L2 prefetcher accesses < L2 MSHRs.
- Workload: cache write DoS attacks.
- Vary prefetcher configuration and L2 Writeback Buffer size.

Effect of Hardware Prefetchers

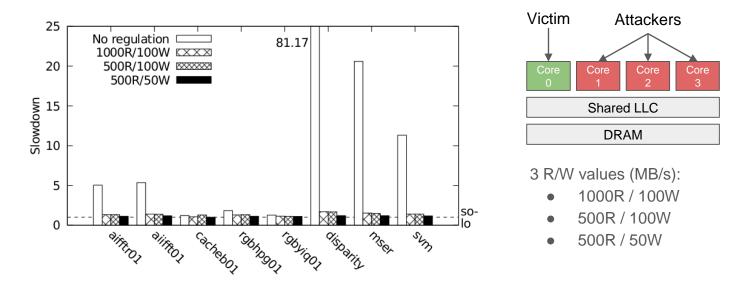
- Hardware prefetchers increase cache blocking.
 - Writeback buffer contention.

Effect of Writeback Buffer Size

- Large WB size decreases cache blocking.
 - Reduces writeback buffer contention.

Outline

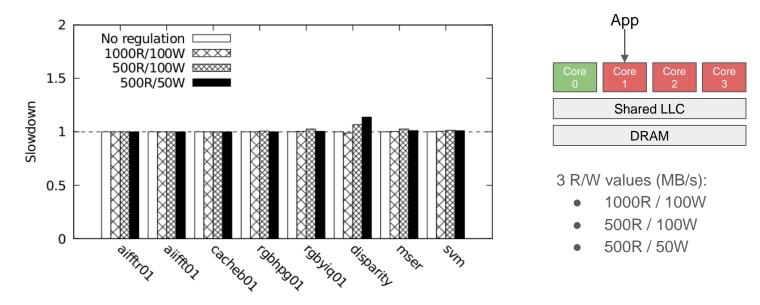
- Background
- Threat Model/Code
- Embedded Platform Evaluation
- Simulation
- OS-based Solution
- Conclusions


OS-based Solution

- Idea: regulate writes more than reads.
- MemGuard¹.
 - Regulate per-core memory traffic at a regular interval (1 ms).
 - Use LLC miss performance counter.
 - Treats reads and writes equally.
- Our extension
 - Use two performance counters: LLC miss and LLC writeback.
 - Separate read and write regulations.
 - Low threshold for writes, and high threshold for reads.

¹ Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Platforms. *IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS)*, IEEE, 2013.

Effect of R/W Regulation


• Re-run DoS attacks on EEMBC and SD-VBS with extended solution.

• Effectively protects against cache DoS attacks.

Effect R/W Regulation on Non-attacker Apps

• Run real-world benchmarks on regulated cores.

• Minimal impacts on normal applications.

Outline

- Background
- Threat Model/Code
- Embedded Platform Evaluation
- Simulation
- OS-based Solution
- Conclusions

Conclusions

- We observe extreme impacts of cache write DoS attacks.
 - Can cause over **300X** slowdown on an actual platform.
- Through simulation, we identify an internal cache structure, the **Writeback buffer**, as a potential attack vector.
- We propose an OS-based solution to mitigate these DoS attacks.
 - Can successfully do so with little to no impact on non-attacking tasks.

Thank you

Disclaimer:

This research is supported by NSF CNS 1718880, CNS 1815959, and NSA Science of Security initiative contract #H98230-18-D-0009.

