DeepPicar: A Low-cost Deep Neural Network-based
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DeepPicar Real-Time Control Loop
while True:
# 1. read from the forward camera
D] output: steering angle frame = camera.read/()
mneLmns fcd: fully-connected layer # 2. convert to 200x66 rgb pixels
50 neurons fcS: Tully-connected Layer frame = preprocess (frame)
100 neurons fe2: fully-connected layer L5 T L
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angle = CNN_inferencing (frame)
C convs: 64@1x18 # 4. motor control
343 kernel - convolutional layer Isteerlng motc_::rr control (angle)
SE» j-_-j conva: 64@3x20 # 5. wait till next period begins
K3 2 kel convolutional layer walt_till_next_period()
X3 kernel
= conv3: A8@5x22 . . .
. convolutional layer * Simple control loop implementation
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T Real-Time Performance
convl: 24({@31x98
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* Low-cost autonomous RC car platform using a deep I I I 3095 U 130
convolutional neural network (CNN) [1]. g | ' 2% |
 Small scale replication of NVIDIA’s Dave-2 [2].
* Use the same CNN: ~250K weights, ~¥27M connections. 0
. . . . 1 2 3 4
* Uses Raspberry Pi 3 for real-time CNN inferencing (CPU only). pof cores

e Uses python, TensorFlow, and Linux

* >20 Hz using just one Cortex-A53 core
* Uses affordable components (<$100).

* >30 Hz using two cores.

[tem Cost (3)
Raspberry I’i 3 Model B 35 Use Cases
New Bright 1:24 scale RC car 10
Playstation Eye camera, i * Research
aystat "F Ce » DeepPicar’s CNN workload can be used as a representative
Pololu DRV8835 motor hat 3 real-world benchmark workload.
Fxternal battery pack & misc. 10 * Education
Total 70 > DeepPicar can be used for student projects (both University

and K-12) to have hands on experiences at a much lower cost.
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End-to-End Deep Learning-based Control Availability

p

A

Observation

\

4

p

A

Observation

\

’

4

p

State
estimation

A

h 4

)

A

4

Modeling &
prediction

\

p

4

"

A

Motion
planning

\

)

4

p

Low-level
controller
(e.g. PD)

\

4

(a) Standard robotics control approach
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(b) End-to-end deep learning approach

* Replace traditional control pipeline with a DNN.
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* Source code, building, videos, and operating instructions:
https://github.com/mbechtel2/DeepPicar-v2

Demonstration

* First and third person perspectives of DeepPicar driving
autonomously.
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