
DeepPicarMicro: Applying TinyML to
Autonomous Cyber Physical Systems

Michael Bechtel, QiTao Weng, Heechul Yun
University of Kansas, US

Cyber Physical Systems (CPS)

● Deployed in many different areas of our daily lives.
○ Automotive, avionics, healthcare, etc.

● CPS are becoming more intelligent.
○ Many now employ machine learning algorithms.

Autonomous Vehicles Autonomous UAVs Smart Robots

2

DAVE-21

● 2016 project by NVIDIA
● Used a DNN called PilotNet
● Could drive on public roads

1 Mariusz Bojarski, et al. End to End Learning for Self-Driving Cars. arXiV, 2016. 3

PilotNet architecture

DeepPicar1

● Low cost, small scale replication of DAVE-2
● Uses the exact same PilotNet DNN
● Runs on a Raspberry Pi 3/4 in real-time

4
1 Michael Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car. IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2018.

● Q: Can we run PilotNet on a MCU platform?

Microcontroller Unit (MCU)
● Widely used in many embedded/CPS applications
● Integrates computing logic, storage, memory into a single chip
● Inexpensive, power efficient, and highly deterministic
● But highly resource constrained.

● Challenge: How to run complex DNNs on an MCU?

5

TinyML
● Refers to frameworks and methods to execute DNNs locally on MCUs

○ Premise: better reliability, energy efficiency, and privacy than connecting to cloud servers
● Significant interests exist in both industry and academia

○ Big potential in many industries: agriculture, medical devices, industrial systems…
● Several ML frameworks are specifically designed to target MCUs

○ TensorFlow Lite Micro (TFLMicro), CMSIS-NN, uTensor, etc.

● Our work focuses on evaluating the potential of TinyML in CPS

6

Outline

● Background
● DeepPicarMicro
● Neural Architecture Search (NAS)
● Evaluation
● Conclusion

7

DeepPicarMicro

● An MCU-based self-driving car testbed
● Uses a Raspberry Pi Pico

○ 2 Cortex-M0+ cores @133MHz
○ 264KB SRAM, 2MB Flash

● Employs CNN-based end-to-end control
● Uses TFLMicro framework

8

PilotNet Architecture
● 9-layers

○ Five convolutional
○ Four fully-connected

● ~250K weights
○ Model size of ~1MB (fp32, tflite)

● ~27M MACs
○ Multiply-accumulate operations

● Non-trivial network to run on an MCU
● We apply various optimizations to run it on a Pico MCU

9

Quantization
● Standard optimization technique for mobile/embedded

○ Reduces model size (ex: 32-bit → 8-bit weight: 4X reduction)
○ Can also improve performance due to greater parallelism
○ Typically with modest impact to accuracy

● We applied quantization-aware training1

○ Minimize accuracy loss caused by quantization
● Impact of quantization to PilotNet (32-bit to 8-bit)

○ Model size: ~1MB → ~250KB (~4X reduction) << Pico MUC’s Flash (2MB)
○ Accuracy: 87.6% ⇒ 86.9% (<1% accuracy loss)

10
1 https://www.tensorflow.org/model_optimization/guide/quantization/training

Memory (SRAM) Constraints
● TFLMicro needs input and output activation

buffers in SRAM for processing DNN layers
● The largest layer determines the maximum

SRAM demand
○ Layer size = input + output activation buffers
○ PilotNet’s largest layer (~110KB) < Pico MCU’s

SRAM (264KB)

11

● PilotNet can fit and achieve high accuracy on a Pico MCU
● But its inference latency (> 3 second) is still too high for real-time

● Split standard 2D convolutional layers into two layers
○ Depthwise Convolution: # of filters = # of input channels
○ Pointwise convolution: Convolution with a 1x1 kernel size

● Reduces per-layer MACs by a factor of K2

○ K = layer kernel size

Depthwise Separable Layers1

12

Standard Convolution Depthwise Separable

1 Francois Chollet. Xception: Deep Learning With Depthwise Separable Convolutions. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Impact of Depthwise Separable Layers on PilotNet

● Use Depthwise Separable layers in PilotNet
○ Instead of the original convolutional layers

13

● Performance is still unsatisfactory (>500ms per inference on Pico MCU)
● Q: Can we further optimize PilotNet to run in real-time on MCUs?

Reduces MACs by ~12.6X

Outline

● Background
● DeepPicarMicro
● Neural Architecture Search (NAS)
● Evaluation
● Conclusion

14

Neural Architecture Search (NAS)

● Technique used to find optimal DNN architectures
○ Systematically explore different network architectures

● Search Space
○ The set of all DNN layouts to search
○ Typically defined by varying DNN parameters that affect model MACs
○ Ex: Layer width, input resolution, etc.

● Search objective
○ Many NAS maximize accuracy subject to resource constraints
○ Common constraints: latency, SRAM/flash sizes

15

NAS on PilotNet

● Inspired by the state-of-the-art MCUNet1 paper’s approach
● Search space

○ Width multiplier = {0.2, 0.4, 0.7, 0.8, 0.9, 1.0}
○ Depth = All unique combinations of 3 to 9 layers
○ Input resolution = 68x68x1 (height/width/depth)
○ Total space = 720 distinct layouts

● Evaluate all possible layouts in the search space
○ Must check whether the constraints are met
○ Ex: 133 ms control deadline

16
1 Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, Song Han. MCUNet: Tiny Deep Learning on IoT Devices. Annual Conference on Neural
Information Processing Systems (NeurIPS), 2020.

Latency Prediction
● Problem: How to know a model’s latency?

○ Executing a large number of models on a real MCU is time consuming
● A model's MACs correspond to its inference latency

○ Due to MCUs' simpler architectures, this relationship is highly linear
● To find this relationship on the Pico, we run 50 different DNNs

○ MACs range from ~54K to ~2.1M

17

~470,000 MACs → 133 ms

Search Algorithm
● Start with all model layouts in search space
● Only search over layouts with MACs <= 470K

○ Out of 720, we search over 349 model layouts

● Train a DNN model for each layout we search
● We measure both model validation loss and latency

○ In order to find the optimal model

18

Performance Prediction
● Accuracy alone is not sufficient to predict CPS performance
● Latency is also a critical property in many CPS

○ Lower accuracy & latency can be better than higher accuracy & latency
○ Higher latency → longer reaction time → worse CPS performance

● Need to consider both accuracy and latency
● Proposed joint optimization on validation loss and latency

○ Calculate a heuristic score for each model:

● Choose the model with the lowest heuristic score

19

Outline

● Background
● DeepPicarMicro
● Neural Architecture Search (NAS)
● Evaluation
● Conclusion

20

Real Track Setup

● We constructed and used a simple real-world track
● Train models on 10,000 samples

● We evaluate 16 models
● Run all models around the track 10 times

○ Measure number of laps without crashes

21

Performance in Real Track

● Both accuracy and latency affect performance
● The heuristic score was effective at predicting performance

○ The predictions for some models were inaccurate (e.g. Model #5)

22

Udacity Simulator Setup

● Perform similar tests in a simulator environment
○ Better evaluate how accuracy and latency affect performance

● Train models on ~14.4K samples
○ All models can run on the Pico MCU

● In total, we test 5 models
○ Validation losses from 0.26 to 0.45
○ Add synthetic delays from 0 to 100 ms

● Perform 5 runs with each model
○ Run for 300 seconds or till crash
○ Measure average runtime

23

Performance in Udacity Simulator

● Both validation loss and latency affect performance
● Heuristic scores are again decent at predicting performance

○ There is still much room for improvement

24

Average runtime (seconds) Heuristic scores

Outline

● Background
● DeepPicarMicro
● Neural Architecture Search (NAS)
● Evaluation
● Conclusion

25

Conclusion

● We present DeepPicarMicro, an MCU-based autonomous RC car testbed
○ Existing DNN architectures can be consolidated and run on MCUs
○ For PilotNet, performance is too poor for real-time applicability

● We employ a NAS approach to optimize the PilotNet architecture
○ We use a Joint Optimization strategy on validation loss and latency

● We evaluate MCU fitting models in real-world and simulated environments
○ Models can successfully navigate both tracks
○ Both latency and accuracy are important factors for performance

26

Source code available at:
https://github.com/CSL-KU/DeepPicarMicro

Thank you!
Disclaimer:

This research is supported by NSF grant CNS-

1815959, CPS-2038923 and NSA Science of Security initia-

tive contract no. H98230-18-D-000.

27

