
MemGuard: Memory Bandwidth Reservation
System for Efficient Performance Isolation in

Multi-core Platforms

Apr 9, 2012
Heechul Yun+, Gang Yao+, Rodolfo Pellizzoni*,

Marco Caccamo+, Lui Sha+

+University of Illinois at Urbana-Champaign
*University of Waterloo

Real-Time Applications

2

• Resource intensive real-time applications
– Multimedia processing(*), real-time data analytic(**), object tracking

• Requirements
– Need more performance and cost less è Commercial Off-The Shelf (COTS)
– Performance guarantee (i.e., temporal predictability and isolation)

(*) ARM, QoS for High-Performance and Power-Efficient HD Multimedia, 2010
(**) Intel, The Growing Importance of Big Data and Real-Time Analytics, 2012

Modern System-on-Chip (SoC)

• More cores
– Freescale P4080 has 8 cores

• More sharing
– Shared memory hierarchy (LLC, MC, DRAM)
– Shared I/O channels

3

More performance
Less cost

But, isolation?

Problem: Shared Memory Hierarchy

• Shared hardware resources
• OS has little control

Core1 Core2 Core3 Core4

DRAM

Part 1 Part 2 Part 3 Part 4

4

Memory Controller (MC)

Shared Last Level Cache (LLC) Space
contention

Access
contention

Memory Performance Isolation

• Q. How to guarantee worst-case performance?
– Need to guarantee memory performance

Part 1 Part 2 Part 3 Part 4

5

Core1 Core2 Core3 Core4

DRAM

Memory Controller

LLC LLC LLC LLC

Inter-Core Memory Interference

• Significant slowdown (Up to 2x on 2 cores)
• Slowdown is not proportional to memory bandwidth usage

6

Core

Shared Memory

foreground
X-axis

Intel Core2

L2 L2

1.0

1.2

1.4

1.6

1.8

2.0

2.2

437.leslie3d 462.libquantum 410.bwaves 471.omnetpp

Slowdown ratio due to interference

(1.6GB/s) (1.5GB/s) (1.5GB/s) (1.4GB/s)

Core

background
470.lbm

Ru
nt

im
e

slo
w

do
w

n

Core

Bank 4

Background: DRAM Chip

Row 1
Row 2
Row 3
Row 4
Row 5

Bank 1

Row Buffer

Bank 2
Bank 3

activate

precharge

Read/write • State dependent access latency
– Row miss: 19 cycles, Row hit: 9 cycles

(*) PC6400-DDR2 with 5-5-5 (RAS-CAS-CL latency setting)

READ (Bank 1, Row 3, Col 7)

Col7

Background: Memory Controller(MC)

• Request queue
– Buffer read/write requests from CPU cores
– Unpredictable queuing delay due to reordering

8

Bruce Jacob et al, “Memory Systems: Cache, DRAM, Disk” Fig 13.1.

Background: MC Queue Re-ordering

• Improve row hit ratio and throughput
• Unpredictable queuing delay

9

Core1: READ Row 1, Col 1
Core2: READ Row 2, Col 1
Core1: READ Row 1, Col 2

Core1: READ Row 1, Col 1
Core1: READ Row 1, Col 2
Core2: READ Row 2, Col 1

DRAM DRAM

Initial Queue Reordered Queue

2 Row Switch 1 Row Switch

Challenges for Real-Time Systems
• Memory controller(MC) level queuing delay
– Main source of interference
– Unpredictable (re-ordering)

• DRAM state dependent latency
– DRAM row open/close state

• State of Art
– Predictable DRAM controller h/w: [Akesson’07]

[Paolieri’09] [Reineke’11] à not in COTS

10

Core
1

Core
2

Core
3

Core
4

DRAM

Memory ControllerMemory Controller

DRAM

Predictable Memory Controller

Our Approach

• OS level approach
– Works on commodity h/w

– Guarantees performance of each core

– Maximizes memory performance if possible

11

Core
1

Core
2

Core
3

Core
4

DRAM

Memory ControllerMemory Controller

DRAM

OS control mechanism

Operating System

MemGuard

12

Core1 Core2 Core3 Core4
PMC PMC PMC PMC

DRAM DIMM

MemGuard

Multicore Processor
Memory Controller

• Memory bandwidth reservation and reclaiming

BW
Regulator

BW
Regulator

BW
Regulator

BW
Regulator0.9GB/s 0.1GB/s 0.1GB/s 0.1GB/s

Reclaim Manager

Memory Bandwidth Reservation
• Idea

– OS monitor and enforce each core’s memory bandwidth usage

13

1ms 2ms0
Dequeue tasks

Enqueue tasks

Dequeue tasks

Budget

Core
activity

2
1

computation memory fetch

Memory Bandwidth Reservation

• Key Insight
– B/W regulators control memory request rates
– (Cores)request rate ≤ (DRAM) service rate à

(Memory controller) minimal queuing delay

• System-wide reservation rule
– up to the guaranteed bandwidth rmin

– ∑!"#$ 𝐵! ≤ 𝑟$!%
• m: #of cores
• Bi: Core i’s b/w reservation

14

Guaranteed Bandwidth: rmin
• Worst-case DRAM performance (service rate)

– All memory requests go to the same bank (no bank-level
parallelism) and cause row miss

• Example (PC6400-DDR2*)
– Peak B/W: 6.4GB/s

• 64bytes I/O = 10ns, hide command latency by interleaving
– Calculated guaranteed B/W: 1.3GB/s

• PRE + ACT + RD + I/O (8x8bytes) = 47.5ns
– Measured guaranteed B/W: 1.2GB/s

• Performance Isolation
– Sum of memory b/w reservation ≤ guaranteed b/w

15
(*) PC6400-DDR2 with 5-5-5 (RAS-CAS-CL latency setting)

Memory Access Pattern

• Memory access patterns vary over time
• Static reservation is inefficient

16

Time(ms)

Memory
requests

Time(ms)

Memory
requests

Memory Bandwidth Reclaiming

• Key objective
– Redistribute excess bandwidth to demanding

cores
– Improve memory b/w utilization

• Predictive bandwidth donation and reclaiming
– Donate unneeded budget predictively
– Reclaim on-demand basis

17

Reclaim Example
• Time 0

– Initial budget 3 for both cores

• Time 3,4
– Decrement budgets

• Time 10 (period 1)
– Predictive donation (total 4)

• Time 12,15
– Core 1: reclaim

• Time 16
– Core 0: reclaim

• Time 17
– Core 1: no remaining budget; dequeue

tasks

• Time 20 (period 2)
– Core 0 donates 2
– Core 1 do not donate

18

Best-effort Bandwidth Sharing

• Key objective
– Utilize best-effort bandwidth whenever possible

• Best-effort bandwidth
– After all cores use their budgets (i.e., delivering

guaranteed bandwidth), before the next period begins

• Sharing policy
– Maximize throughput
– Broadcast all cores to continue to execute

19

Evaluation Platform

• Intel Core2Quad 8400, 4MB L2 cache, PC6400 DDR2 DRAM
– Prefetchers were turned off for evaluation
– Power PC based P4080 (8core) and ARM based Exynos4412(4core) also has been ported

• Modified Linux kernel 3.6.0 + MemGuard kernel module
– https://github.com/heechul/memguard/wiki/MemGuard

• Used the entire 29 benchmarks from SPEC2006 and synthetic benchmarks

20

Core 0

I D

L2 Cache

Intel Core2Quad

Core 1

I D

Core 2

I D

L2 Cache

Core 3

I D

Memory Controller

DRAM

https://github.com/heechul/memguard/wiki/MemGuard

Evaluation Results

C0

Shared Memory

C2

Intel Core2

L2 L2

462.libquantum
(foreground)

memory hogs
(background)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

run-alone co-run run-alone co-run run-alone co-run

w/o Memguard Memguard
(reservation only)

Memguard
(reclaim+share)

N
or

m
al

ize
d

IP
C

Foreground (462.libquantum)

C2

53% performance reduction

Evaluation Results

C0

Shared Memory

C2

Intel Core2

L2 L2

462.Libquantum
(foreground)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

run-alone co-run run-alone co-run run-alone co-run

w/o Memguard Memguard
(reservation only)

Memguard
(reclaim+share)

N
or

m
al

ize
d

IP
C

Foreground (462.libquantum)

1GB/s

memory hogs
(background)

C2

.2GB/s

Reservation provides performance isolation

Guaranteed
performance

Evaluation Results

C0

Shared Memory

C2

Intel Core2

L2 L2

462.Libquantum
(foreground)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

run-alone co-run run-alone co-run run-alone co-run

w/o Memguard Memguard
(reservation only)

Memguard
(reclaim+share)

N
or

m
al

ize
d

IP
C

Foreground (462.libquantum)

1GB/s

memory hogs
(background)

C2

.2GB/s

Reclaiming and Sharing maximize performance

Guaranteed
performance

SPEC2006 Results

24

0.0

0.5

1.0

1.5

2.0

2.5

3.0

47
0.l

bm

43
7.l

esl
ie3

d

46
2.l

ibqu
an

tum

41
0.b

wave
s

47
1.o

mne
tpp

45
9.G

em
sFD

TD

48
2.s

ph
inx3

42
9.m

cf

45
0.s

op
lex

43
3.m

ilc

43
4.z

eu
sm

p

48
3.x

ala
nc

bm
k

43
6.c

ac
tusA

DM
40

3.g
cc

45
6.h

mmer

47
3.a

sta
r

40
1.b

zip
2

40
0.p

erl
ben

ch

44
7.d

ea
lII

45
4.c

alc
uli

x

46
4.h

26
4re

f

44
5.g

ob
mk

45
8.s

jen
g

43
5.g

romac
s

48
1.w

rf

44
4.n

am
d

46
5.t

onto

41
6.g

am
ess

45
3.p

ovra
y

ge
omea

n

foreground (X-axis) @1.0GB/s

N
or

m
al

ize
d

IP
C

Normalized to guaranteed performance

• Guarantee(soft) performance of foreground (x-axis)
– W.r.t. 1.0GB/s memory b/w reservation

C0

Shared Memory

C2

Intel Core2

L2 L2

X-axis
(foreground)

1GB/s

470.lbm
(background)

C2
.2GB/s

SPEC2006 Results

• Improve overall throughput
– background: 368%, foreground(X-axis): 6%

25

0.0

1.0
2.0

3.0

4.0
5.0

6.0
7.0

8.0
9.0

47
0.l

bm

43
7.l

esl
ie3

d

46
2.l

ibqu
an

tum

41
0.b

wave
s

47
1.o

mne
tpp

45
9.G

em
sFD

TD

48
2.s

ph
inx3

42
9.m

cf

45
0.s

op
lex

43
3.m

ilc

43
4.z

eu
sm

p

48
3.x

ala
nc

bm
k

43
6.c

ac
tusA

DM
40

3.g
cc

45
6.h

mmer

47
3.a

sta
r

40
1.b

zip
2

40
0.p

erl
ben

ch

44
7.d

ea
lII

45
4.c

alc
uli

x

46
4.h

26
4re

f

44
5.g

ob
mk

45
8.s

jen
g

43
5.g

romac
s

48
1.w

rf

44
4.n

am
d

46
5.t

onto

41
6.g

am
ess

45
3.p

ovra
y

ge
omea

n

foreground (X-axis) @1.0GB/s background (470.lbm) @0.2GB/s

N
or

m
al

ize
d

IP
C Normalized to guaranteed performance

C0

Shared Memory

C2

Intel Core2

L2 L2

X-axis
(foreground)

1GB/s

470.lbm
(background)

C2
.2GB/s

Conclusion

• Inter-Core Memory Interference
– Big challenge for multi-core based real-time systems
– Sources: queuing delay in MC, state dependent latency in

DRAM

• MemGuard
– OS mechanism providing efficient per-core memory

performance isolation on COTS H/W
– Memory bandwidth reservation and reclaiming support
– https://github.com/heechul/memguard/wiki/MemGuard

26

https://github.com/heechul/memguard/wiki/MemGuard

Thank you.

27

Effect of Reclaim

• IPC improvement of background (lbm@0.2GB/s) is 3.8x
• IPC reduction of foreground (SPEC@1.0GB/s) is 3%

28

mailto:lbm@0.2GB/s
mailto:SPEC@1.0GB/s

Reclaim Underrun Error

29

Effect of Spare Sharing

• IPC of background (lbm@0.2GB/s) improves 40%
• IPC of foreground (SPEC@1.0GB/s) also improves 9%

30

mailto:lbm@0.2GB/s
mailto:SPEC@1.0GB/s

Isolation and Throughput Effect of rmin

• 4 core configuration

31

Isolation Effect of Reservation

• Sum b/w reservation < rmin (1.2GB/s)à Isolation
– 1.0GB/s(X-axis) + 0.2GB/s(lbm) = rmin

32

Isolation

Core 0: 1.0 GB/s for X-axis

Core 2: 0.2 – 2.0 GB/s for lbm

Solo IPC@1.0GB/s

Effect of MemGuard

• Soft real-time application on each core.
• Provides differentiated memory bandwidth

– weight for each core=1:2:4:8 for the guaranteed b/w, spare bandwidth sharing is enabled

33

Hard/Soft Reservation on MemGuard

• Hard reservation (w/o reclaiming)
– Can guarantee memory bandwidth Bi regardless of

other cores at each period
– Wasted if not used

• Soft reservation (w/ reclaiming)
– Misprediction can caused missed b/w guarantee at

each period
– Error rate is small---less than 5%.

• Selectively applicable on per-core basis

34

