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Real-Time Applications
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• Resource intensive real-time applications
– Multimedia processing(*), real-time data analytic(**), object tracking

• Requirements
– Need more performance and cost less è Commercial Off-The Shelf (COTS) 
– Performance guarantee (i.e., temporal predictability and isolation)

(*) ARM, QoS for High-Performance and Power-Efficient HD Multimedia, 2010
(**) Intel, The Growing Importance of Big Data and Real-Time Analytics, 2012



Modern System-on-Chip (SoC)

• More cores
– Freescale P4080 has 8 cores

• More sharing 
– Shared memory hierarchy (LLC, MC, DRAM)
– Shared I/O channels
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More performance
Less cost 

But, isolation?



Problem: Shared Memory Hierarchy

• Shared hardware resources
• OS has little control

Core1 Core2 Core3 Core4

DRAM

Part 1 Part 2 Part 3 Part 4
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Memory Performance Isolation

• Q. How to guarantee worst-case performance?
– Need to guarantee memory performance

Part 1 Part 2 Part 3 Part 4
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Inter-Core Memory Interference

• Significant slowdown (Up to 2x on 2 cores)
• Slowdown is not proportional to memory bandwidth usage
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Bank 4

Background: DRAM Chip

Row 1
Row 2
Row 3
Row 4
Row 5

Bank 1

Row Buffer

Bank 2
Bank 3

activate

precharge

Read/write • State dependent access latency
– Row miss: 19 cycles, Row hit: 9 cycles

(*) PC6400-DDR2 with 5-5-5 (RAS-CAS-CL latency setting)

READ (Bank 1, Row 3, Col 7)

Col7



Background: Memory Controller(MC)

• Request queue
– Buffer read/write requests from CPU cores
– Unpredictable queuing delay due to reordering
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Bruce Jacob et al, “Memory Systems: Cache, DRAM, Disk” Fig 13.1. 



Background: MC Queue Re-ordering

• Improve row hit ratio and throughput
• Unpredictable queuing delay
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Core1: READ Row 1, Col 1
Core2: READ Row 2, Col 1
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Challenges for Real-Time Systems
• Memory controller(MC) level queuing delay
– Main source of interference
– Unpredictable (re-ordering)

• DRAM state dependent latency
– DRAM row open/close state

• State of Art
– Predictable DRAM controller h/w: [Akesson’07] 

[Paolieri’09] [Reineke’11] à not in COTS
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Our Approach

• OS level approach
– Works on commodity h/w

– Guarantees performance of each core

– Maximizes memory performance if possible
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Operating System

MemGuard
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Core1 Core2 Core3 Core4
PMC PMC PMC PMC

DRAM DIMM

MemGuard

Multicore Processor
Memory Controller

• Memory bandwidth reservation and reclaiming
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Reclaim Manager



Memory Bandwidth Reservation
• Idea

– OS monitor and enforce each core’s memory bandwidth usage

13

1ms 2ms0
Dequeue tasks 

Enqueue tasks 

Dequeue tasks 

Budget

Core
activity

2
1

computation memory fetch



Memory Bandwidth Reservation

• Key Insight
– B/W regulators control memory request rates 
– (Cores)request rate ≤ (DRAM) service rate à 

(Memory controller) minimal queuing delay

• System-wide reservation rule
– up to the guaranteed bandwidth rmin

– ∑!"#$ 𝐵! ≤ 𝑟$!%
• m: #of cores
• Bi: Core i’s b/w reservation
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Guaranteed Bandwidth: rmin 
• Worst-case DRAM performance (service rate)

– All memory requests go to the same bank (no bank-level 
parallelism) and  cause row miss

• Example (PC6400-DDR2*)
– Peak B/W: 6.4GB/s

• 64bytes I/O = 10ns, hide command latency by interleaving
– Calculated guaranteed B/W:  1.3GB/s

• PRE + ACT + RD + I/O (8x8bytes) = 47.5ns
– Measured guaranteed B/W: 1.2GB/s

• Performance Isolation
– Sum of memory b/w reservation ≤ guaranteed b/w
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(*) PC6400-DDR2 with 5-5-5 (RAS-CAS-CL latency setting)



Memory Access Pattern

• Memory access patterns vary over time
• Static reservation is inefficient
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Memory Bandwidth Reclaiming

• Key objective
– Redistribute excess bandwidth to demanding 

cores
– Improve memory b/w utilization

• Predictive bandwidth donation and reclaiming
– Donate unneeded budget predictively
– Reclaim on-demand basis
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Reclaim Example
• Time 0

– Initial budget 3 for both cores

• Time 3,4
– Decrement budgets

• Time 10 (period 1)
– Predictive donation (total 4)

• Time 12,15
– Core 1: reclaim

• Time 16
– Core 0: reclaim

• Time 17
– Core 1: no remaining budget; dequeue 

tasks

• Time 20 (period 2)
– Core 0 donates 2
– Core 1 do not donate 
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Best-effort Bandwidth Sharing

• Key objective
– Utilize best-effort bandwidth whenever possible

• Best-effort bandwidth
– After all cores use their budgets (i.e., delivering 

guaranteed bandwidth), before the next period begins

• Sharing policy
– Maximize throughput
– Broadcast all cores to continue to execute
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Evaluation Platform

• Intel Core2Quad 8400, 4MB L2 cache, PC6400 DDR2 DRAM
– Prefetchers were turned off for evaluation
– Power PC based P4080 (8core) and ARM based Exynos4412(4core) also has been ported

• Modified Linux kernel 3.6.0 + MemGuard kernel module
– https://github.com/heechul/memguard/wiki/MemGuard

• Used the entire 29 benchmarks from SPEC2006 and synthetic benchmarks
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Evaluation Results
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Evaluation Results
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Evaluation Results
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SPEC2006 Results
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SPEC2006 Results

• Improve overall throughput
– background: 368%, foreground(X-axis): 6%
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Conclusion

• Inter-Core Memory Interference 
– Big challenge for multi-core based real-time systems
– Sources: queuing delay in MC, state dependent latency in 

DRAM

• MemGuard
– OS mechanism providing efficient per-core memory 

performance isolation on COTS H/W
– Memory bandwidth reservation and reclaiming support
– https://github.com/heechul/memguard/wiki/MemGuard
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https://github.com/heechul/memguard/wiki/MemGuard


Thank you.
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Effect of Reclaim

• IPC improvement of background (lbm@0.2GB/s) is 3.8x
• IPC reduction of foreground (SPEC@1.0GB/s) is 3% 
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Reclaim Underrun Error
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Effect of Spare Sharing

• IPC of background (lbm@0.2GB/s) improves 40%
• IPC of foreground (SPEC@1.0GB/s) also improves 9%
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Isolation and Throughput Effect of rmin

• 4 core configuration
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Isolation Effect of Reservation

• Sum b/w reservation < rmin (1.2GB/s)à Isolation
– 1.0GB/s(X-axis) + 0.2GB/s(lbm) = rmin
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Isolation

Core 0: 1.0 GB/s for X-axis 

Core 2: 0.2 – 2.0 GB/s for lbm

Solo IPC@1.0GB/s



Effect of MemGuard

• Soft real-time application on each core. 
• Provides differentiated memory bandwidth 

– weight for each core=1:2:4:8 for the guaranteed b/w, spare bandwidth sharing is enabled 
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Hard/Soft Reservation on MemGuard

• Hard reservation (w/o reclaiming)
– Can guarantee memory bandwidth Bi  regardless of 

other cores at each period
– Wasted if not used

• Soft reservation (w/ reclaiming)
– Misprediction can caused missed b/w guarantee at 

each period
– Error rate is small---less than 5%.

• Selectively applicable on per-core basis
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