
Micro-Architectural Attacks on
Cyber-Physical Systems

07/24/2019

Heechul Yun

University of Kansas

1

Modern Cyber-Physical Systems

• Cyber Physical Systems (CPS)

– Cyber (Computer) + Physical (Plant)

• Real-time

– Control physical process in real-time

• Safety-critical

– Can harm people/things

• Intelligent

– Can function autonomously

2

Modern System-on-a-Chip (SoC)

3

Core1 Core2 GPU NPU…

Memory Controller (MC)

Shared Cache

• Integrate multiple cores, GPU, accelerators

• Good performance, size, weight, power

• Introduce new challenges in real-time, security

DRAM

Micro-Architectural Attacks

• Micro-architectural hardware components

– E.g., cache, tlb, DRAM, OoO engine, MSHRs, …

• Can affect execution timing

– E.g., delay critical real-time tasks

• Can leak secret

– E.g., Meltdown, Spectre

• Can alter data

– E.g., RowHammer

4

1. Denial-of-Service Attacks

• Attacker’s goal: increase the

victim’s task execution time

• The attacker is on different

core/memory/cache partition

• The attacker can only execute

non-privileged code.

5
M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019

Non-Blocking Cache

• We identified cache internal structures that
are potential DoS attack vectors

6

Writeback Buffer2

● Holds evicted dirty

lines (writebacks).

● Prevents cache refills

from waiting.

Miss Status Holding

Registers1

● Track outstanding

cache misses.

1 P. K. Valsan, H. Yun, F. Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In RTAS, 2016
2 M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019

Cache DoS Attacks

• Denial-of-Service (DoS) attacks targeting internal

hardware structures of a shared cache.

– Block the cache  delay the victim’s execution time

7

Read Attacker
(target MSHRs)

Write Attacker
(target WBBuffer)

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019

Effects of Cache DoS Attacks

LLC

Core1 Core2 Core3 Core4

victim attackers

• Observed worst-case: >300X (times) slowdown

– On popular in-order multicore processors

– Due to contention in cache write-back buffer

>300X

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019

DeepPicar

• A low cost, small scale replication of NVIDIA’s DAVE-2

• Uses the exact same DNN

• Runs on a Raspberry Pi 3 in real-time

9
M. Bechtel. E. McEllhiney, M Kim, H. Yun. “DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car.” In RTCSA, 2018

https://github.com/mbechtel2/DeepPicar-v2

https://github.com/mbechtel2/DeepPicar-v2

Experiment Setup

• DNN control task of DeepPicar (real-world RT)

• IsolBench BwWrite benchmark (synthetic RT)

• Parboil benchmarks (real-world BE)

10

Task WCET
(C ms)

Period
(P ms)

Threads

34 100 2

220 340 2

∞ N/A 4

∞ N/A 4
DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

Parboil cutcp & lbm

RT

BE

W. Ali, M. Bechtel and H. Yun. “Analyzable and Practical Real-Time Gang Scheduling on Multicore Using RT-Gang” In OSPERT, 2019

Effect of Co-Scheduling

11
https://youtu.be/Jm6KSDqlqiU

https://youtu.be/Jm6KSDqlqiU

2. Speculative Execution Attacks

• Attacks exploiting microarchitectural side-effects of
executing speculative (transient) instructions

• Many variants

12

No hardware support
planned in near future

P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” In IEEE S&P, 2019.
(originally published in arXiv archive in Jan. 2018)

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Assume x is under the attacker’s control

• Attacker trains the branch predictor to
predict the branch is in-bound

13
P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” In IEEE S&P, 2019.

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the first line
accesses the secret (val)

1. [ACCESS]

14
P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” In IEEE S&P, 2019.

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the second, secret
dependent load transmits the secret to a
microarchitectural state (e.g., cache)

2. [TRANSMIT]

15
P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” In IEEE S&P, 2019.

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Attacker receives the secret by measuring
timing differences (cache hit vs. miss)
among the elements in the probe array

3. [RECEIVE]

16
P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” In IEEE S&P, 2019.

Cache Timing Channels

• Leak secret via timing differences
– Fast (cache-hit): victim accessed it
– Slow (cache-miss): victim didn’t access it.

• Methods: Flush+Reload, Prime+Probe, etc.

17
Image source: M. Lipp et al., “Meltdown,” In USENIX Security., 2018.

Row of Cells
Row
Row
Row
Row

Wordline

Victim Row

Victim Row
Aggressor Row

3. RowHammer Attacks

18
Credit: This slide is from Dr. Yoongu Kim’s presentation slides of the following paper:

“Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” In ISCA, 2014

• Repeatedly opening and closing a DRAM row can
induces bit flips in adjacent rows storing sensitive
data (e.g., page table)

Isolation

• Traditionally about memory isolation

– Prevent unauthorized access to memory

– Hardware support: MPU, MMU

• What we need

– Prevent influence between domains

– Not only for real-time systems

– But also for security1

• What hardware architecture/OS do we need?

19
1 Q Ge, Y Yarom, T Chothia, G Heiser. "Time Protection: the Missing OS Abstraction". In EuroSys, 2019

Real-Time AND Real-Fast

• Strong isolation AND high performance
20

Performance

P
re

d
ic

ta
b

ili
ty

Performance
Architecture

Real-Time
Architecture

High Perfor
mance Real-
Time Archite

cture

How?

• Embrace complexity for high performance

– Non-blocking cache, prefetcher, out-of-order
execution engine, split-transaction bus, …

• Cross-layer OS/HW collaborative approach

– Need to re-think existing abstractions

– Need new SW/HW contracts to reason and control
all things that affect timing

21

Deterministic Memory

• Declare all or part of address space as deterministic memory

• DM-aware end-to-end resource management

22

Application view (logical) System-level view (physical)

Deterministic
memory

Best-effort
memory

Deterministic Memory-Aware Memory Hierarchy

Core1 Core2 Core3 Core4

W5W1 W2 W3 W4

I D I D I D I D

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

DRAM banks

Cache ways

F. Farshchi, P. K. Valsan, H. Yun. “Deterministic memory abstraction and supporting multicore system architecture.” In ECRTS, 2018

Data-centric cross-layer approach for real-time

SpectreGuard

• Step 1: Software tells
OS what data is secret

• Step 2: OS updates the
page table entries

• Step 3: Load of the
secret data is identified
by MMU

• Step 4: secret data
forwarding is delayed
until safe

Hardware

MMU

Memory
System

Optimized
Forwarding

Instructions

Load

Dependent

Operating System

Binary Loader Virtual
Memory
System

Dependent

Software
Interface

Binary File

System Call

Spectre Secure
Forwarding

23
J. Fustos, F. Farshchi, H. Yun. “SpectreGuard: An Efficient Data-centric Defense Mechanism against Spectre Attacks..” In DAC, 2019

Data-centric cross-layer approach for security

RISC-V + NVDLA SoC Platform

• Full-featured quad-core SoC with hardware
DNN accelerator on Amazon FPGA cloud

– Run Linux, YOLO v3 object detection

24
F. Farshchi, Q Huang, H. Yun. “Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim.” In EMC^2, 2019

Open-source hardware: big research opportunity!

RT-Gang

• One parallel real-time task---a gang---at a time
– Eliminate inter-task interference by construction

• Schedule best-effort tasks during slacks w/ throttling
– Improve utilization with bounded impacts on the RT tasks

25
W. Ali and H. Yun. “RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems.” In RTAS, 2019

OS can do a lot more on COTS hardware

RT-Gang

26
https://youtu.be/pk0j063cUAs

https://youtu.be/pk0j063cUAs

Conclusion

• Micro-architectural attacks are a serious
threat for intelligent CPS
– Can leak secret (confidentiality)

– Can alter data (integrity)

– Can affect real-time performance (correctness)

• We need better computing infrastructure for
safe, secure, and intelligent CPS
– And we can build one

27

Thank You!

Acknowledgement:

This research is supported by NSA Science of Security initiative
contract #H98230-18-D-0009 and NSF CNS 1718880, 1815959.

28

Recent Publications
1. [C] Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An Efficient Data-centric Defense Mechanism against Spectre

Attacks. Design Automation Conference (DAC), 2019

2. [C] Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems. IEEE Intl. Conference on Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2019.

3. [C] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl.
Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019 Outstanding Paper Award

4. [W] Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim.
Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC^2), 2019.

5. [C] Michael Garrett Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. DeepPicar: A Low-cost Deep Neural Network-based Autonomous
Car. IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2018

6. [C] Waqar Ali, Heechul Yun. Protecting Real-Time GPU Applications on Integrated CPU-GPU SoC Platforms. Euromicro Conference on Real-
Time Systems (ECRTS), 2018

7. [C] Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, Heechul Yun. Deterministic Memory Abstraction and Supporting Multicore
System Architecture. Euromicro Conference on Real-Time Systems (ECRTS), 2018

8. [J] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Addressing Isolation Challenges of Non-blocking Caches for Multicore Real-Time
Systems. Real-time Systems, Vol: 53, Issue: 5, pp: 673–708, 2017

9. [J] Heechul Yun, Waqar Ali, Santosh Gondi, Siddhartha Biswas. BWLOCK: A Dynamic Memory Access Control Framework for Soft Real-Time
Applications on Multicore Platforms. IEEE Transactions on Computers, Vol: 66, Issue: 7, pp: 1247-1252, 2017

10. [C] Prasanth Vivekanandan, Gonzalo Garcia, Heechul Yun, Shawn Keshmiri. A Simplex Architecture for Intelligent and Safe Unmanned Aerial
Vehicles. IEEE Intl. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016. Best Student Paper Nomination

11. [C] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi . Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time
Systems. In IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016. Best Paper Award

12. [C] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory Bandwidth Management for Efficient Performance
Isolation in Multi-core Platforms, IEEE Transactions on Computers, Vol 65, Issue 2, 2016, pp. 562 – 576. Editor's Pick of the year 2016

29

Full List: http://www.ittc.ku.edu/~heechul/pub.html

http://www.ittc.ku.edu/~heechul/pub.html

