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Real-Time 3D Object Detection with LiDAR

• SOTA method → Deep Neural Networks (DNN)

2Image credits (leftmost): https://www.rdvsystems.com/lidar-icon-4/
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LiDAR Object Detection DNNs
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Latency and Accuracy

• High latency when executed on embedded systems, due to SWaP
constraints.

• We can reduce latency with model compression.

– Pruning, quantization, using lower input resolution, …

• HOWEVER, compression sacrifice accuracy for lower latency.

– It makes a trade-off between accuracy and latency.
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Latency and Accuracy

• Deployment on embedded systems requires a trade-off to be 
done.

• The optimal trade-off between latency and accuracy is dynamic.
– Will explain why in the next slides.

• Our goal is to propose a novel dynamic latency and accuracy 
trade-off framework for LiDAR object detection DNNs.
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Latency and Accuracy Requirements

6Image credits: https://tr.pinterest.com/pin/633811347586237182/

Predictions

• Simple, high-speed 
environment.

• Stale predictions are 
useless.
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Latency and Accuracy Requirements

7Image credits: https://tr.pinterest.com/pin/633811347586237182/

Predictions

• Low latency prevents 
misalignment.

• Lesser accuracy is 
tolerable.
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Latency and Accuracy Requirements

8Crossing image credits: brgfx on Freepik

• Complex, low-speed 
environment.

– Higher latency is tolerable.

– Higher accuracy is favored.
DNN
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Latency and Accuracy Requirements

• Dynamically changing.

• Possible solution: Deploy alternative DNNs simultaneously.

– High memory overhead.

– Requires training and fine-tuning all models to be deployed.
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Can we make dynamic trade-offs with a single DNN?



Anytime Algorithms

10[3] Boddy, M., and Dean T. L. “Solving Time-Dependent Planning Problems.” In Proceedings of the Eleventh International Joint 
Conference on Artificial Intelligence, 1989. 



Anytime Computing with Dynamic Input Resolution
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• Decide input resolution at run-time to make trade-offs between latency and 
accuracy for a single DNN.

• Prior work enabled this on DNNs that process camera images.
– Did not explore it for the DNNs that process point clouds, which are architecturally 

different.

• Our work is the first to explore for LiDAR.



How Is Input Resolution Determined?
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Trade-offs with Dynamic Input Resolution
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One Naive Approach

14

• Dynamically changing the pillar size for a high-accuracy model, Pillarnet
(0.100).

• Results:

Inference pillar size (𝑚2)

Actual
Normalized

Accuracy (%)
of Pillarnet (0.100)

Expected
Normalized

Accuracy (%)

0.1002 100 100

0.1282 79 96

0.1602 41 93

0.2002 18 89



How can we do it?

• In the baseline, DNN layers are trained while considering a single 
input resolution.

• Instead, they should be exposed to multiple resolutions.

• Good news: Convolutional layers can be trained to adapt 
multiple resolutions.*
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*Y. Wang et al. “Resolution switchable networks for runtime efficient image recognition,” ECCV, 2020 



How can we do it?

• Another issue is batch normalization (BN) layers, which normalize 
the data w.r.t. collected input statistics.

• These statistics differ concerning input resolution.

– A single BN layer cannot adapt to multiple resolutions.

• Separate batch normalization layers are needed.*
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*M Zhu et al. “Dynamic Resolution Network,” NIPS, 2021



MURAL: MUlti-Resolution Anytime LiDAR

• MURAL enables anytime computing with dynamic pillar size scaling
– Makes DNN Resolution-aware (RA):

• Modify batch normalization layers

• Smartly train DNN to adapt multiple pillar sizes

– Deadline-aware scheduler

– Forecasting and dense CNN optimizations from our prior work, VALO*
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Batch Normalization (BN)

• A single BN cannot adapt to multiple input resolutions.
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Resolution-aware Batch Normalization (BN)

• Use separate BN for each input resolution.

• Incurs negligible memory overhead.
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Training Procedure

• Importantly, we achieve same or comparable accuracy for all 
resolutions w.r.t. baselines targeting a single resolution.
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Allow Introducing Input Resolutions After Training
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*Y. Wang et al. “Resolution switchable networks for runtime efficient image recognition,” ECCV, 2020 
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Introducing New Input Resolutions

• Add BN layers for each additional input resolution after the 
training.

• To predict their parameters, we model the relationship 
between existing BN parameters and input resolutions.

• We then do interpolation*/extrapolation on these models.
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*Y. Wang et al. “Resolution switchable networks for runtime efficient image recognition,” ECCV, 2020 



Deadline-Aware Scheduling

• Select smallest pillar size that can meet a given deadline
– Assume higher resolution yields better accuracy

• Requires accurately predicting the latency for each pillar size at  
runtime
– Challenging because latency of sparse CNN is dependent on the 

spatial alignment of pillars

– We enhanced our prior work’s* time prediction
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*Soyyigit et. al., VALO: A Versatile Anytime Framework for LiDAR based Object Detection Deep Neural Network, EMSOFT’24



Latency Prediction
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Evaluation

• Applied MURAL on:
– Pillarnet

• Feature Encoder → Sparse CNN→ Dense CNN

– PointPillars (CenterHead version)
• Feature Encoder → Dense CNN

• Evaluated on:
– NVIDIA Jetson AGX Xavier (30 W)
– NVIDIA Jetson AGX Orin (30 W)

• Utilized nuScenes dataset
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Training Results for Pillarnet
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• Better or comparable accuracy than separately trained baselines

Results are in mAP



Adding Pillar Sizes After Training
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Hard-deadline Evaluation

• Consider a range of hard deadlines.

• Nullify detection result on deadline misses.

• Compared MURAL against:

– Baseline Pillarnet/PointPillars models.

– Our prior SOTA data scheduling approach, VALO.
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Pillarnet Results
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PointPillars Results
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Memory Requirement
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Pillarnet PointPillars

Baseline 61.0 x 6 MB 24.0 x 6 MB

MURAL 61.4 MB 24.3 MB



Conclusion

• MURAL: First deadline-aware runtime resolution scaling framework 
for LiDAR detection DNNs
– Resolution-aware batch normalization
– Support arbitrary resolutions via BN inter/extrapolation
– Deadline-aware resolution scheduling

• Balances accuracy and latency dynamically
• Memory-efficient: single model supports multiple resolutions
• Achieves state-of-the-art anytime performance
• Enables practical deployment on embedded platforms
• Code is available at: https://github.com/CSL-KU/MURAL
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Thank You

Disclaimer: 

This research is supported in part by NSF grants 
CNS1815959, CPS-2038923, and CPS-2038658
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Rest is appendix
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LiDAR Object Detection DNNs

• High complexity incurs high latency when executed on embedded 
systems, due to SWaP constraints.

• Latency of a deployment-friendly* DNN on Jetson AGX Orin (30 W):

35Pillarnet, pillars size = 0.100*0.100

Min Mean Max

131 ms 186 ms 282 ms

In some driving scenarios, most tolerable is 100 ms.



Pillarnet Results
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Trade-offs with Dynamic Input Resolution
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LiDAR Object Detection DNNs
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LiDAR Object Detection DNNs
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Encode into a grid of voxels or pillars
Voxel/Pillar size determines resolution
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Pillar Size Scaling

• Excellent tradeoffs 
with multiple models.

• However, memory 
requirement grows 
linearly.
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Trade-offs with Dynamic Input Resolution

• Excellent tradeoffs 
with multiple models

• However, memory 
requirement grows 
linearly.
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Latency and Accuracy Trade-offs

• Anytime perception for LiDAR object detection DNNs is needed.

• But the execution of DNNs is rigid.

43
Image credits: https://www.freecodecamp.org/news/want-to-know-how-deep-learning-works-heres-a-quick-guide-for-everyo
ne-1aedeca88076/



MURAL: Multi-resolution Anytime LiDAR

• MURAL enables anytime computing with dynamic pillar size scaling
– Resolution-aware (RA) batch normalization and training

– Introduce additional pillar sizes after training

– Deadline-aware scheduler

– Forecasting and detection head optimization from our prior work*
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Pillarnet Results
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PointPillars Results
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Batch Normalization (BN)

• Baseline BN learns statistics of its input.

• Statistics are dependent on input resolution.

• BN can only adapt to single input resolution.
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One Naive Approach
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• Dynamically changing the pillar size for a single high accuracy model.

• Results for Pillarnet:

Accuracy plummets…

Used

for

training



Conclusion

• We explored dynamic input resolution for LiDAR object detection 
DNNs.

• Evaluated on Pillarnet and PointPillars using Jetson AGX Xavier and 
Jetson AGX Orin.

• Results established MURAL as the state-of-the-art on deadline-
aware anytime LiDAR object detection.

• Code is available at: https://github.com/CSL-KU/MURAL
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